[1] Tachibana M, Kobayashi Y, Matsushima Y. Mouse models for four types of Waardenburg syndrome[J]. Pigment Cell Res, 2003, 16(5): 448–54.
[2] Zimring D C, Lamoreux M L, Millichamp N J, et al. Microphthalmia cloudy-eye (mi(ce)): a new murine allele[J]. J Hered, 1996, 87(4): 334–8.
[3] Tachibana M, Hara Y, Vyas D, et al. Cochlear disorder associated with melanocyte anomaly in mice with a transgenic insertional mutation[J]. Mol Cell Neurosci, 1992, 3(5): 433–45.
[4] Steingrimsson E, Copeland N G, Jenkins N A. Melanocytes and the microphthalmia transcription factor network[J]. Annu Rev Genet, 2004, 38: 365–411.
[5] Ohlemiller K K, Jones S M, Johnson K R. Application of Mouse Models to Research in Hearing and Balance[J]. J Assoc Res Otolaryngol, 2016, 17(6): 493–523.
[6] Smithies O. Animal models of human genetic diseases[J]. Trends Genet, 1993, 9(4): 112–6.
[7] Wang D. Evolution and restoration of structures and functions of the human central nervous system—A review[J]. Journal of Neurorestoratology, 2015, 1(1): 60–70.
[8] Tritsch N X, Bergles D E. Developmental Regulation of Spontaneous Activity in the Mammalian Cochlea[J]. The Journal of Neuroscience, 2010, 30(4): 1539–1550.
[9] Philipp U, Lupp B, Momke S, et al. A MITF mutation associated with a dominant white phenotype and bilateral deafness in German Fleckvieh cattle[J]. PLoS One, 2011, 6(12): e28857.
[10] Tsuchida S, Takizawa T, Abe K, et al. Identification of microphthalmia-associated transcription factor isoforms in dogs[J]. Vet J, 2009, 182(2): 283–93.
[11] Chen L, Guo W, Ren L, et al. A de novo silencer causes elimination of MITF-M expression and profound hearing loss in pigs[J]. BMC Biol, 2016, 14: 52.
[12] Guo W, Yi H, Ren L, et al. The morphology and electrophysiology of the cochlea of the miniature pig[J]. Anat Rec (Hoboken), 2015, 298(3): 494–500.
[13] Lovell J M, Harper G M. The morphology of the inner ear from the domestic pig (Sus scrofa)[J]. J Microsc, 2007, 228(Pt 3): 345–57.
[14] Dror A A, Avraham K B. Hearing Impairment: A Panoply of Genes and Functions[J]. Neuron, 2010, 68(2): 293–308.
[15] Zdebik A A, Wangemann P, Jentsch T J. Potassium ion movement in the inner ear: insights from genetic disease and mouse models[J]. Physiology (Bethesda), 2009, 24: 307–16.
[16] Jin Z. Cochlear homeostasis and its role in genetic deafness[J]. Journal of Otology, 2009, Vol. 4 (No. 1).
[17] Lang F, Vallon V, Knipper M, et al. Functional significance of channels and transporters expressed in the inner ear and kidney[J]. Am J Physiol Cell Physiol, 2007, 293(4): C1187–208.
[18] Marcus D C, Wu T, Wangemann P, et al. KCNJ10 (Kir4.1) potassium channel knockout abolishes endocochlear potential[J]. Am J Physiol Cell Physiol, 2002, 282(2): C403–7.
[19] Liu H, Li Y, Chen L, et al. Organ of Corti and Stria Vascularis: Is there an Interdependence for Survival?[J]. PLoS One, 2016, 11(12): e0168953.
[20] Huang Da W, Sherman B T, Lempicki R A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources[J]. Nat Protoc, 2009, 4(1): 44–57.
[21] Dennis G, Jr., Sherman B T, Hosack D A, et al. DAVID: Database for Annotation, Visualization, and Integrated Discovery[J]. Genome Biol, 2003, 4(5): P3.
[22] Takeda K, Yasumoto K, Kawaguchi N, et al. Mitf-D, a newly identified isoform, expressed in the retinal pigment epithelium and monocyte-lineage cells affected by Mitf mutations[J]. Biochim Biophys Acta, 2002, 1574(1): 15–23.
[23] Chen T, Zhao B, Liu Y, et al. MITF-M regulates melanogenesis in mouse melanocytes[J]. J Dermatol Sci, 2018, 90(3): 253–262.
[24] Michael H T, Graff-Cherry C, Chin S, et al. Partial Rescue of Ocular Pigment Cells and Structure by Inducible Ectopic Expression of Mitf-M in MITF-Deficient Mice[J]. Invest Ophthalmol Vis Sci, 2018, 59(15): 6067–6073.
[25] Levy C, Khaled M, Fisher D E. MITF: master regulator of melanocyte development and melanoma oncogene[J]. Trends Mol Med, 2006, 12(9): 406–14.
[26] Vance K W, Goding C R. The transcription network regulating melanocyte development and melanoma[J]. Pigment Cell Res, 2004, 17(4): 318–25.
[27] Locher H, De Groot J C, Van Iperen L, et al. Development of the stria vascularis and potassium regulation in the human fetal cochlea: Insights into hereditary sensorineural hearing loss[J]. Dev Neurobiol, 2015, 75(11): 1219–40.
[28] Chen J, Zhao H B. The role of an inwardly rectifying K(+) channel (Kir4.1) in the inner ear and hearing loss[J]. Neuroscience, 2014, 265: 137–46.
[29] Yang H, Xiong H, Huang Q, et al. Compromised potassium recycling in the cochlea contributes to conservation of endocochlear potential in a mouse model of age-related hearing loss[J]. Neurosci Lett, 2013, 555: 97–101.
[30] Wangemann P, Itza E M, Albrecht B, et al. Loss of KCNJ10 protein expression abolishes endocochlear potential and causes deafness in Pendred syndrome mouse model[J]. BMC Med, 2004, 2: 30.
[31] Wangemann P. K+ cycling and the endocochlear potential[J]. Hear Res, 2002, 165(1–2): 1–9.
[32] Wangemann P. K(+) cycling and its regulation in the cochlea and the vestibular labyrinth[J]. Audiol Neurootol, 2002, 7(4): 199–205.
[33] Miller A J, Du J, Rowan S, et al. Transcriptional regulation of the melanoma prognostic marker melastatin (TRPM1) by MITF in melanocytes and melanoma[J]. Cancer Res, 2004, 64(2): 509–16.
[34] Inagaki K, Suzuki T, Ito S, et al. Oculocutaneous albinism type 4: six novel mutations in the membrane-associated transporter protein gene and their phenotypes[J]. Pigment Cell Res, 2006, 19(5): 451–3.
[35] Newton J M, Cohen-Barak O, Hagiwara N, et al. Mutations in the human orthologue of the mouse underwhite gene (uw) underlie a new form of oculocutaneous albinism, OCA4[J]. Am J Hum Genet, 2001, 69(5): 981–8.
[36] Hoek K S, Schlegel N C, Eichhoff O M, et al. Novel MITF targets identified using a two-step DNA microarray strategy[J]. Pigment Cell Melanoma Res, 2008, 21(6): 665–76.
[37] Du J, Fisher D E. Identification of Aim–1 as the underwhite mouse mutant and its transcriptional regulation by MITF[J]. J Biol Chem, 2002, 277(1): 402–6.
[38] Dolga A M, Culmsee C. Protective Roles for Potassium SK/K(Ca)2 Channels in Microglia and Neurons[J]. Front Pharmacol, 2012, 3: 196.
[39] Mittal R, Aranke M, Debs L H, et al. Indispensable Role of Ion Channels and Transporters in the Auditory System[J]. Journal of Cellular Physiology, 2017, 232(4): 743–758.
[40] Wilms V, Koppl C, Soffgen C, et al. Molecular bases of K(+) secretory cells in the inner ear: shared and distinct features between birds and mammals[J]. Sci Rep, 2016, 6: 34203.
[41] Strutz-Seebohm N, Seebohm G, Fedorenko O, et al. Functional coassembly of KCNQ4 with KCNE-beta- subunits in Xenopus oocytes[J]. Cell Physiol Biochem, 2006, 18(1–3): 57–66.
[42] Bartle E I, Rao T C, Urner T M, et al. Bridging the gap: Super-resolution microscopy of epithelial cell junctions[J]. Tissue Barriers, 2018, 6(1): e1404189.
[43] Liu W, Schrott-Fischer A, Glueckert R, et al. The Human “Cochlear Battery” - Claudin–11 Barrier and Ion Transport Proteins in the Lateral Wall of the Cochlea[J]. Frontiers in Molecular Neuroscience, 2017, 10.
[44] Shi X. Pathophysiology of the cochlear intrastrial fluid-blood barrier (review)[J]. Hear Res, 2016, 338: 52–63.
[45] Kitajiri S, Katsuno T, Sasaki H, et al. Deafness in occludin-deficient mice with dislocation of tricellulin and progressive apoptosis of the hair cells[J]. Biol Open, 2014, 3(8): 759–66.
[46] Wallez Y, Huber P. Endothelial adherens and tight junctions in vascular homeostasis, inflammation and angiogenesis[J]. Biochim Biophys Acta, 2008, 1778(3): 794–809.
[47] Goncharov N V, Nadeev A D, Jenkins R O, et al. Markers and Biomarkers of Endothelium: When Something Is Rotten in the State[J]. Oxid Med Cell Longev, 2017, 2017: 9759735.
[48] Trune D R. Ion homeostasis in the ear: mechanisms, maladies, and management[J]. Current Opinion in Otolaryngology & Head and Neck Surgery, 2010, 18(5): 413–419.