1. Gaspar, D., Veiga, A.S., and Castanho, M.A. From antimicrobial to anticancer peptides. A review. Frontiers in microbiology 2013; 4: 294.
2. Oren, Z., and Shai, Y. Mode of action of linear amphipathic α‐helical antimicrobial peptides. Peptide Science 1998; 47(6): 451-63.
3. Basith, S., Manavalan, B., Shin, T.H., Lee, D.Y., and Lee, G. Evolution of Machine Learning Algorithms in the Prediction and Design of Anticancer Peptides. Current protein & peptide science 2020; 21(12): 1242-50.
4. Charoenkwan, P., Chiangjong, W., Lee, V.S., Nantasenamat, C., Hasan, M.M., and Shoombuatong, W. Improved prediction and characterization of anticancer activities of peptides using a novel flexible scoring card method. Scientific reports 2021; 11(1): 3017.
5. Song, X., Zhuang, Y., Lan, Y., Lin, Y., and Min, X. Comprehensive Review and Comparison for Anticancer Peptides Identification Models. Current protein & peptide science 2020.
6. Brown, K.L., and Hancock, R.E. Cationic host defense (antimicrobial) peptides. Current opinion in immunology 2006; 18(1): 24-30.
7. Hancock, R.E., Haney, E.F., and Gill, E.E. The immunology of host defence peptides: beyond antimicrobial activity. Nature reviews. Immunology 2016; 16(5): 321-34.
8. Mulder, K., Lima, L.A., Miranda, V., Dias, S.C., and Franco, O.L. Current scenario of peptide-based drugs: the key roles of cationic antitumor and antiviral peptides. Frontiers in microbiology 2013; 4: 321.
9. Patathananone, S., Thammasirirak, S., Daduang, J., Chung, J.G., Temsiripong, Y., and Daduang, S. Bioactive compounds from crocodile (Crocodylus siamensis) white blood cells induced apoptotic cell death in hela cells. Environmental toxicology 2016; 31(8): 986-97.
10. Sousa, L.Q., Machado, K.D., Oliveira, S.F., Araujo, L.D., Moncao-Filho, E.D., Melo-Cavalcante, A.A., et al. Bufadienolides from amphibians: A promising source of anticancer prototypes for radical innovation, apoptosis triggering and Na(+)/K(+)-ATPase inhibition. Toxicon : official journal of the International Society on Toxinology 2017; 127: 63-76.
11. Buchau, A.S., Morizane, S., Trowbridge, J., Schauber, J., Kotol, P., Bui, J.D., et al. The host defense peptide cathelicidin is required for NK cell-mediated suppression of tumor growth. J Immunol 2010; 184(1): 369-78.
12. Piktel, E., Niemirowicz, K., Wnorowska, U., Watek, M., Wollny, T., Gluszek, K., et al. The Role of Cathelicidin LL-37 in Cancer Development. Archivum immunologiae et therapiae experimentalis 2016; 64(1): 33-46.
13. Bergman, P., Walter-Jallow, L., Broliden, K., Agerberth, B., and Soderlund, J. The antimicrobial peptide LL-37 inhibits HIV-1 replication. Current HIV research 2007; 5(4): 410-5.
14. Tripathi, S., Verma, A., Kim, E.J., White, M.R., and Hartshorn, K.L. LL-37 modulates human neutrophil responses to influenza A virus. Journal of leukocyte biology 2014; 96(5): 931-8.
15. Sainz, B., Jr., Alcala, S., Garcia, E., Sanchez-Ripoll, Y., Azevedo, M.M., Cioffi, M., et al. Microenvironmental hCAP-18/LL-37 promotes pancreatic ductal adenocarcinoma by activating its cancer stem cell compartment. Gut 2015; 64(12): 1921-35.
16. Ren, S.X., Cheng, A.S., To, K.F., Tong, J.H., Li, M.S., Shen, J., et al. Host immune defense peptide LL-37 activates caspase-independent apoptosis and suppresses colon cancer. Cancer research 2012; 72(24): 6512-23.
17. Shanmugam, G., Mohan, A., Kumari, K., Louis, J.M., Soumya Krishnan, U., Balagopal, P.G., et al. A novel reporter construct for screening small molecule inhibitors that specifically target self-renewing cancer cells. Exp Cell Res 2019; 383(2): 111551.
18. Shen, Y., Maupetit, J., Derreumaux, P., and Tuffery, P. Improved PEP-FOLD Approach for Peptide and Miniprotein Structure Prediction. Journal of chemical theory and computation 2014; 10(10): 4745-58.
19. Vasanwala, F.H., Kusam, S., Toney, L.M., and Dent, A.L. Repression of AP-1 function: a mechanism for the regulation of Blimp-1 expression and B lymphocyte differentiation by the B cell lymphoma-6 protooncogene. J Immunol 2002; 169(4): 1922-9.
20. Shyla, G., Vineethkumar, T., Arun, V., Divya, M., Thomas, S., and George, S. Functional characterization of two novel peptides and their analogs identified from the skin secretion of Indosylvirana aurantiaca, an endemic frog species of Western Ghats, India. Chemoecology 2019: 1-9.
21. Zhang, D., Zhou, Q., Huang, D., He, L., Zhang, H., Hu, B., et al. ROS/JNK/c-Jun axis is involved in oridonin-induced caspase-dependent apoptosis in human colorectal cancer cells. Biochemical and biophysical research communications 2019; 513(3): 594-601.
22. Oh, K., Lee, O.Y., Park, Y., Seo, M.W., and Lee, D.S. IL-1beta induces IL-6 production and increases invasiveness and estrogen-independent growth in a TG2-dependent manner in human breast cancer cells. BMC cancer 2016; 16(1): 724.
23. Hassan, W., Ding, L., Gao, R.Y., Liu, J., and Shang, J. Interleukin-6 signal transduction and its role in hepatic lipid metabolic disorders. Cytokine 2014; 66(2): 133-42.
24. Van der Velden, J., Janssen-Heininger, Y.M., Mandalapu, S., Scheller, E.V., Kolls, J.K., and Alcorn, J.F. Differential requirement for c-Jun N-terminal kinase 1 in lung inflammation and host defense. PloS one 2012; 7(4): e34638.
25. Decker, T., and Kovarik, P. Serine phosphorylation of STATs. Oncogene 2000; 19(21): 2628-37.
26. Patocka, J., Nepovimova, E., Klimova, B., Wu, Q., and Kuca, K. Antimicrobial Peptides: Amphibian Host Defense Peptides. Current medicinal chemistry 2018.
27. Swithenbank, L., Cox, P., Harris, L.G., Dudley, E., Sinclair, K., Lewis, P., et al. Temporin A and Bombinin H2 Antimicrobial Peptides Exhibit Selective Cytotoxicity to Lung Cancer Cells. Scientifica 2020; 2020: 3526286.
28. Shaheen, F., Nadeem-Ul-Haque, M., Ahmed, A., Simjee, S.U., Ganesan, A., Jabeen, A., et al. Synthesis of breast cancer targeting conjugate of temporin-SHa analog and its effect on pro- and anti-apoptotic protein expression in MCF-7 cells. Peptides 2018; 106: 68-82.
29. Wang, C., Zhou, Y., Li, S., Li, H., Tian, L., Wang, H., et al. Anticancer mechanisms of temporin-1CEa, an amphipathic alpha-helical antimicrobial peptide, in Bcap-37 human breast cancer cells. Life sciences 2013; 92(20-21): 1004-14.
30. Riedl, S., Zweytick, D., and Lohner, K. Membrane-active host defense peptides–challenges and perspectives for the development of novel anticancer drugs. Chemistry and physics of lipids 2011; 164(8): 766-81.
31. Keating, N., and Nicholson, S.E. SOCS-mediated immunomodulation of natural killer cells. Cytokine 2019; 118: 64-70.
32. Cendrowski, J., Mamińska, A., and Miaczynska, M. Endocytic regulation of cytokine receptor signaling. Cytokine & growth factor reviews 2016; 32: 63-73.
33. Zhang, J., Sun, Y., Kang, Y., and Shang, D. Antimicrobial peptide temporin-1CEa isolated from frog skin secretions inhibits the proinflammatory response in lipopolysaccharide-stimulated RAW264.7 murine macrophages through the MyD88-dependent signaling pathway. Molecular immunology 2021; 132: 227-35.
34. Dong, W., Zhu, X., Zhou, X., Yang, Y., Yan, X., Sun, L., et al. Potential role of a series of lysine-/leucine-rich antimicrobial peptide in inhibiting lipopolysaccharide-induced inflammation. The Biochemical journal 2018; 475(22): 3687-706.
35. Bezzerri, V., Avitabile, C., Dechecchi, M.C., Lampronti, I., Borgatti, M., Montagner, G., et al. Antibacterial and anti-inflammatory activity of a temporin B peptide analogue on an in vitro model of cystic fibrosis. Journal of peptide science : an official publication of the European Peptide Society 2014; 20(10): 822-30.
36. Kurosaka, M., and Machida, S. Interleukin‐6‐induced satellite cell proliferation is regulated by induction of the JAK 2/STAT 3 signalling pathway through cyclin D1 targeting. Cell proliferation 2013; 46(4): 365-73.
37. Hirano, T., Ishihara, K., and Hibi, M. Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene 2000; 19(21): 2548.
38. Rios, P., Nunes-Xavier, C.E., Tabernero, L., Kohn, M., and Pulido, R. Dual-specificity phosphatases as molecular targets for inhibition in human disease. Antioxidants & redox signaling 2014; 20(14): 2251-73.
39. Lang, R., and Raffi, F.A.M. Dual-Specificity Phosphatases in Immunity and Infection: An Update. International journal of molecular sciences 2019; 20(11).
40. Mei, Z.Z., Chen, X.Y., Hu, S.W., Wang, N., Ou, X.L., Wang, J., et al. Kelch-like Protein 21 (KLHL21) Targets IkappaB Kinase-beta to Regulate Nuclear Factor kappa-Light Chain Enhancer of Activated B Cells (NF-kappaB) Signaling Negatively. The Journal of biological chemistry 2016; 291(35): 18176-89.
41. Deng, Y., Ren, X., Yang, L., Lin, Y., and Wu, X. A JNK-dependent pathway is required for TNFalpha-induced apoptosis. Cell 2003; 115(1): 61-70.
42. Dhanasekaran, D.N., and Reddy, E.P. JNK signaling in apoptosis. Oncogene 2008; 27(48): 6245-51.
43. Hong, S.S., Choi, J.H., Lee, S.Y., Park, Y.H., Park, K.Y., Lee, J.Y., et al. A Novel Small-Molecule Inhibitor Targeting the IL-6 Receptor beta Subunit, Glycoprotein 130. J Immunol 2015; 195(1): 237-45.
44. Eghtedar, A., Verstovsek, S., Estrov, Z., Burger, J., Cortes, J., Bivins, C., et al. Phase 2 study of the JAK kinase inhibitor ruxolitinib in patients with refractory leukemias, including postmyeloproliferative neoplasm acute myeloid leukemia. Blood 2012; 119(20): 4614-8.
45. Seo, H.R., Kwan, Y.W., Cho, C.K., Bae, S., Lee, S.J., Soh, J.W., et al. PKCalpha induces differentiation through ERK1/2 phosphorylation in mouse keratinocytes. Experimental & molecular medicine 2004; 36(4): 292-9.
46. Tanaka, T., Narazaki, M., Masuda, K., and Kishimoto, T. Regulation of IL-6 in Immunity and Diseases. Advances in experimental medicine and biology 2016; 941: 79-88.
47. Johnson, D.E., O'Keefe, R.A., and Grandis, J.R. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nature reviews. Clinical oncology 2018; 15(4): 234-48.
48. Boulanger, M.J., Chow, D.C., Brevnova, E.E., and Garcia, K.C. Hexameric structure and assembly of the interleukin-6/IL-6 alpha-receptor/gp130 complex. Science 2003; 300(5628): 2101-4.
49. de Hon, F.D., Klaasse Bos, H.K., Ebeling, S.B., Grotzinger, J., Kurapkat, G., Rose-John, S., et al. Leucine-58 in the putative 5th helical region of human interleukin (IL)-6 is important for activation of the IL-6 signal transducer, gp130. FEBS letters 1995; 369(2-3): 187-91.