1. Williams, S. T. Molluscan shell colour. Biol. Rev.92, 1039–1058 (2017).
2. Comfort, A. Acid-soluble pigments of shells. 1. The distribution of porphyrin fluorescence in molluscan shells. Biochem. J.44, 111–117 (1949).
3. Williams, S. T. et al. Identification of shell colour pigments in marine snails Clanculus pharaonius and C. margaritarius (Trochoidea; Gastropoda). PLoS ONE11, e0156664 (2016).
4. Stenger, P.-L. et al. Molecular pathways and pigments underlying the colors of the pearl oyster Pinctada margaritifera var. cumingii (Linnaeus 1758). Genes12, 421 (2021).
5. Affenzeller, S., Wolkenstein, K., Frauendorf, H. & Jackson, D. J. Eumelanin and pheomelanin pigmentation in mollusc shells may be less common than expected: insights from mass spectrometry. Front. Zool.16, 47 (2019).
6. Hao, S. et al. Extraction and identification of the pigment in the adductor muscle scar of Pacific oyster Crassostrea gigas. PLoS ONE10, e0142439 (2015).
7. Bonnard, M., Cantel, S., Boury, B. & Parrot, I. Chemical evidence of rare porphyrins in purple shells of Crassostrea gigas oyster. Sci. Rep.10, 12150 (2020).
8. Hu, B., Li, Q., Yu, H. & Du, S. Identification and characterization of key haem pathway genes associated with the synthesis of porphyrin in Pacific oyster (Crassostrea gigas). Comp. Biochem. Physiol. B Biochem. Mol. Biol.255, 110595 (2021).
9. Feng, D., Li, Q., Yu, H., Kong, L. & Du, S. Transcriptional profiling of long non-coding RNAs in mantle of Crassostrea gigas and their association with shell pigmentation. Sci. Rep.8, 1436 (2018).
10. Saenko, S. V. & Schilthuizen, M. Evo-devo of shell colour in gastropods and bivalves. Curr. Opin. Genet. Dev.69, 1–5 (2021).
11. Affenzeller, S., Wolkenstein, K., Frauendorf, H. & Jackson, D. J. Challenging the concept that eumelanin is the polymorphic brown banded pigment in Cepaea nemoralis. Sci. Rep.10, 2442 (2020).
12. Solano, F. Melanins: skin pigments and much more—types, structural models, biological functions, and formation routes. New J. Sci.2014, 1–28 (2014).
13. Feifei, Y. et al. Identification of a tyrosinase gene and its functional analysis in melanin synthesis of Pteria penguin. Gene656, 1–8 (2018).
14. Chen, X., Liu, X., Bai, Z., Zhao, L. & Li, J. HcTyr and HcTyp-1 of Hyriopsis cumingii, novel tyrosinase and tyrosinase-related protein genes involved in nacre color formation. Comp. Biochem. Physiol. B Biochem. Mol. Biol.204, 1–8 (2017).
15. Miyamoto, H. et al. The diversity of shell matrix proteins: genome-wide investigation of the pearl oyster, Pinctada fucata. Zoolog. Sci.30, 801 (2013).
16. Lemer, S., Saulnier, D., Gueguen, Y. & Planes, S. Identification of genes associated with shell color in the black-lipped pearl oyster, Pinctada margaritifera. BMC Genomics16, 568 (2015).
17. Ding, J. et al. Transcriptome sequencing and characterization of Japanese scallop Patinopecten yessoensis from different shell color lines. PLoS ONE10, e0116406 (2015).
18. Miyashita, T. & Takagi, R. Tyrosinase causes the blue shade of an abnormal pearl. J. Molluscan Stud.77, 312–314 (2011).
19. Linzen, B. The tryptophan → ommochrome pathway in Insects. in Advances in Insect Physiology vol. 10 117–246 (Elsevier, 1974).
20. Needham, A. E. Zoophysiology and Ecology, Volume 3: The Significance of Zoochromes. vol. 3 (Springer-Verlag Berlin, 1974).
21. Bandaranayake, W. M. The nature and role of pigments of marine invertebrates. Nat. Prod. Rep.23, 223 (2006).
22. Figon, F. & Casas, J. Ommochromes in invertebrates: biochemistry and cell biology. Biol. Rev.94, 156–183 (2019).
23. Williams, T. L. et al. Dynamic pigmentary and structural coloration within cephalopod chromatophore organs. Nat. Commun.10, 1004 (2019).
24. Hsiung, B.-K., Blackledge, T. A. & Shawkey, M. D. Spiders do have melanin after all. J. Exp. Biol.218, 3632–3635 (2015).
25. Ostrovsky, M. A., Zak, P. P. & Dontsov, A. E. Vertebrate eye melanosomes and invertebrate eye ommochromes as screening Cell organelles. Biol. Bull.45, 570–579 (2018).
26. Cordell, G. A. & Daley, S. Biosynthesis of the ommochromes and papiliochromes. Rec. Nat. Prod.15, 420–432 (2021).
27. Panettieri, S., Gjinaj, E., John, G. & Lohman, D. J. Different ommochrome pigment mixtures enable sexually dimorphic Batesian mimicry in disjunct populations of the common palmfly butterfly, Elymnias hypermnestra. PLoS ONE13, e0202465 (2018).
28. Figon, F. et al. Uncyclized xanthommatin is a key ommochrome intermediate in invertebrate coloration. Insect Biochem. Mol. Biol.124, 103403 (2020).
29. Huijser, A., Pezzella, A. & Sundström, V. Functionality of epidermal melanin pigments: current knowledge on UV-dissipative mechanisms and research perspectives. Phys. Chem. Chem. Phys.13, 9119 (2011).
30. Esparza-Espinoza, D. M. et al. Chemical structure and antioxidant activity of cephalopod skin ommochrome pigment extracts. Food Sci. Technol. (2021).
31. Verdes, A. et al. Nature’s palette: characterization of shared pigments in colorful avian and mollusk shells. PLoS ONE10, e0143545 (2015).
32. Butenandt, A., Schiedt, U. & Biekert, E. Über ommochrome, II. Mitteilung. Alkalischer und fermentativer abbau von xanthommatin und rhodommatin. Alkalischer abbau der kynurenin-seitenkette. Justus Liebigs Ann. Chem.586, 229–239 (1954).
33. Butenandt, A., Biekert, E., Koga, N. & Traub, P. Über ommochrome, XXI. Konstitution und synthese des ommatins D. Hoppe-Seyler´s Z. Für Physiol. Chem.321, 258–275 (1960).
34. Lindstedt, C. et al. Characterizing the pigment composition of a variable warning signal of Parasemia plantaginis larvae: pigment composition of a warning signal. Funct. Ecol.24, 759–766 (2010).
35. Nijhout, H. F. Ommochrome pigmentation of the linea and rosa seasonal forme Precis coenia (Lepidoptera: Nymphalidae). Achives Insect Biochem. Physiol.36, 215–222 (1997).
36. Daniels, E. V. & Reed, R. D. Xanthurenic acid is a pigment in Junonia coenia butterfly wings. Biochem. Syst. Ecol.44, 161–163 (2012).
37. Fujiwara, M. et al. Xanthurenic acid is the main pigment of Trichonephila clavata gold dragline silk. Biomolecules11, 563 (2021).
38. Thane, C. & Reddy, S. Processing of fruit and vegetables: effect on carotenoids. Nutr. Food Sci.97, 58–65 (1997).
39. Mezzomo, N. & Ferreira, S. R. S. Carotenoids functionality, sources, and processing by supercritical technology: A review. J. Chem.2016, 1–16 (2016).
40. Holl, A. Coloration and chromes. in Ecophysiology of Spiders (ed. Nentwig, W.) 16–25 (Springer Berlin Heidelberg, 1987).
41. Bolognese, A. & Liberatore, R. Photochemistry of ommochrome pigments. J. Heterocycl. Chem.25, 1243–1246 (1988).