Machine learning techniques have been used to increase detection accuracy of cracks in road surfaces. Most studies failed to consider variable illumination conditions on the target of interest (ToI), and only focus on detecting the presence or absence of road cracks. This paper proposes a new road crack detection method, IlumiCrack, which integrates Gaussian mixture models (GMM) and object detection CNN models. This work provides the following contributions: 1) For the first time, a large-scale road crack image dataset with a range of illumination conditions (e.g., day and night) is prepared using a dashcam. 2) Based on GMM, experimental evaluations on 2 to 4 levels of brightness are conducted for optimal classification. 3) the IlumiCrack framework is used to integrate state-of-the-art object detecting methods with CNN to classify the road crack images into eight types with high accuracy. Experimental results show that IlumiCrack outperforms the state-of-the-art R-CNN object detection frameworks.