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Abstract 

This paper proposes a methodology for modeling and controlling the performance of call centers. 

Most call centers use CRM (Customer Relationship Management) systems to record data of all 

contacts between agents and clients. These data may be autocorrelated. To model autocorrelated 

processes effectively, the proposed methodology integrates in a logical way ARIMA 

(Autoregressive Integrated Moving Average) modeling and SPC (Statistical Process Control) 
tools. ARIMA is used to model the process and identify the model that best fits the time series. 

The fitted model is used to compute residuals, predict future values for the quality variable(s) 

being monitored and determine the prediction errors. To achieve these goals, the Box-Jenkins 
methodology is employed. These outputs are then used to apply SPC, in this case the Shewhart 

control charts for autocorrelated data. First, the computed residuals are used to build the control 

charts in Phase I of SPC, verify the process stability and estimate the process parameters. Then, 

these parameters are used to establish the control limits of the charts used in Phase II of SPC to 

monitor and control the prediction errors. The proposed methodology is tested in a case study of 

a large call center in Portugal. The results of the case study suggest that ARIMA modeling and 

SPC, when properly integrated, provide a set of effective tools for monitoring call center 

performance when autocorrelated data are available. This paper has important implications for 

both theory and practice. 

 

Keywords: Call Center Performance, Key Performance Indicators (KPIs), ARIMA modeling, 
SPC, Control Charts 

 

1.Introduction 

Performance measurement is a research topic that has attracted considerable academic and 

practitioner attention, in both the manufacturing and service industries. In service industries, the 

evaluation of call center performance has been extensively investigated, given its importance in 

the decision-making process of managers of call centers. Performance measurement can help 

managers know whether the interactions between agents and clients are conducted effectively. 

Managers can learn from these experiences and use the evidence systematically to improve the 

quality of the service they offer. Call centers can be broadly defined as facilities designed to 

support the delivery of an interactive service via telephone communication (Excoffier et al., 

2016).  

To evaluate and control call center performance in a reliable way, it is important to secure on-line 

real-time measurements of Key Performance Indicators (KPIs). To achieve this, call centers have 

been replacing traditional information systems with Customer Relationship Management (CRM) 

systems. These systems can collect and record, in real-time, all calls and log all agents’ and 

customers’ activities in a single system, producing a massive amount of data. These data can be 

collected from different call center units, which creates new challenges for the way call center 

managers control the performance of their agents. Collecting and recording massive amounts of 

data is not enough, on its own, to inform policies and decision making in any organization. One 

challenge call center managers face is how to analyze and transform these data into information 

that adds value and supports their decision-making in real-time and in an effective way. Another 



challenge is how to use historical activities and customer experiences to predict future events, and 

take action to avoid future problems and bottlenecks. 

A third challenge is  more technical than strategic. As is known, automated systems, such as CRM, 

record all measurements of call center KPIs. As a result, the probability of producing 

autocorrelated data is higher. Thus, these data must be properly modeled to ensure reliable 

analysis and prediction of the way the performance of call center agents evolves over time. This 

can be achieved by applying advanced statistical tools that are effective in the modeling of 

autocorrelated data. Autoregressive Integrated Moving Average (ARIMA) modeling is a popular 

and flexible class of prediction techniques that use historical data to forecast time series that are 
autocorrelated(Khashei et al., 2012, Villalobos et al., 2021). 

After predicting the trend of KPIs in call centers, managers need to monitor the quality of service 
in order to ensure customers are satisfied and identify potential areas for improvement. Attention 

to the quality of customer service is a basic condition for attracting new customers and retaining 

current customers. Statistical Process Control (SPC) is an approach that has been widely applied 

in many industries to improve quality(Özdemir, 2021, Yang and Zhou, 2015). It is a powerful 

collection of problem-solving tools that is useful in achieving process stability and improving 

capability through the reduction of variability. It involves the collection, analysis, and 

interpretation of data from quality monitoring activities (Montgomery, 2020). Control charts are 

one of the powerful SPC tools and be used to monitor the evolution of one or more quality 

characteristics, i.e., to monitor whether a process is in control or not(Kaya and Turgut, 2021, Zan 

et al., 2020).  They can provide information about a process mean and variance and detect the 

presence of special causes of variation, enabling quick intervention to eliminate these causes and 

bring the process into a state of control where the average proportion of out-of-spec units is below 

some specified level (Montgomery, 2020, Quesenberry, 1997).  

An analysis of the current literature reveals that, although performance measurement of call 

centers has been extensively investigated (see Table 1), there are no studies that apply ARIMA 
modeling and SPC to predict and control call center KPIs in situations where autocorrelated data 

are generated. Those studies that provide guidelines to evaluate call center performance do not 

explain how to monitor the performance of call centers over time, or how to deal with 
autocorrelated data (e.g. (Baraka et al., 2013, Baraka et al., 2015, Ma et al., 2011)). This paper 

proposes an innovative methodology to forecast and monitor the performance of call centers’ 

agents, and quickly detect pattern changes due to abnormal situations. The proposed methodology 

integrates ARIMA modeling and SPC tools to address the issue of autocorrelated data explicitly.   

The remainder of this paper is organized as follows. In Section 2 we provide the theoretical 

background to call center performance, ARIMA modeling and SPC, with emphasis on Shewhart 

control charts. Section 3 presents the proposed methodology and explains the steps necessary to 

implement it. In Section 4, the applicability of the proposed methodology is tested in a case study 

of a large call center in Portugal. This section presents the data, and discusses the results. Lastly, 

in Section 5, conclusions and suggestions for future work are presented.   

 

     



2. Theoretical background 

2.1 Call center performance measurement 

High competition in the market has made performance improvement one of the main concerns of 

all businesses including call centers. KPIs are critical indicators to measure the performance of 

an organization or a special process. KPIs have been used for a long time in call centers and have 

been described in several research studies (Mehrbod et al., 2017). KPIs should only be changed 

if a company's primary objectives also change. However, it is important to use KPIs which are 

completely relevant and clearly show the results, to know if the call center is on the right track. 

Over the years, several studies of performance measurement in call centers have been conducted. 
These studies have identified several metrics that are widely used to evaluate call center 

performance in different domains and from different perspectives, such as service quality, agent 

performance, process efficiency, emotional labor, working conditions, job satisfaction, and so on. 

These KPIs and their definitions are summarized in Table 1. 

Table 1: KPIs frequently used in call center performance measurement research 

Reference Objective Analyzed/Identified KPIs 
Type of 
analysis 

(Soliman et al., 
2012) 

To propose a methodology for 
evaluating call center performance 
using queueing models 

Waiting time and abandonment 
rate 

Queue 
modelling 

(Jose et al., 2017) 

To identify the key factors affecting 
the operational performance of a 
telecom contact center and the 
potential role of big data analytics in 
overcoming performance 
bottlenecks 

First call resolution, average 
answer time, transfer rate and 
customer satisfaction 

Big data 
analytics 

(van der 
Westhuizen and 
Bezuidenhout, 
2017) 

To investigate age and tenure effects 
on the relationship between job 
demands and resources, and job-
related burnout and work 
engagement 

Burnout, work engagement, job 
demands and job resources, work-
related sense of coherence 

Multiple 
hierarchical 
regression 
analyses and 
moderation 
analyses 

(Hsu et al., 2016) 
To develop a neural network model 
to predict call center performance  

Service quality, test score, 
personal attendance, total calls per 
hour, first call resolution, survey 
success rate, and customer 
satisfaction 

Neural 
networks 

(Baraka et al., 
2015) 

To introduce a technique that can 
support decision makers in the call 
center industry to evaluate, and 
analyze the performance of call 
centers 

Success index and gap index 
Systematic 
Analytical 
Approach 

(Phung-Duc and 
Kawanishi, 2014) 

To provide a stationary analysis of a 
detailed model taking into account 
the most important human behaviors 
in call centers. 

Waiting time, after-call work, and 
average number of retrials per 
customer 

Queueing 
system – 
Markov chain 

(Valle et al., 
2012) 

To propose an approach to predict 
the performance of sales agents in a 
call center dedicated exclusively to 
sales and telemarketing activities 

Logged hours, talked hours, 
effective contacts, finished 
records 

Naïve Bayesian 
classifier 

(Garcia et al., 
2012) 

To investigate customers’ 
satisfaction with telephone waiting 
time 

Waiting time and customer 
satisfaction 

Discriminant 
analysis 



(Chen et al., 
2011) 

To analyze first call resolution 
performance in order to produce 
decision rules  

First call resolution Rough set 
theory 

(Cheong et al., 
2008) 

To identify the KPIs affecting 
customer satisfaction with a call 
center’s services 

Service level, average speed of 
answer, average time in queue, 
average answer time, percentage 
of calls closed on first contact, 
average abandoned rate, average 
talk time, adherence to schedule, 
average after-call work time, 
percentage of calls blocked, 
employment turnover rate 

Regression 
analysis 

(Jaiswal, 2008) 

To examine customer satisfaction 
and service quality measurement 
practices followed by call Indian call 
centers 

Average speed answer, 
abandonment rate, total calls, 
longest delay, average talk time, 
average work time after-call, 
average handle time, service 
level, queue time, first-call 
resolution, percentage of calls 
blocked, calls per agent, 
adherence, and agent turnover 

In-depth 
interviews to 
senior 
managers 

(Laureani et al., 
2010) 

To explore the application of lean 
six sigma in call centers 

First‐call resolution ratio, operator 
turnover and streamlining of 
processes 

Lean Six Sigma 
methodology 

(Robinson and 
Morley, 2006) 

To investigate call center 
management from the perspective of 
managers 

Customer satisfaction index, level 
of service, staff turnover rate, 
abandonment rate, wrap-up time 
(post call work), call duration or 
average handling time, occupancy 
rate and number of calls per agent 

Survey of call 
center 
managers, 
followed by in-
depth 
interviews 

(Tuten and 
Neidermeyer, 
2004) 

To investigate the role of optimism 
and its effect on stress in call centers 

Personal orientation towards 
optimism, perceptions of job 
stress, work/non-work conflict, 
absenteeism and intent to turnover 

Survey 
approach 

(Lewig and 
Dollard, 2003) 

To assess the relationship between 
the emotional demands associated 
with call center work and call centre 
worker well-being 

Emotional demands, psychosocial 
demands, rewards, autonomy, 
social support, emotional 
exhaustion, job satisfaction 

Survey of call 
center workers 

(Grebner et al., 
2003) 

To analyze working conditions, 
well-being, and job-related attitudes 
among call center agents. 

Working conditions, well-being, 
and job-related attitudes 

Hypothesis 
testing 
(multivariate 
and univariate 
analysis of 
variance) 

Table 1 shows that there is no shortage of performance indicators that can be used in the analysis 

of call center performance. Since more comprehensive and reliable analysis of call center 

performance is strategic for large call centers, it is important to evaluate which KPIs are more 

relevant, and more or less efficient for the company. Some of the most important KPIs used by 
call center managers are provided in Table 2, together with their definitions. 

 

 

 

Table 2: KPIs frequently used by call center managers 

KPIs Description References 



Average Waiting Time 
Average time a customer has to wait before 
contacting an agent; The time a caller waits on the 
line 

 

(Parmenter, 2015, Ma et al., 
2011) 

First Call Resolution 

 

The percentage of calls received by the call center in 
which the customer had their needs met during the 
first contact without having to transfer, escalate or 
return the call; The percentage of calls closed on the 
first connect 

(Ma et al., 2011, Jouini et al., 
2013) 

Average Answer Time 
The time between answering a call by agent and 
terminating the call 

(Feinberg et al., 2000)  

Abandonment Rate 

 

The proportion of people who disconnect during the 
operation, either before they are answered by an agent 
or during a call, usually because they have to wait too 
long during the transfers; The percentage of callers 
who disconnect prior to being answered 

 

(Feinberg et al., 2000, Ma et 
al., 2011)  

 

 

Average Hold Time 

 

The average time that the caller stays on hold by 
agent for searching in the system/web or getting help 
from supervisor 

(Parmenter, 2015) 

Hold Abandonment 
Rate 

The proportion of customers who were on hold but 
left the call because of the delay in service 

(Mehrbod et al., 2017) 

After Call Work 
The average time it takes each agent to terminate the 
process after disconnecting the contact (Feinberg et al., 2000) 

Number of Answered 
Calls 

The number of calls answered by agents in a period of 
time such as per hour or per day  (Parmenter, 2015) 

Customer Satisfaction 

The number of customers, or percentage of customers, 
whose reported experience with a firm, its products or 
its services (rating) exceeds specified satisfaction 
goals. 

 

(Farris et al., 2010) 

 

 

    

2.2 Shewhart control charts 

A control chart is a graph of the values of a statistic of a given quality characteristic that has been 

measured or computed from a sample plotted against the sample number or time(Montgomery, 

2020). The general form of control charts was first developed by Dr. Walter A. Shewhart at 

Western Electric’s Bell Telephone Laboratories beginning in about 1924. A classical Shewhart 

control chart consists of a center line (CL) and two control limits, one on either side of the CL, 

called the upper control limit (UCL) and lower control limit (LCL). The CL represents the average 

value of the quality characteristic corresponding to the in-control state, and the other two lines are 

chosen to ensure that, if the process is in-control, nearly all of the sample points will fall between 

them (Kaya et al., 2017) and exhibit  a random pattern. That is, only chance causes are present. 
One of the fundamental assumptions in the development of the classical Shewhart control chart  

is the Normality of the underlying distribution of the quality characteristic. Thus, if ω is the sample 
statistic that measures some quality characteristic of interest with mean �� and standard deviation ��, then the CL, the UCL and the LCL are given by Equation 1 (see(Montgomery, 2020)). ��� = �� + ���  �� = �� (1) ��� = �� − ���  

where k is the distance of the control limits from the centerline, expressed in standard deviation 

units. 

https://en.wikipedia.org/wiki/Contentment


When ω is a Normal random variable, and the process is in-control, the probability that it will fall 

above the upper control limits is 0.00135 and is the same that it will fall below the lower control 

limit, resulting in significance level α of 0.27%. Thus, it is possible to conclude that �� �⁄ =��.����� = 3. As a result, the control limits provided in Equation 1 are written as shown in 

Equation 2.  ��� = �� + 3��  �� = �� (2) ��� = �� − 3��  

Classical Shewhart control chart implementation involves two phases, with different objectives. 

In Phase I, the main objectives are to estimate the process parameters and to establish the control 

limits to be used in Phase II. In this phase, the control limits are determined based on the m 

subgroups and the data plotted on the control charts. Points that are outside the control limits are 

investigated and excluded, since, when a process is in-control, the control limits reflect only 

common causes of variation. This procedure is iteratively repeated because sometimes this type 

of retrospective analysis will require several cycles until achieving control limits that represent 

an in-control process performance. Then, the control chart designed with the control limits of 

Phase I is used to monitor the process by comparing the sample statistic for each successive 
sample as it is drawn from the process to the control limits(Montgomery, 2020). Unlike the action 

taken in Phase I, when a point falls outside the control limits in Phase II, it should not be 

eliminated and new limits should not be computed. Instead, the cause(s) of the out-of-control 

situation(s) should be investigated as soon as possible in an effort implement corrective actions 

and bring the process to the in-control state. This approach avoids the production of non-

conforming units in the near future (Requeijo et al., 2014). 

Another important aspect in the application of classical Shewhart control charts is the validation 

of two underlying assumptions. One of them is the Normality assumption, mentioned above. This 

assumption is easily satisfied when the control charts are developed using sample statistics from 

subgroups of four or more units. According to the Central Limit Theory, for most probability 

distributions, the distribution of the sample means is approximately normal for sample sizes of 

four or more units, even when the individual measurements do not follow a normal distribution. 

The second assumption, which is more difficult to satisfy and may contribute to a poor 

performance of the Shewhart control charts, is the one of independence. According to 

(Montgomery, 2020), the existence of quality characteristics that exhibit even low levels of 

correlation over time is the main reason that classical Shewhart control charts do not work well. 

(Montgomery, 2020) also emphasizes that even in situations where the normality assumption is 

violated to a slight or moderate degree, the control charts will still work reasonably well if the 
independence assumption is satisfied. Unfortunately, the assumption of independent observations 

is usually not satisfied in situations where consecutive measurements of quality variables are 

performed (e.g. chemical processes) or in situations where measurements are performed using 

automated information systems that collect and record all generated data (e.g. call centers). The 

implementation of classical Shewhart control charts when the independence assumption is not 

satisfied will give misleading results, with too many false alarms being produced. In other words, 

the control chart will indicate many out-of-control situations when the process is in an in-control 

state. One approach that can help to overcome this issue, is to integrate ARIMA modeling to 

remove the autocorrelation from the data and then apply control charts (see Section 3.2). 



Classical Shewhart control charts can be grouped into two categories, depending on the type of 

quality characteristic to be controlled. Quality characteristics that are measured on a continuous 

scale (e.g. times, volumes, weights, diameters, dimensions) are called variables, and are controlled 

through control charts for variables. When dealing with this type of quality characteristic, since 

the process dispersion does not only depend on the central tendency (Pereira and Requeijo, 2012), 

it is a standard practice to implement two control charts, one to control the mean value of the 

quality characteristic and other to control its variability. The process average is typically 

controlled using a control chart for the mean, called the �́ chart. The process variability is usually 

controlled using a control chart for the standard deviation (S chart) or a control chart for the range 
(R chart). In situations where the sample used for process control consists of an individual unit (n 

= 1), a control chart for individual measurements (X chart) is used for controlling the process 

average . In this situation, the process variability is controlled through a control chart for the 

moving range(MR chart). It is a standard practice to use the moving range of two successive 

observations to estimate the process variability, where each moving range is defined as ��� =
|�� − ����| (Montgomery, 2020). 

On the other hand, characteristics that cannot be conveniently represented in continuous scale are 

called attributes (e.g. number of non-conforming units, number of defects per unit), and are 

controlled through control charts for attributes. These include control charts for fraction 

nonconforming (p-chart), control charts for number of nonconformities (np chart), control charts 

for number of defects (c-chart) and control charts for number of defects per unit of product (u-

chart) (for details, see (Montgomery, 2020, Pereira and Requeijo, 2012)).  

In this paper, the quality variable to be controlled is the Average Hold Time (AVGHT), which is 

continuous. Measurements of this variable are performed automatically for all calls. As a result, 

X and MR charts are the rational choice, but applied to residuals and prediction errors (see Section 

4.3). 

 

2.3 Control charts for autocorrelated data 

As explained in Section 2.2, classical Shewhart control charts are applicable when the 
measurements of the quality characteristic are independent. If the process data exhibit 

autocorrelation, at least three approaches are possible (Pereira and Requeijo, 2012): (1) use the 

classical Shewhart control charts, CUSUM  or EWMA, but with modified control limits to take 

account of autocorrelation in the process, (2) determine the mathematical model that best fits the 

autocorrelated data and build the control charts for residuals or prediction errors (Shewhart, 

CUSUM or EWMA), and (3) implement specific charts such as the Moving Centre-line EWMA 

(MCEWMA) chart or the EWMAST (EWMA for stationary processes). 

In this research, the second approach is chosen, namely the application of Shewhart control charts 

to residuals and prediction errors, based on individual measurements. This approach, which is 

based on time series models, has proved useful in dealing with autocorrelated data (Requeijo and 

Cordeiro, 2013). It consists of modeling the correlative structure of the time series and use that 

model to remove the autocorrelation from the data, and apply control charts to the residuals and 

prediction errors (Montgomery, 2020, Pereira and Requeijo, 2012). The random variables 

represented in the control charts are not the individual measurements X but the residuals (Phase 



I) and the prediction errors (Phase II) (Montgomery, 2020, Pereira and Requeijo, 2012). To study 

the time series of the collected data and determine a mathematical model that best fits this series, 

we use ARIMA modeling (see Section 3.1), using the method described by (Box et al., 2015), 

which is briefly described in Section 3.3. In most cases, after removing the autocorrelation from 

the data, the corresponding residuals will be normally and independently distributed, satisfying 

the two assumptions underlying the implementation of Shewhart control charts. This forms the 

rationale for choosing the second approach to deal with autocorrelated data. 

 

3. The proposed methodology 

Call centers’ KPIs have been modeled using different techniques, as shown in  Table 1. Despite 

some of these techniques can be used for predictions, the main advantage of the methodology 

proposed in this paper is the ability to deal with autocorrelated data. By applying ARIMA 

modeling, the autocorrelation in the dataset can be effectively modeled and removed. Another 

advantage is the ability to predict and monitor call centers’ KPIS, and also to detect pattern 
changes. In the following sections, the proposed methodology is explained in detail. 

 

3.1 ARIMA Modeling 

As mentioned in Section 2.3, one way to remove inherent autocorrelation in the process data and 

apply Shewhart control charts in a reliable way is to fit time series models to the quality 

characteristics to be controlled, using the method described by (Box et al., 2015). ARIMA 

modeling is a widely used and flexible technique that is used to specify a model for time series 

data that contain autoregressive (AR), differencing, and moving average (MA) components (see 
(Box et al., 2015)), i.e. time series that are autocorrelated. In short, a time series is autocorrelated 

if the value of variable X at time t depends on the past values lagged by one or more periods. In 

such situations, ARIMA is a powerful technique to model the process and determine the 

mathematical model that best fits the time series under analysis. The specified mathematical 

model is then used to extract the inherent autocorrelation and then use residuals for forecasting. 

A general expression for an ARIMA model is ��(�)���� = ��(�)��    (3) 

where,  ��(�) = �1 − ∅�� − ∅��� −⋯− ∅���� (4) ��(�) = �1 − ��� − ���� −⋯− ����� (5) 

� = ������      (6) 

� = ��������� = 1 − �    (7) 



In Equations 3 – 7, B  is the backward shift operator, � is the backward difference operator, d is 

the differencing order needed to make the process stationary, Xt  is the measurement at time t, εt 

is the residual or error at time t, ��(�) is the autoregressive polynomial of order p and ��(�) is 

the moving average polynomial of order q.  

To model a process using ARIMA, we must determine the ARIMA (p, d, q) model that best fits the 

time series. A standard approach to achieve this goal is to compare the Estimated Autocorrelation 

Function (EACF) with the theoretical Autocorrelation Function (ACF) and the Estimated Partial 

Autocorrelation Function (EPACF) with the theoretical Partial Autocorrelation Function (PACF). 

A practical way to perform these comparisons is to design their correlograms and analyze the 

behavior of the lags. This procedure enables the researcher to identify an appropriate model of 

the correlative structure of the time series. One important requirement is that the series must be 

made stationary before we can usefully interpret the correlogram (Chatfield, 2000). When this 

requirement is satisfied, the process can be modeled as an AR(p), an MA(q) or an ARMA (p,q). 

Table 3Error! Reference source not found. summarizes the different behaviors of correlograms 

for each type of ARIMA model.  

Table 3: Behaviors of correlograms of stationary processes 

Model 
Behavior 

Mathematical model 
ACF PACF 

AR(p) 
Tails off, i.e., decays 
exponentially or as a 

damped sine wave to zero 

Cutoff after lag p, i.e. 
sudden decays to zero, 

from lag p + 1 

�� = � + ∅����� + ∅����� +⋯+ ∅����� + �� ,   
with ∅� ≠ 0 

MA(q) 
Cutoff after lag p, i.e. 
sudden decays to zero, 

from lag q + 1 

Tails off, i.e., decays 
exponentially or as a 

damped sine wave to zero 

�� = � + �� − ������−������ −⋯−������ ,   
with �� ≠ 0 

ARMA(p,q) 
Tails off, i.e., decays exponentially or as a damped 

sine wave to zero 
�� = � + ∅����� +⋯+ ∅����� + ��−������−⋯−������ 

 

In the equations provided in Error! Reference source not found., ξ is the parameter that 
determines the process mean, ∅� the order parameter j of the AR or ARMA model, �� the order 

parameter j of the MA or ARMA model, and ��� the variance of residuals. 

Once the model that best fits the time series is identified, it is possible to compute the residual 
values et at each time t, as the difference between the value of the quality variable at time t (Xt) 

and the expected value at the same time t (�̂�). It is also possible to estimate the values of the 

process parameters, which correspond to Phase I of SPC. In Phase II, as the ARIMA model that 

best fits the process data is known, it is possible to predict the future values of the quality variable 

under analysis. Using the results of these predictions and the new data, the researcher can 

determine the prediction errors and use them to build the control chart of prediction errors (see 

Section 3.2).  

3.2 Shewhart control charts for residuals and prediction errors 

After modeling a process with autocorrelated data, determining the residuals and verifying their 

independence, the Shewhart control charts can be designed, for Phase I. In this case, the random 

variable is the residuals instead of the quality variable X. The control charts are designed 

depending on the nature of the collected data. If samples are collected, the sample of size n, 

collected at time t, is constituted by the measurements of the quality variable X in that time t, 



given by Xt1, Xt2, …, Xtn. This sample, in turn, gives rise at the same time t, to a sample constituted 

by the n residuals et1, et2, …, etn. Based on this sample of n residuals, statistics such as the sample 

mean �́�, the sample range �� and the sample standard deviation �� can be computed. On the other 
hand, when individual measurements are collected, the statistics to be considered at time t to 

control the process mean and the process dispersion are the residual �� and the moving average ���, respectively. As mentioned in Section 2.2, a standard practice for computing the moving 

range is to use two successive observations, in this case, two successive residuals, as shown in 

Equation 8.  ��� = |�� − ����| (8) 

Once the sample statistics are computed, �́� and �� for mean and standard deviation charts, �́� and �� for mean and range charts respectively, or �� and ��� for individual measurements and 

moving range charts, the corresponding average values �́, �́, �́, �́, and ��´  are determined and 

used to establish the control limits for Phase I of SPC, as illustrated in Table 4Error! Reference 

source not found.. Table 4Error! Reference source not found. also provides the estimator for 

the standard deviation of the residuals, �̂�. 
Table 4: Control limits for Phase I of residuals control charts and estimators �̂� 

Residuals charts LCL CL UCL �̂� �́ and � charts 

�́ −���́ 0 ���́  � ���́ �́ ���́ 
�́�� 

�́ and � charts 

�́ −���́ 0 ���́  � ���́ �́ ���́ 
�́�� 

�and �� charts 

� 
−3��´��  0 

3��´��   �� ����´  ��´  ����´  
��´��  

The process parameters and the corresponding control limits for Phase I of SPC can only be 

estimated if the process is under control. If this requirement is not satisfied, the control limits 

should be reviewed. In contrast to the classical Shewhart control charts, where points 

corresponding to special causes of variation are eliminated from the time series, when control 

charts for residuals are applied, such points should not be eliminated. Instead, their values should 

be replaced by the expected values at the same time t, giving rise to a new time series. The 

expected values are computed based on the fitted ARIMA model, using the equations provided 

in Table 5Error! Reference source not found.. The process parameters μ and ξ, used in those 
equations are computed according to the equations provided in Table 5Error! Reference source 

not found., where, �� is the correlation coefficient of lag j and �� is the auto-covariance of lag j. 

 

 

Table 5: Expected values of the process parameters (mean and variance) for the quality variable X 

Model Mean Variance 



AR(p) �(�) = � = �
1 −∑ ∅�����  ���(�) = ���

1− ∑ �� .∅�����  

MA(q) �(�) = � ���(�) = ���.����, �� = 1

�
���  

ARMA(p,q) �(�) = � = �
1 −∑ ∅�����  ���(�) =�∅� . �� − �� .���(−1)−⋯− ��.���(−�) + ����

���  

After replacing the points corresponding to special causes of variation, it is necessary to compute 
the new residuals, and update the control charts limits. In situations where a significant number 

of out of control points is found, it is necessary to investigate the root causes and implement 
appropriate corrective actions to achieve the process stability. Even if process stability is 

achieved, before starting the Phase II of SPC, capability analysis must be performed in order to 

check if the process can produce according to the technical specifications. If this requirement is 

not achieved, the root causes must be identified, and corrective action taken. 

Once the process is stable and is shown to be capable, Phase II of SPC can be initiated. The 

objective of Phase II is to monitor the evolution of the quality variable to quickly detect the 

occurrence of abnormal patterns and take appropriate action. The method to monitor future values 

of the quality variable, in autocorrelated processes, consists of implementing Shewhart control 

charts applied to prediction errors. In these control charts, the statistics represented in the charts 

are the prediction errors, defined by Equation 9.  ��(�) = ���� − �̂���(�)          (9) 

The distribution of prediction errors is characterized by an expected value of zero and a variance 

defined by Equation 10. 

   �������(�)� = ����1 + ∑ ��������� �  (10) 

In Equations 9 and 10, ��(�) is the prediction error for time � + �, ���� is the value of X at time � + �, �̂���(�) is the prediction for time � + �, performed at time t, and �� are coefficients 

determined from �� = �(�)��.     
Table 6Error! Reference source not found. provides the control limits of prediction errors, 

where the standard deviation of the prediction errors (���) is given by ��������(�)�. 
Table 6: Control limits for Phase II of prediction error control charts 

Prediction error charts LCL CL UCL �́ and � charts 
�́ −���� 0 ���� � ����� ����� ����� �́ and � charts 
�́ −���� 0 ���� � ����� ����� ����� �and �� charts 
� −3��� 0 3��� �� ����� ����� ����� 

 



3.3 Box-Jenkins methodology to build an ARIMA model for call centers 
KPIs 

To identify the mathematical model that best fits the autocorrelated times series investigated in 

this paper and build the control charts for residuals or prediction errors, the (Box et al., 2015)’ 

methodology has been applied. This classical approach has been successfully employed in 

different fields to model autocorrelated time series. Building an ARIMA model using this method 

is usually best achieved by a three-step iterative procedure based on identification, estimation and 

diagnostic checking, as shown in Fig 1. This three-step iterative procedure enables the researcher 

to identify the mathematical ARIMA model that best fits the time series, eliminate the inherent 

autocorrelation in the time series and then use the model to predict future values of the quality 

variable, and determine the prediction errors.    



 

Fig 1. Box-Jenkins methodology to build an ARIMA model for call centers KPIs 

In the following paragraphs, each phase of Fig 1 is briefly described: 

1. ARIMA modeling: In this phase, the first task is to check if the time series is stationary, 
(see the rationale in Section 3.1). This goal is achieved by plotting and analyzing the time 

series (t, Xt), which may reveal non-stationary behavior of the process parameters, i.e., 

mean, variance or both. The second task is to determine the ARMA(p,q) model that best 

fits the time series. As mentioned in Section 3.1, the best ARIMA model can be identified 

by comparing the behaviors of the EACF with the ACF and the EPACF with the PACF. 



The potential behaviors of the ACF and PACF are summarized in Table 3Error! 

Reference source not found.. The third task is to estimate the parameters ∅�, ��, ξ, and ���. After estimating these parameters, it is necessary to examine their adequacy, i.e., to 
check if they meet a set of requirements, namely those related to the normality and 

independence of residuals (see Section 2.2). It is important to test if the model is 

stationary and invertible, if the estimated coefficients are statistically significant and are 

independent of each other. 

2. Model fitting: It is the nature of real-time series to have noisy data and outliers. In fact, 

when an ARIMA model is fitted to a time series, the residuals of the outlier observations 

are usually higher. To find these outliers, control charts are helpful. By applying control 

charts to the residuals of the fitted model, it becomes easy to identify data points that do 

not belong to the distribution of residuals and any other abnormal patterns in the evolution 

of the residuals. If the control chart shows a significant number of out of control 

situations, this indicates that the identified model was not well-fitted to the time series. 

After finding the outliers and/or the out of control points, they must be “removed” from 

the time series in order to have a clean dataset. Then, a new model that properly fits the 

cleaned dataset must be identified, since replacing some data points probably changes the 

model fitted previously. Then a new model is fitted to the new time series. This iterative 
process continues until the pattern of the residual’s evolution exhibits an in-control state. 

3. Monitoring: After ensuring that the previous requirements are satisfied, we can conclude 

that the identified model is the most appropriate to model the process under study. The 

last phase in building an ARIMA model is to monitor the prediction errors, which implies 

the prediction of future values of the quality characteristic and the determination of the 

corresponding prediction errors (see Section 3.2). 

4. Results and discussion 

In this section, the methodology based on control charts for autocorrelated data, described in 

Section 3.3, is applied to forecast and control a call center critical-to-quality (CTQ) variable, 

namely the AVGHT. This KPI has been chosen because it is considered of great importance to 

improve the customers satisfaction. In the following section, we describe the steps conducted to 

build the best ARIMA model for forecasting and controlling this KPI. 

4.1 Data Collection and Pre-processing 

The data used in this paper were provided by an inbound call center of a big company in Portugal. 

They were automatically collected and stored by a CRM system. This database includes 

interactions for one month of call center activity. The data contains more than 175 thousand 

records of inbound calls recorded call by call. The database stores data on 4 important call center 

KPIs, namely Average Answer Time, Average Hold Time, After Call Work and Customer 

Satisfaction for each call. “Customer Satisfaction” is an attribute data with binary feature, “Good” 

or “Bad”. This feature specifies the customer view about their conversation, which is solicited by 

the call center agent at the end of the call. However, in many cases customers refuse to give 

feedback at the end of the conversation, resulting in missing required data on the “Customer 

Satisfaction”. In the first step of data preparation, the records of the calls with missing data were 

removed from the dataset. Since a significant number of clients that refused to give their feedback 

was found in the dataset, the KPI “Customer Satisfaction” has not been modeled in this research. 



Moreover, the methodology proposed in this paper is not applicable to attribute data such as 

“Customer Satisfaction”.   

Regarding the KPI “After Call Work”, we analyzed the dataset and concluded that more than 95% 

of calls lasted less than 16 seconds and, approximately 98% of them lasted less than 24 seconds. 

Therefore, we consider that the potential improvements for this KPI would not be significant. 

Consequently, we excluded this KPI from the study. “Answer Time” and “Hold Time” are not 

only dependent on the agent's performance but also on the type of clients and their questions. In 

fact, a preliminary descriptive statistics analysis of the individual measurements revealed a 

significant variation in the dataset of these two KPIs. This suggests that these KPIs have a 
variation that is very difficult to predict and perhaps their measurements do not follow Normal 

distributions. To confirm this suspicion, we applied the Kolmogorov-Smirnov (K-S) test and, for 

a significance level � = 5%, we rejected the null hypotheses in both cases. Therefore, we 
concluded that observations regarding these two KPIs do not follow Normal distributions. To 

achieve a Normal distribution for these two KPIs, we computed a new statistic based on their 

average. It is common practice in call centers to track and monitor the KPIs based on their average. 

Due to the multiplicity of agents in the call centers, building a model for each agent is time-

consuming and may not be feasible in terms of resource management. Consequently, call centers’ 

managers usually track the averages and then, if any abnormal situation is reported, they go future 

into detail to identify the root causes and take corrective actions. In this research, each average 

was based on samples data of one working hour. Table 7 shows the descriptive statistics of Hold 
Time and Answer Time, before and after averaging. As can be seen in Table 7, the standard 

deviation of both variables decreases significantly after averaging.  

Table 7: Hold Time and Answer Time distribution 

 STDV Mean Min Max 
Hold Time 134.65 99.16 0 3360 
Answer Time 235.32 338.28 0 5585 
AVG Hold Time/hour 22.04 89.2 0 191.46 
AVG Answer 
Time/hour 

36.49 334.74 123.71 544.85 

4.2 ARIMA modeling for Average Hold Time 

In this section, ARIMA modeling is used to predict and control the behavior of AVGHT, as 

mentioned in Section 4. The model is built using a sample of 260 working hours. To predict the 

future values of this KPI, 40 working hours have been used. All the steps to apply ARIMA 

modeling to the AVGHT were performed in STATISTICA 12. Finally, the prediction results were 

compared with the real data to evaluate the model adequacy. 

As explained in Section 3.3, in the first step we plotted the time series of the 260 observations of 

the AVGHT to confirm that the series was stationary. An analysis of Fig 2 reveals that the resulting 

time series is stationary (differentiation level is zero). As a consequence, an AR (p), MA(q) or 

ARMA(p,q) can be applied to model the time series (Shumway and Stoffer, 2017) and remove the 

autocorrelation from the data. 



 

Fig 2. Evolution of the Average Hold Time 

In the following step, we examined the autocorrelation by designing and analyzing the EACF and 

the EPACF correlograms of the AVGHT, shown in Fig 3. 

 

Fig 3. EACF and EPACF of the Average Hold Time 

 The analysis of the EACF and EPACF provided in Fig 3 reveals that there are significant 

correlations in the time series and therefore the classical Shewhart control charts could not be 
applied directly. It also reveals that ACF decays as a damped sine wave to zero and the PACF 

cuts off, both after lag 2. As a result, the time series under analysis can reasonably be modeled 

using an ARIMA (2,0,0) or simply a AR(2) (see the rationale in Table 3Error! Reference source 

not found.). The estimators of the AR(2) parameters were obtained from Statistica, and their 

values are provided in Table 8. 
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Time Series of the AVG Hold Time

AVG HT

Autocorrelation Function

AVG Hold Time

 Conf. Limit-1,0 -0,5 0,0 0,5 1,0

0
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0

221,3 0,000

213,7 0,000

201,1 0,000

190,6 0,000

190,4 0,000

185,2 0,000

175,5 0,000

157,5 0,000

137,8 0,000

126,5 0,000

122,4 0,000

121,0 0,000

120,7 0,000

119,5 0,000

102,1 0,000

  Q p

Partial Autocorrelation Function

AVG Hold Time

 Conf. Limit-1,0 -0,5 0,0 0,5 1,0

0

 15 -,009 ,0620

 14 -,043 ,0620

 13 +,109 ,0620

 12 +,192 ,0620

 11 -,069 ,0620

 10 -,020 ,0620
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  3 +,009 ,0620

  2 -,214 ,0620

  1 +,623 ,0620
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Table 8: Estimated values for the AR(2) parameters 

Parameter Estimated value � 95.476 �� 0.75644 �� -0.21394 
 

The parameters provided in Table 8 are used to determine the expected values of X, at each time 

t, which are then used to compute the residuals used to fit the AR(2) model identified previously. 

4.3 ARIMA model fitting 

After modeling the process, the identified ARIMA model must be fitted. As explained in Section 

3.3, real-time series usually include noisy data and outliers. These outliers must be removed from 

the time series since they do not belong to the distribution that characterizes the time series. A 

standard approach to find out these outliers and/or any other unusual patterns is to apply control 

charts. Since the time series under analysis exhibits significant autocorrelation, classical Shewhart 

control charts cannot be directly applied, as concluded in Section 4.2. In this situation, control 

charts for residuals should be built, provided that they are independently and normally distributed, 

that is, they are white noise. The corresponding 260 residuals where obtained from Statistica, and 
have been computed based on the AR(2) model identified in the first iteration. With these values, 

we built the X and MR charts for residuals, presented in Fig 4.         

 

Fig 4. X and MR charts for residuals, Iteration 1 
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An analysis of the patterns of the X and MR charts provided in Fig 4 reveals the occurrence of 

some special causes of variation in both the X and MR charts. These out of control points indicate 

that the parameters ∅� and ∅� had changed, implying that the quality variable X was out of control. 
As a result, the process was out of control. As explained in Section 3.2, these out of control points 

have been replaced by their expected value, determined by the AR(2) model identified in Iteration 
1. Table 9 summarizes the observations of residuals that indicate out of control situations, their 

values, and the observed and the expected values of the AVGHT characteristic.  

Table 9: Control limits for Phase I of residuals control charts and estimators �̂� � ��������� ������ ������^  
12 -50.0386 44.222 94.261 
38 62.1473 37.059 99.207 
70 -47.4596 42.857 90.317 

169 -43.8151 56.200 100.015 
195 -54.2707 42.333 96.604 
213 42.6320 120.318 77.686 

After replacing the out of control observations provided in Table 9 by their expected values, a 
new time series is obtained. As a result, a second iteration is needed to identify the ARIMA model 

that best fits the new time series. Following the same steps carried out in Section 4.2, we identified 

the new ARIMA model, which is still an AR(2), but with different parameters. Based on this model 

we computed the new residuals and built their X and MR charts, presented in Fig 5.  

 

Fig 5. X and MR charts for residuals, Iteration 2 
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An analysis of the patterns in the X and MR charts provided in Fig 5 reveals that both charts still 

exhibit out of control points. Therefore, we performed a third iteration, in which we obtained the 

residuals plotted in the X and MR charts, provided in Fig 6.  

 

Fig 6. X and MR charts for residuals, Iteration 3 

Analyzing the patterns of the charts provided in Fig 6, we can conclude that the process is under 

statistical control. Once this requirement is achieved, the model that best fits the time series is 

still an AR(2), as can be seen in Fig 7. 

 

Fig 7. EACF and EPACF of the fitted AR(2) model 
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residuals must be independently and normally distributed, with mean zero and constant variance ���. Analyzing the X chart provided in Fig 6, it is possible to confirm that the average value of the 
residuals is approximately zero. Note that the average value of the residuals corresponds to the 

center line of the X chart. The variance of the residuals is estimated using the estimator ��´ , as 

follow:  

�� = ��´�� =
13.554

1.128
= 12.016 ≤ ��� = 144.384 

where the value of the constant �� = 1.128 is obtained from the table of constants for control 

charts for variables (see (Montgomery, 2020), Appendix VI), considering � = 2, which is the 

number of consecutive observations used to determine each ���. 
To test the independence of the residuals from the fitted AR(2) model, we designed the 

correlograms of the EACF and the EPACF, shown in Fig 8. The analysis of the correlograms 

presented in Fig 8 indicates that Lag 9 is slightly outside the confidence interval, in the ACF and 

the PACF. However, we consider that these autocorrelations imply an error that is not significant. 

Therefore,  the hypothesis of residuals independence has not been rejected. Therefore, we 
consider that the independence assumption is reasonably satisfied.  

 

Fig 8. Verification of the Independence of the fitted model residuals 

To test the normality of the residuals’ distribution, we applied the Kolmogorov-Smirnov (K–S) 

test. Analyzing the histogram in Fig 9, we find that the K-S test statistic value is � = 0,02828. 

As the total number of observations � = 260 is greater than 30 (see (Lilliefors, 1967) ), 

considering a significance level � = 5%, the critical value of the statistic is ����� = �.���√� =

0.0549. As � < �����, the null hypothesis is not rejected, concluding that there are no evidences 

that the residuals are not normally distributed. 
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Fig 9. Verification of the normality of the fitted model residuals 

Since the requirements for process stability, residual independence and residual normality, are 
satisfied, we are able to state that the fitted AR(2) model is valid and its parameters are provided 

in Table 10.  

Table 10: Estimated parameters of the fitted AR(2) model 

Parameter Estimated value � 96.600 �� 0.8789 �� -0.2986 

Mathematically, the fitted AR(2) model is defined as follow:   �� = � + ∅����� + ∅����� + �� ≤ �� = 40.543 + 0.8789���� − 0.2986���� + �� 
where the value of the parameter to determine the process mean, � = 40.543, was computed 

based on the �(�) equation for an AR(p) model, provided in Table 5Error! Reference source 

not found.. Using the mathematical model provided above, we computed the predicted values for 

the next 40 observations on the AVGHT, taking into account ���� and ����, the last two 
observations from the sample of 260 observations used to fit the ARIMA model. Having on hand 

these predicted values, we computed the prediction errors (e) and proceeded to process 

monitoring, Phase II (see following Section). 

4.4 Monitoring 

In this phase, we applied the Shewhart control charts to the prediction errors, namely the e and 

MR charts, as explained in Section 3.2. Table 11 provides the real values of the next 40 

observations used to compute the prediction errors. 

Table 11: Sample data used to compute and monitor prediction errors 

t Real AVGHT Predicted AVGHT Prediction error 
261 90.99497 99.067 -8.072 
262 102.3908 96.909 5.482 
263 101.5072 96.135 5.372 

AVG Hold Time - Residuals of  the AR(2) model

Kolmogorov -Smirnov  d = 0,02828,

Chi-Square test = 3,10348, df  = 3 (adjusted) , p = 0,37594
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-37,7778

-28,3333

-18,8889

-9,4444

0,0000

9,4444

18,8889

28,3333

37,7778

Classes

0

10

20

30

40

50

60

70

80

90

N
o

. 
o

f 
o
b

s
e

rv
a

ti
o

n
s



264 125.8271 96.099 29.728 
265 106.7971 96.299 10.499 
266 102.288 96.485 5.803 
267 115.0254 96.589 18.437 
268 38.44828 96.624 -58.176 
269 163.5833 96.625 66.958 
270 48.44444 96.615 -48.170 
… … … … 

300 106.40299 96.600 9.803 

  

To monitor these prediction errors provided in Table 11, we computed the control limits, using 

the equations for the e and MR charts, provided in Table 5Error! Reference source not found.. 

The standard deviation of the prediction errors, ���, is computed using Equation 10, which led us 

to determine the coefficients �� of the polynomial �(�) = �� + ��� +���� +⋯ 

As the AR(2) model is defined by ��(�)�� = �� and, considering that �� = �(�)��, we obtain ��(�)�(�) = 1. Developing this equation, we obtain 

(1 − ∅�� − ∅���)(�� + ��� + ���� +⋯ ) = 1 �� + ��� + ���� +⋯− ∅���� − ∅����� − ∅����� +⋯− ∅����� − ∅����� − ∅�����+⋯ = 1 �� + (�|1 − ∅���)� + (�|2 − ∅��� − ∅���)�� − (∅��� + ∅���)�� − ∅����� +⋯ = 1 

The values of the coefficients �� are then, given by �� = 1 �� − ∅� × 1 = 0 ≤ �� = ∅� = 0.87862 �� − ∅�∅� − ∅� × 1 = 0 ≤ �� = ∅��� − ∅��� ≤ �� = ∅�� + ∅� = 0.87862� − 0.2984
= 0.4736 �� = ∅����� − ∅�����       (11) 

Having determined the coefficients �� and the ���, it is possible to compute the control limits of 

the e and MR charts, applying the corresponding equations provided in Table 5Error! Reference 

source not found.. The values of these control limits, the coefficients ��, and ���, at each time 

t, are summarized in Table 12. 

Table 12: Summary of the data used to build the prediction errors’ chart 

t ψ ��� ���� ��� ���� ����� ���� ����� � = 260 1  –  –  –  –  –  –  –  

261 0.8789 10.65229 -31.9569 0 31.9569 0 12.0158 39.2643 
262 0.4739 14.18182 -42.5455 0 42.5455 0 15.9971 52.2742 
263 0.1540 15.05336 -45.1601 0 45.1601 0 16.9802 55.4867 
264 -0.0061 15.14253 -45.4276 0 45.4276 0 17.0808 55.8154 
265 -0.0514 15.14267 -45.4280 0 45.4280 0 17.0809 55.8159 



266 -0.0433 15.15255 -45.4577 0 45.4577 0 17.0921 55.8523 
267 -0.0227 15.15958 -45.4787 0 45.4787 0 17.1000 55.8782 
268 -0.0070 15.16151 -45.4845 0 45.4845 0 17.1022 55.8853 
269 0.0006 15.16170 -45.4851 0 45.4851 0 17.1024 55.8860 
270 0.0026 15.16170 -45.4851 0 45.4851 0 17.1024 55.8860 
271 0.0021 15.16173 -45.4852 0 45.4852 0 17.1024 55.8861 
272 0.0011 15.16174 -45.4852 0 45.4852 0 17.1024 55.8862 
273 0.0003 15.16175 -45.4852 0 45.4852 0 17.1025 55.8862 
… … … … … … … … … 

300 0.0000 15.16175 -45.4852 0 45.4852 0 17.1025 55.8862 

 

Using the data provided in Table 12, we built the control chart shown in Fig 10, which will be 

used to monitor the prediction errors provided in Table 12. 

 

Fig 10. e chart for monitoring prediction errors 

4.5 Discussion 

The analysis of the patterns of the control chart illustrated in Fig 10 reveals the existence of some 

special causes of variation. However, apart from observation 269, the out of control points under 

the LCL suggest that the performance of the call center has improved. Prediction errors are 

computed from the difference between the observed value and the predicted value for a given 

time t, implying that, in the context of this study, prediction error is a “small-is-better” 

characteristic. In other words, the lower the value of prediction error, the higher is the 

performance. According to this rationale, the analysis of the chart provided in Fig 10 suggests 

that something desirable has happen at time 268, 270, 272, 273, 274 and 287, which resulted in 

observed values that are significantly less than the expected ones (short Hold Time is desirable to 

increase the customer satisfaction). From this perspective, the appropriate approach that the call 



center manager should adopt is to investigate the root causes of such performance improvement 

and try to replicate them in the future, in order to achieve higher performance. On the other hand, 

the data point over the UCL suggests that the observed Hold Time at time 269 was significantly 

higher than the expected value, which is undesirable. In that situation, the call center manager 

should also investigate the root causes of such bad performance and take corrective actions in 

order to improve performance and bring the process to an in-control condition. This may have 

been the approach that was actually adopted by the call center manager. In fact, the run from time 

270 to 274 suggests that after the occurrence of an unacceptable value at time 269, effective action 

was taken that resulted in a significant decrease in the Hold Time and consequently improved 
performance. If this is, in fact, what happened, such improvement action should be implemented 

for similar situations in the future. 

5. Conclusions 

This paper presents a methodology for modeling and controlling the performance of call centers, 

which integrates ARIMA modeling and SPC. Process modeling through ARIMA models, in 

addition to being able to model the pattern of a certain characteristic of a process, in conjunction 

with SPC make it possible to monitor of the random behavior (residual) of that characteristic. In 
this example the characteristic is AVGHT. The integration of ARIMA and SPC is an approach 

that has not been widely used, particularly in processes where autocorrelated data are generated, 

as is the case for call centers. However, as suggested by the case study results reported here, the 

joint approach ARIMA/SPC provides a set of effective tools that can be used to model 

autocorrelated processes and monitor their behavior, and support decision making in the daily 

operations of call centers. The control chart for prediction errors proves to be an effective way to 

routinely monitor the evolution of the AVGHT characteristic and to detect pattern changes due to 

abnormal situations. Another important conclusion is that, for the sample data used in Phase II, 

the call center under analysis performed very well. However, the monitoring of the AVGHT 

characteristic must be an ongoing activity in order to test if this good performance was something 

temporary or if it is standard. This ongoing activity is also necessary to identify any undesirable 

sources of pattern changes and continuously decrease the AVGHT. 

Although the proposed methodology is intended to forecast and control call center KPIs, it can 

easily be extrapolated to other industries where autocorrelated data are generated (e.g. chemical 

industry). As mentioned in Section 1, nowadays a massive amount of data has been generated in 
most industries. Therefore, effective tools are needed to extract knowledge from those massive 

datasets. However, there are also some difficulties that may difficulty its implementation, namely: 

1. The complexity of ARIMA modeling; 

2. The process operation data are often dynamic. As a result, periodically, the analyst 

should test if the model must be adjusted. In other words, it is necessary to test if: (2.1) 

the model remains the same or has changed (e.g., it can change from an AR(1) to an 

AR(2), or eventually to a MA(q) or an ARMA(p,q); (2.2) the values of the model 

parameters have changed significantly (e.g. ∅�, ∅�, …); 

3. Deciding how frequently the model should be adjusted is not trivial. We suggest that it 

should only be adjusted when significant changes in the process parameters (mean and 

variance) are detected;   

4.  There is some complexity inherent to the calculation of prediction errors (see Section 

4.4). 



In terms of relevance to theory, this is the first time that the joint approach ARIMA/SPC has been 

used to model call center performance. The main contribution of this joint approach is that it 

incorporates the monitoring phase (Phase II – see Section 4.4), something that has not been done 

in previous studies. In addition, this paper provides detailed guidelines on how to model processes 

where autocorrelated data are generated, how to identify the model that best fits the data, and how 

to compute and monitor prediction errors. With regard to the practical contribution, the proposed 

methodology is intended to inform policies and decision-making in call centers, i.e. to monitor 

the performance of their agents and quickly detect pattern changes due to abnormal situations. By 

quickly detecting such abnormal situations, managers can take prompt and appropriate action to 
correct the process and, at the same time, prevent the occurrence of such undesirable situations in 

the future. On the other hand, when a pattern change has a positive impact on the performance of 
the call center (e.g. decreasing trend in the AVGHT), managers can quickly investigate the 

reasons and try to replicate them in the future. This will help to improve the performance of call 

centers and increase customer satisfaction.  

As is known, nowadays companies are recording data related to every activity and consequently 

producing massive amounts of data. One of the biggest challenges is the possibility of having 

autocorrelation in the dataset. The methodology proposed in this paper can be a valuable tool, not 

only to deal with such potential autocorrelation in the dataset but also to effectively monitor and 

quickly detect the changing pattern behaviors. This will support managers in predicting critical 

situations before happening and take appropriate actions to maintain the desired level of process 

performance. 

Despite its potential theoretical and managerial contributions, this paper has an important 

limitation. Namely, a single case study was conducted and only one call center KPI was modeled. 

For these reasons, the conclusions may not generalized. Future research should apply and test the 

proposed methodology in more call centers and other services/industries where autocorrelated 

data are common to improve the generalization. In such future studies, more KPIs must  also be 
modeled. 
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