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Abstract
The purpose of this study is to develop a novel protocol to preliminarily predict the concentration profiles
of a target drug based on the PBPK model of a structurally similar template drug by combining two
software for PBPK modeling, the SimCYP simulator and ADMET Predictor. The method was evaluated by
utilizing 13 drug pairs which come from 18 drugs in the built-in database of the SimCYP software. All
drug pairs have their Tanimoto scores no less than 0.5. As each drug in a drug pair can serve both the
target and template roles, in total, there are 26 sets studied in this work. Three versions (V1, V2 and V3) of
models for the target drug were constructed by replacing the corresponding parameters of the template
drug step by step with those predicted by ADME Predictor for the target drug. Normalized RMSE (NRMSE)
were introduced for the evaluation of the model performance. We found that the performance of the three
versions of models depends on structure similarity of the drug pairs. For Group I drug pairs (TS ≤ 0.7), V2
and V3 perform better than V1 in term of NRMSE; for Group II drug pairs (0.7 < TS ≤ 0.9), 8 out of 10 V3
models have NRMSE lower than 0.2, the cutoff we applied to judge if the simulated C-T curve is
satisfactory or not. Obviously, V3 outperforms the V1 and V2 versions. For the two drug pairs belong to
Group III (TS > 0.9), V2 outperforms V1 and V3, suggesting more unnecessary replacement can lower the
performance of PBPK models. We also investigated how the prediction accuracy of ADMET Predictor as
well as its collaboration with SimCYP influence the quality of PBPK models constructed using SimCYP. In
conclusion, we generated a practical guidance on applying two mainstream software packages, ADMET
Predictor and SimCYP, to construct PBPK models for drugs or drug candidates which lack of ADME
parameters in model construction. 

Introduction
Pharmacokinetics is the study of the time courses of a drug administered to the body, which includes the
processes of absorption, distribution, metabolism and excretion (ADME).[1] Usually, it is essential to
quantitatively measure the concentration of the drug in plasma at different time points in
pharmacokinetic (PK) study, for the analysis of drug behavior and dose adjustment. In addition to clinical
trials which always involved in time cost and ethical considerations, the “measurement” of concentration
profiles under various administration conditions can also be achieved by the implementation of
physiologically based pharmacokinetic (PBPK)[2–4] modeling with known PK parameters related to drug
properties or its ADME profiles. On the other hand, computational tools for both PBPK modeling and PK
parameter prediction have been developed, further reducing experimental cost. Therefore, by virtue of
such tools, the quick and convenient in silico prediction of drug behavior in human body can be easily
performed without investing much effort in experiments, informing further studies in drug toxicity, dosing
strategy and potential drug-drug interactions. As such, this in silico method can be particularly useful in
preclinical study and can serve as a tool to help select drug candidates which are more likely to have
desirable PK profiles.

One study predicted the Fa% of a structurally diverse group of drugs using theoretical descriptors and
neural network modeling.[5] Another study applied genetic algorithm to optimize the prediction model for



Page 3/25

drug Fa%, plasma protein binding and urinary excretion.[6] There are also studies to predict the Fa% of a
chemical series with GastroPlus.[7, 8] Evaluation of the Fa% prediction performances from different
software platforms, SimCYP and GastroPlus has also be conducted focusing on low-solubility drugs.[9]
However, among these studies, the value of Fa% and AUC value have collected much attention as one of
the most important parameters for drugs after administration. However, these parameters cannot fully
exhibit the shape of the drug C-T profile. How a drug is absorbed, distributed, metabolized and excreted in
the course of time still lacks a systemic prediction guidance.

In this study, we developed a novel method to predict the concentration profile of a target compound
based on PBPK models constructed using the model of a structurally similar drug which serves as the
template. We utilized the SimCYP simulator (V19, Release 1; Shefeld, UK)[10] software to construct PBPK
models for a target drug by only substituting the predicted ADME parameters of the target drug for those
applied by the PBPK model of the corresponding template drug. We applied ADMET Predictor (V9.5,
Simulation Plus) ,[11, 12] a software developed by SimulationPlus Inc. to predict the ADME properties of
target drugs, which include physiochemical parameters like fraction unbound in plasma (fu) and blood-to-
plasma partition ratio (B/P), and ADME input parameters such as volume of distribution (Vd), Michaelis-
Menten constant (Km) and maximal metabolism rate (Vmax) of common enzymes. Meanwhile, to better
validate our constructed PBPK models as well as evaluate the performance of the two software tools, we
selected 18 drugs collected by SimCYP compound library (including substrates and inhibitors) as the
template drugs. In total, 13 drug pairs were formed based on their structural similarity. For each pair of
drugs, one serves as the template and the other as target drug. For the target drug in a drug pair, we
pretended that no PBPK model was available for it and new PBPK models were constructed based on the
PBPK model of the template drug. We tested three protocols by introducing ADME Predictor predicted
ADME properties into the template PBPK model and evaluated the model performance using the observed
PK profile of the target drug. The corresponding PBPK models constructed using the three protocols, in
brief were called V1, V2 and V3 models, respectively.

Methods
Drug preparation. Drugs selected for the construction of in silico PBPK models come from the built-in
drug database of the SimCYP software. Simplified Molecular-Input Line-Entry System (SMILES)[13]
strings of all drugs from SimCYP built-in library, including substrates and inhibitors, were collected from
the DrugBank database (https://www.drugbank.ca/). The SMILES strings of drugs were used not only for
their structural similarity calculation on a web platform, but also as inputs for the generation of their
properties using ADMET Predictor.

Structure similarity calculation. Tanimoto scoring is a commonly used method to compute the fingerprint-
based similarity between two compounds.[14] In this study, we applied the maximum common
substructure based (MCS) Tanimoto algorithm for the similarity calculation. The Tanimoto score (TS) is
defined by the function below:[15]
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  Eq. 1

Where NX and NY are the numbers of bits in fragment bit-strings of the two compounds, and NZ is the
intersection set, i.e., the number of common substructures shared by these two compounds. TS (X, Y)
ranges from 0 to 1, measuring the structural similarity between two compounds from the lowest to the
highest (when the two molecules are identical). TS scores were calculated using ChemMine
(https://chemminetools.ucr.edu/similarity) for all combinations of drugs in the SimCYP compound
database.

Validation of PBPK models for drug templates. We first validated the PBPK models of all selected 18
drugs by utilizing their observed data from literature. In detail, we utilized the original built-in models of
those drugs in SimCYP to run the simulation. In terms of the trial design, the dose regimens, simulation
time as well as population information including age, weight and health condition were the same as
those reported in the clinical study of PK measurement. Meanwhile, the parameters of the built-in PBPK
model, like the drug’s ADME properties, remained the same for all the drugs except for Fluoxetine. As a
racemate, we adjusted some of its ADME and PK parameters according to the literature to make the
predicted curve much better fitting the experimental data.[16–18] The key ADME parameters predicted by
ADME Predictor for the 18 drugs were all listed in the Table S1, including the detail for the adjusted
parameters of Fluoxetine. The observed drug concentration data of each template drug was extracted
from published concentration-time (C-T) curves using WebPlotDigitizer
(https://automeris.io/WebPlotDigitizer/). The C-T curves from simulations were then overlaid to the
observed drug concentrations. The predicted PK profiles of each template drug, including the maximal
concentration (CMax), the time at which CMax is observed (TMax), and area under the curve (AUC), were
compared to the observed ones.

Evaluation of inherent differences among software platforms. The quality of models constructed for
target drugs not only affected by the structural similarity between the template drug and the target drug,
but also relies on the prediction quality of ADMET Predictor and how well the collaboration is between the
two software. There may be some inherent differences among different software platforms, including but
not limited to the training set data and algorithms for constructing models. More importantly, the
prediction accuracy of ADMET Predictor for an individual ADME parameter is unknown. Thus, we utilized
parameters predicted by ADMET Predictor for the 18 drugs to simulate their PK profiles using SimCYP
and then compared to those predicted using SimCYP built-in parameters. The following ADME
parameters predicted by ADMET Predictor were evaluated: B/P, Fu, the logarithm of octanol-buffer
partition coefficient (log Po:w), acid dissociation constant (pKa), human jejunum effective permeability
(Peff), Vd, and Cytochrome P450 (CYP) metabolism parameters (Km, Vmax or CLint). The values of these
ADME parameters for 18 drugs are listed in Table S1. Following the protocol called Version 2 (V2), we
replaced log Po:w, pKa ,B/P and Fu value in SimCYP drug template with the calculated results from
ADMET Predictor. Following the protocol named Version 3 (V3), all the above mentioned ADME
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parameters, which not only includes the parameters mentioned by V2, but also Peff in absorption, Vd in
distribution and CYP metabolism parameters of template drug were replaced by predicted values of
ADMET Predictor.

Model construction for target drugs. In total, three versions of PBPK models for a target drug were built by
modifying the models of the template drug: (1) in Version 1 (V1), only the molecular weight (MW) of
template drug was changed to that of the target one; (2) in Version 2, in addition to the MW, other
parameters of template drug, which are the same with above mentioned Version 2, were replaced by the
ones predicted of the target drug; (3) in Version 3, in addition to MW and physiochemical properties, Peff,
Vd, and CYP of templates were also replaced with the calculated ones for the target drug, which is
accordance with above mentioned Version 3. All the ADME properties of the target drugs are predicted by
ADMET Predictor, a software tool that can predict over 140 properties based on its built-in Quantitative
structure-activity relationship (QSPR) models.[19] Information about the experimental subjects and the
trial design of each target drug during simulations was derived from the corresponding clinical reports.

Evaluation of models for target drugs. To evaluate the performance of PBPK models with input
parameters from ADMET Predictor, the experimental data of target drugs were overlaid by the simulated
C-T curves. To quantitively evaluate how well the experimental and simulated curves overlaid with each
other, we calculated the root mean square error (RMSE)[20] of the observed and predicted concentrations
at different time points. The formula for the RMSE calculation is as follow:

  Eq. 2

Where Coi and Cpi represent the observed and predicted drug concentration at the time point i. N is the
number of time points (N > 1) from the extracted observed data. Specifically, in this study, to facilitate the
comparison between models for different drugs with various concentration scales, we introduced
normalized RMSE (NRMSE) to evaluate the performance of PBPK models, which is calculated using the
following formula:

  Eq. 3

Where Cmax and Cmin are the maximum and minimum values among the observed and predicted
concentrations using all three versions of models.

The flowchart of the experiment protocol is shown in Fig. 1.

Results
Drug pairs selection and validation of PBPK models for drug templates. 13 pairs out of 18 drugs, which
have the calculated TS equal to or better than 0.5, were selected for the in silico PBPK modeling. Drug
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pairs with TS below 0.5 were not considered to be structurally similar and were excluded in this study.
The calculated TS for selected 13 pairs (Groups A-M) were listed in Table 1. Since both drugs in a pair will
in turn serve as the template and target drug for cross validation, we used X-1 and X-2 to label two drugs
in the pair, respectively, where X can be A to M.

Table 1
The calculated Tanimoto Coefficient between each pair of drugs.

Group Drug 1 Drug 2 Tanimoto score

A Bupropion Dextromethorphan 0.50

B Bufuralol Bupropion 0.52

C Dextromethorphan Quinidine 0.57

D Lorazepam Midazolam 0.63

E Alprazolam Lorazepam 0.65

F Lorazepam Triazolam 0.69

G Mephenytoin Phenobarbital 0.74

H Atomoxetine Fluoxetine 0.78

I Simvastatin Pravastatin 0.82

J Triazolam Midazolam 0.84

K Midazolam Alprazolam 0.88

L Theophylline Caffeine 0.93

M Imipramine Desipramine 0.95

The predicted mean plasma concentration-time profiles overlaid with observed data of all 18 template
drugs are shown in Fig. 2. Accordingly, Table 2[18, 21–36] exhibits the predicted PK parameters (CMax,
TMax, AUC) versus observed values. From Table 2, excluding the drugs with observed PK parameters all
unavailable (Dextromethorphan, Mephenytoin and Fluoxetine), the predicted PK parameters of most
drugs are within the standard deviation ranges of their observed values. The predicted values of CMax,
TMax and AUC for Theophyline are all slightly beyond the margin of error but still within the range of two-
fold standard deviation. Overall, as shown in Fig. 2, the observed C-T profiles are within the 95%
Confidence Interval (CI) ranges (the upper and lower grey dashed curves) of the simulated C-T curves.
Therefore, the PBPK models for the template drugs have been well validated.



Page 7/25

Table 2
The comparison between predicted and observed PK profiles of all drugs.

Drug name Dosage Pred/Obs TMax (h) CMax (ng/mL) AUC (ng/mL∙h)

Bupropion 150 mg Pred 2.16 61.62 721.88

Pred_V2 1.93 50.04 467.20

Pred_V3 1.86 71.84 614.66

Obs (1.30, 5.10) (34.00, 118.00) (486.00, 1518.00)

Dextromethorphan 60 mg Pred 1.56 13.13 195.70

Pred_V2 1.57 16.31 253.83

Pred_V3 2.69 162.33 3594.67

Obs NA NA NA

Bufuralol 15 mg Pred 1.49 55.62 386.06

Pred_V2 1.24 41.98 221.18

Pred_V3 1.75 18.66 151.83

Obs (1.84, 2.74) (56.00, 72.00) (270.00, 430.00)

Quinidine 400 mg Pred 1.16 1904.52 11632.95

Pred_V2 1.15 1554.16 9525.60

Pred_V3 1.66 2183.40 18988.42

Obs (0.36, 2.54) (1330.00,
2070.00)

(3800.00,
14860.00)

Lorazepam 2 mg Pred 1.92 18.24 240.28

Pred_V2 1.92 21.86 314.64

Pred_V3 2.08 32.98 531.29

Obs (0.50, 6.00) (15.80, 25.60) (197.20, 268.80)

Midazolam 7.5 mg Pred 0.60 39.97 99.77

Pred_V2 0.52 25.45 56.18

Pred: Predicted drug PK parameters from the unchanged SimCYP drug template (except Fluoxetine).
Pred_V2: Predicted drug PK parameters using SimCYP with input parameters (log Po:w, pKa ,B/P and
Fu) from ADMET Predictor. Pred_V3: Predicted drug PK parameters using SimCYP with input
parameters (log Po:w, pKa ,B/P, Fu, Peff, Vd, and CYP parameters) from ADMET Predictor. Obs: drug PK
parameter reported by clinical research. For Fluoxetine especially, the SimCYP drug template is
modified to enable the predicted profile fit the clinically reported curve.
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Drug name Dosage Pred/Obs TMax (h) CMax (ng/mL) AUC (ng/mL∙h)

Pred_V3 0.87 39.58 383.67

Obs (0.22, 1.21) (25.90, 80.20) (64.00, 163.70)

Alprazolam 0.8 mg Pred 1.23 12.22 193.14

Pred_V2 1.44 12.92 323.18

Pred_V3 2.16 7.74 327.10

Obs (0.70, 2.30) (8.20, 14.40) (173.20, 291.60)

Triazolam 0.25
mg

Pred 0.72 2.34 13.94

Pred_V2 0.49 1.26 11.88

Pred_V3 1.47 1.80 24.95

Obs (0.35, 2.15) (1.70, 4.30) NA

Mephenytoin 100 mg Pred 0.61 265.55 2576.76

Pred_V2 0.61 324.97 3089.24

Pred_V3 0.36 299.34 584.59

Obs NA NA NA

Phenobarbital 216 mg Pred 2.07 5235.78 660577.85

Pred_V2 4.02 5658.75 691539.10

Pred_V3 4.03 4977.22 930922.01

Obs 2.00 5100.00 NA

Fluoxetine* 20 mg Pred 4.36 6.50 186.21

Pred_V2 5.32 6.04 192.74

Pred_V3 2.68 13.89 291.07

Obs NA NA NA

Atomoxetine 20 mg Pred 1.25 169.56 1390.42

Pred_V2 0.74 61.41 192.74

Pred: Predicted drug PK parameters from the unchanged SimCYP drug template (except Fluoxetine).
Pred_V2: Predicted drug PK parameters using SimCYP with input parameters (log Po:w, pKa ,B/P and
Fu) from ADMET Predictor. Pred_V3: Predicted drug PK parameters using SimCYP with input
parameters (log Po:w, pKa ,B/P, Fu, Peff, Vd, and CYP parameters) from ADMET Predictor. Obs: drug PK
parameter reported by clinical research. For Fluoxetine especially, the SimCYP drug template is
modified to enable the predicted profile fit the clinically reported curve.



Page 9/25

Drug name Dosage Pred/Obs TMax (h) CMax (ng/mL) AUC (ng/mL∙h)

Pred_V3 1.84 35.78 486.50

Obs (0.50, 1.55) (106.16, 178.16) NA

Simvastatin 10 mg Pred 1.20 2.11 7.03

Pred_V2 1.20 0.52 1.69

Pred_V3 1.20 24.03 78.42

Obs (1.00, 1.40) (2.60, 4.60) (7.40, 14.78)

Pravastatin 20 mg Pred 0.96 40.60 130.36

Pred_V2 1.08 206.61 578.24

Pred_V3 1.56 130.85 489.70

Obs (1.00, 1.20) (30.80, 42.20) (92.00, 126.80)

Theophylline 100 mg Pred 0.75 2589.22 29614.81

Pred_V2 0.62 2372.22 19458.59

Pred_V3 0.62 1897.37 10003.06

Obs (1.38, 1.82) (1727.91,
2036.31)

(21499.55,
24439.65)

caffeine 100 mg Pred 1.18 2540.84 13709.29

Pred_V2 1.25 1952.50 10269.04

Pred_V3 1.50 2114.02 12859.90

Obs (0.33, 2.00) (1598.00,
2280.00)

(10700.00,
24438.00)

Imipramine 50 mg Pred 3.03 25.37 250.72

Pred_V2 3.13 28.18 300.21

Pred_V3 3.64 83.87 1082.01

Obs (2.80, 3.80) (20.90, 36.90) NA

Desipramine 50 mg Pred 5.42 13.56 264.97

Pred: Predicted drug PK parameters from the unchanged SimCYP drug template (except Fluoxetine).
Pred_V2: Predicted drug PK parameters using SimCYP with input parameters (log Po:w, pKa ,B/P and
Fu) from ADMET Predictor. Pred_V3: Predicted drug PK parameters using SimCYP with input
parameters (log Po:w, pKa ,B/P, Fu, Peff, Vd, and CYP parameters) from ADMET Predictor. Obs: drug PK
parameter reported by clinical research. For Fluoxetine especially, the SimCYP drug template is
modified to enable the predicted profile fit the clinically reported curve.
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Drug name Dosage Pred/Obs TMax (h) CMax (ng/mL) AUC (ng/mL∙h)

Pred_V2 6.26 17.10 353.36

Pred_V3 6.25 50.66 1042.14

Obs (2.00,
10.00)

(12.1, 20.1) (211.60, 413.20)

Pred: Predicted drug PK parameters from the unchanged SimCYP drug template (except Fluoxetine).
Pred_V2: Predicted drug PK parameters using SimCYP with input parameters (log Po:w, pKa ,B/P and
Fu) from ADMET Predictor. Pred_V3: Predicted drug PK parameters using SimCYP with input
parameters (log Po:w, pKa ,B/P, Fu, Peff, Vd, and CYP parameters) from ADMET Predictor. Obs: drug PK
parameter reported by clinical research. For Fluoxetine especially, the SimCYP drug template is
modified to enable the predicted profile fit the clinically reported curve.

Evaluation of Inherent differences among software platforms. The predicted PK parameters of the 18
modified drug templates by replacing the ADME parameters with those predicted by ADMET predictor are
listed in Table 2. The C-T profiles of those 18 drugs are shown in Fig. 3 (V2) and Fig. 4 (V3). In V2, most
drugs exhibit satisfying prediction results. As is shown in Fig. 4, 14 out of 18 drugs have most part of
their experimental data point lay within the predicted confidence interval. Only Triazolam, Atomoxetine,
Simvastatin and Pravastatin have nearly or more than half of the data points exceed the confidence
interval, showing poor prediction performance. In V3, it is demonstrated that Bupropion, Caffeine, and
Phenobarbital show a very good overlay between the clinical report and predicted result from modified
drug template, with the observed data laying within the confidence interval of predicted curve. As to
Fluoxetine, Alprazolam, Quinidine, and Triazolam, although the predicted results do not show an excellent
overlay with the experimental data, most of the clinical data points lays within the confidence interval of
the prediction profiles. For Lorazepam, although the observed data all at or around the upper confidence
interval of the predicted profile, the shape of the predict curve shares a high similarity with that of the
observed PK profile. Unfortunately, the other drugs do not show very satisfying prediction results, using
clinical data points as reference.

To quantitatively measure the deviation of predicted concentration profiles from the experimental data,
the difference between observed and predicted values of evaluated by NRMSE (Table 3). The lower the
NRMSE value is, the smaller the difference between the predicted and experimental concentration profile
is, i.e., the better performance the created model for the drug is. The average NRMSE of V2 is 0.26,
compared with the average value of 0.43 for V3, showing that V2 can introduce less prediction error when
combining the two software platforms for prediction. For V2 especially, although Dextromethorphan
possesses the NRMSE value as large as 0.45, this should be caused by the deviation of the curve from
the first data point. All the rest data points are all very close to the predicted curve. 14 of 18 drugs have
NRMSE values smaller than 0.4, and 7 of them are smaller than 0.2, showing satisfying prediction and
collaboration quality of the two software. For V3, the top three drugs, Caffeine, Phenobarbital, and
Bupropion, all have very small NRMSE values, which is consistent with the fact that the simulated C-T
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curves well overlaid with the experimental data points as shown in Fig. 3. Interestingly, the NRMSE values
of Fluoxetine (0.41), Alprazolam (0.28), Quinidine (0.53), and Triazolam (0.29) are quite different, even
though the simulated C-T curves of the four drugs are relatively satisfactory. Taken together, both the
overlay of simulated C-T curves with the measured C-T data points and NRMSE should be used to
evaluate the quality of the predicted ADME parameters by ADMET predictor. Overall, the predicted ADME
parameters by ADMET Predictor can produce satisfactory C-T curves using SimCYP simulator for about
half of the tested drugs.

Table 3
Calculated NRMSE between predicted results by

modified drug template and experimental
concentration profiles of drugs

Name NRMSE V2 NRMSE V3

Alprazolam 0.26 0.28

Atomoxetine 0.35 0.40

Bufuralol 0.17 0.36

Bupropion 0.18 0.26

Caffeine 0.13 0.13

Desipramine 0.35 0.70

Dextromethorphan 0.45 0.93

Fluoxetine 0.10 0.41

Imipramine 0.21 0.51

Lorazepam 0.25 0.53

Mephenytoin 0.24 0.48

Midazolam 0.27 0.29

Phenobarbital 0.14 0.22

Pravastatin 0.42 0.53

Quinidine 0.08 0.53

Simvastatin 0.56 0.52

Theophylline 0.12 0.29

Triazolam 0.41 0.29
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Predicted concentration profiles for the in silico PBPK models. The C-T profiles predicted by all three
versions (Versions 1, 2, and 3) of PBPK models are shown in Fig. 5. The NRMSE value is also calculated
to measure the difference between observed and predicted values of three versions respectively and
summarized in Table 4. The table cell is marked with “*” if the NRMSE values of V1, V2, or V3 is lower
than 0.2. In the following, we grouped all the 13 drug pairs / 26 drug pair sets into three groups according
to their Tanimoto scores for the sake of discussion.
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Table 4
Calculated NRMSE between predicted (three versions) and experimental concentration
profiles of drugs in each drug pair set. The NRMSEs of the target and template drugs,

which are adopted from Table 3, measure the quality of the ADME prediction using
ADMET Predictor and/or the inherent difference between the two software. The Tanimoto

scores in the last column come from Table 1.
Drug Group Drug Pair Set NRMSE (Different versions vs Obs) Tanimoto score

V1 V2 V3

Group I A-1 *0.14 *0.13 0.49 0.50

A-2 0.26 *0.19 0.50 0.50

B-1 0.44 0.49 0.49 0.52

B-2 0.67 0.49 *0.07 0.52

C-1 0.64 0.34 0.31 0.57

C-2 0.68 0.67 *0.13 0.57

D-1 *0.14 *0.16 0.48 0.63

D-2 0.61 *0.16 *0.19 0.63

E-1 0.22 0.32 0.35 0.65

E-2 0.43 0.56 0.35 0.65

F-1 0.24 *0.19 0.33 0.69

F-2 0.88 0.28 0.27 0.69

Group II G-1 0.94 0.94 *0.04 0.74

G-2 0.58 0.56 *0.14 0.74

H-1 0.56 0.56 0.52 0.78

H-2 0.44 0.08 *0.02 0.78

I-1 0.49 0.36 *0.04 0.82

I-2 0.34 0.38 0.21 0.82

J-1 0.43 0.57 *0.14 0.84

J-2 0.45 *0.13 *0.12 0.84

K-1 0.69 0.67 *0.06 0.88

K-2 0.20 *0.15 0.38 0.88

Group III L-1 0.34 *0.06 *0.12 0.93

L-2 0.22 *0.19 *0.17 0.93
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M-1 *0.08 *0.10 0.66 0.95

M-2 *0.13 *0.15 0.40 0.95

Group I (TS ≤ 0.7). Six drug pairs, A-F, belong to this group. According to Table 4, the performance of the
three protocols does not show an obvious pattern for Group I. The V1, V2 and V3 have two (A-1 and D-1),
five (A-1, A-2, D-1, D-2 and F-1) and three (B-2, C-2 and D-2) pair sets in “*” table cells, respectively. Most of
those pair sets also exhibit a good overlay between experimental data points and prediction curves as
shown in Fig. 5, indicating the collaboration between SimCYP and ADMET Predictor is good. For the other
groups from A-1 to F-2, all the three protocols have NRMSE values larger than 0.2 and the simulated C-T
curves do not overlay with the experimental data points well. Interestingly, for D-2 drug pair set, though
the NRMSE of the V2 model is the lowest, the predicted C-T curve by the V3 model has a better shape
fitting the observed data as shown in Fig. 5. This phenomenon is caused by the deviation of the first data
point from the predicted curve of V3, which caused its NRMSE is larger than that of V2. When this outlier
is eliminated and the NRMSE value is recalculated, V3 become the best for this pair set (NRMSE are now
0.57, 0.16 and 0.06 for the V1, V2 and V3 protocols, respectively).

Group II (0.7 < TS ≤ 0.9). This group contains 5 drug pairs, G-K. As shown in Table 4, most drug pair sets
have at least one version with NRMSE value lower than 0.2, except H-1 and I-2. It is worthy to mention
that the NRMSE value of I-2 is only 0.21 and the predicted C-T curve exhibits a good consistency with
experimental data (Fig. 5). The failure of H-1 model is likely caused by using problematic ADME
parameters predicted by ADMET Predictor for the target drug. The “collaboration” between the two
software should not be a problem for this drug pair since the NRMSE values of H-2 are very low for both
the V2 and V3 models, which are 0.08 and 0.02 for the two models correspondingly. As shown in Table 4,
the V3 version models apparently outperform the V1 and V2 models for most drug pair sets, as 7 out of
10 V3 models have NRMSE values lower than 0.2, while none of V1 models and 2 V2 models have their
NRMSE values lower than 0.2. Interestingly, for drug pair set J-2, the V2 and V3 models have highly
similar performance with good prediction result as shown in Fig. 5; however, for K-2, all of the three model
versions do not exhibit satisfying prediction (Fig. 5), even though the NRMSE values of the V1 and V2
models are equal to or lower than the cutoff.

Group III (TS > 0.9). This group contains 2 drug pairs, L and M. As shown in Table 4, most models have
satisfactory NRMSE values. For L-1 and L-2 drug pair sets, the predicted profiles of the V2 and V3 models
are very close to the clinical data points. Interestingly, for M-1 and M-2 drug pair sets, the performance of
the V3 models is very poor. Drug pair M has the structural similarity with the Taminoto score of 0.95,
interestingly, the V3 models perform poorly while the V1 and V2 models have not only satisfactory
NRMSE values, but also very well-overlayed C-T curves with measured data points. This phenomenon
may be explained by the prediction error by ADMET Predictor and error caused by the inherent difference
between the two software can be compensated by the small difference of the ADME parameters between



Page 15/25

the template and target drugs. Indeed, the NRMSE values of the two drugs in drug pair M, 0.51 and 0.70,
are very large (Table 4).

Discussion
In this study, we developed a novel approach to construct in silico PBPK models for target drugs lack of
experimental ADME and other PK parameters using an established PBPK model of a structurally similar
drug as the model template. We used 18 drugs which formed 13 drug pairs (A-M) and 26 drug pair set
(each drug in a pair serves the template and target roles alternatively) to evaluate three ADME parameter
substitution protocols, which are corresponding to three versions of PBPK models. The performance of
the in silico PBPK models were critically evaluated using experimental PK profiles and parameters.

The practical guidance on selecting suitable drug template. We attempted to obtain guidance on
selecting a suitable template drug for a given target drug. We focused on using structural similarity to
select the template drugs. It is found that drug pairs with Tanimoto score higher than 0.70 (Groups II and
III) tend to show better predict performance among the three versions compared with drug pairs that with
Taminoto score lower than 0.70 (Group I). It is obvious that the higher structural similarity of two drugs
within a drug pair should contribute to the higher possibility of good prediction results. After comparing
the model performance of all three versions of models, we developed the following guidance: for Group I
drug pairs, V2 or V3 is recommended; for Group II drug pairs, V3 is recommended; and for Group III drug
pairs, V2 is recommended. Following this practical guidance, 16 out of 26 drug pair sets have NRMSE
values lower than 0.2, the threshold of recognizing a good PBPK model. Nevertheless, the prediction
accuracy of ADMET Predictor and how much inherent difference between it and SimCYP are also very
crucial factors that affect the model performance. From the evaluation of the error caused by combining
the two software, the prediction accuracy of each modified drug template varied from each other, which
shows the influence of the introduced error can have great difference for different drugs. Thus, the
selection of substitution strategy should consider the NRMSE values of both template and target drugs.
Unfortunately, in practice, only NRMSE of the template drug is known. An algorithm which can predict the
NRMSE value of an arbitrary compound is therefore needed to further improve the practical guidance.

Another possible method to evaluate the prediction results of the three versions. There is also another
method to evaluate the prediction results of V1, V2 and V3, which is the fold-error in the AUC of the three
predict versions compared to the clinical data. However, the fold-error in the AUC can only show the
difference between the total area under the prediction curve and the literature reported PK curve without
delineating the concrete shapes of curves. On the contrary, the shape of the predicted drug C-T curve can
be reflected by the difference between predicted and observed drug concentration at each time point
when using RMSE as an evaluation method. Furthermore, the variation of the dosages can contribute to
great RMSE discrepancy among drugs. For this reason, we normalized RMSE to eliminate the influence of
dosages on RMSE value. The utilization of NRMSE can help to reduce the false-positive rate.
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The perspective of applying in silico PBPK modeling for compounds lack experimental ADME and PK
properties. SimCYP simulator is an advanced software with well-constructed drug PK models in its built-
in drug library, with each drug template containing comprehensive drug parameters. It can intuitively
show simulated drug C-T curves contributed by these parameters under different trial designs. On the
other hand, ADMET Predictor can predict a lot of PK parameters of an input compound based on its
structural information without giving additional information. However, constructing a drug PK model
needs full-scaled PK parameters and some of them cannot be predicted reasonably. Out of this
consideration, we can partially rely on the PK parameters of another compound which shares high
structural similarity with the unknown target compound. In this study, we put forward a novel approach to
build PBPK models for a target drug which is in lack of measured ADME and other PK parameters using
the PBPK model of a template drug which is structurally similar to the target drug. Also, we proposed
overall guidance on selecting a suitable template drug and using its PBPK model as the model template.
The success of this computational approach depends on two important factors, the availability of high
quality PBPK model for the template compound and the accuracy and consistency of the ADME and PK
parameters predicted by ADME Predictor software for the target drug. Thus, the performance of two
software can greatly contribute to the experiment results of our study. As a calculator of ADMET
properties for compounds, the prediction results of drug properties may not be close enough to the real
state, leading to errors when constructing drug models. Additionally, not all the ADME/PK properties can
be calculated with the current version of ADME Predictor. For example, the prediction of metabolism in
ADMET Predictor is only limited to 5 commonly used enzymes (CYP1A2, CYP2D6, CYP2C9, CYP2C19 and
CYP3A4), and the prediction results of the transporters related to the drug can only be reported
qualitatively rather than quantitively. On the other hand, there are currently 70 established compounds in
SimCYP’s drug libraries (including both the substrate library and the inhibitor library) and the libraries are
still under development. We tested 18 compounds which shared structural similarity, and this study will
replenish as more clinically validated PBPK models or related parameters for in-use drugs are available.

Nevertheless, we have proposed a practical approach to generate PBPK models for a compound lack of
experimental ADME/PK properties. This model can serve as the initial version of the PBPK models for the
target compound, and its performance can be improved using the measured PK profiles and properties in
the future. The computational protocol introduced in this work may have great applications in selecting
drug leads to enter the drug optimization phase or drug candidates to enter preclinical studies.

Conclusions
In this work, we have introduced and tested a novel computational protocol to develop in silico PBPK
model for a compound lack of measured ADME/PK properties and PK profiles. The general idea is to
choose a proper PBPK model as the template, when the corresponding compound, the template drug, is
structurally similar to the target drug. For the target drug, we calculated the ADME properties using ADME
Predictor of SimulationPlus Inc. We have come out with an overall guidance using this method to build
PBPK models for an arbitrary drug. First of all, the structural similarity between the template and the
target drug is very important, thus template drugs which have highest structural similarity to the target
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drug should be first considered; second, once the target drug is selected, the ADME parameter substitution
protocol is selected based on the Tanimoto score (TS) between the target and template drugs. If TS is
equal to or smaller than 0.7, V2 or V3 protocol is recommended; if TS is larger than 0.7 but smaller than
or equal to 0.9, V3 protocol is suggested; and if TS is larger than 0.9, V2 is recommended. Following this
guidance, more than 60% (16 out of 26) of the PBPK models have satisfactory performance. It is
emphasized that this method highly relies on the collaboration between SimCYP and ADMET Predictor as
well as the prediction accuracy of ADMET Predictor. The NRMSE values of the template and target drugs
can guide us to select proper substitution protocol. If the NRMSE values are small, one can select a
protocol with many ADME parameters being substituted, such as V3; however, if the NRMSE values are
large, adopting V2 or V1 protocols can minimize the error due to the poor “collaboration” between the two
software. Unfortunately, the NRMSE value of the target drug is unknown in practice. A tool which can
predict this NRMSE parameter is thus needed to further improve this method. While future experimental
work is definitely needed to further improve the model performance, our novel approach proposed in this
work can help identify drug candidates with favorable PK profiles, reducing experimental cost and
providing insight in drug discovery and development.
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Figures

Figure 1

The flowchart of experiment protocol.
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Figure 2

The predicted concentration profiles and observed data of all drugs. Prediction results for all drugs except
Fluoxetine are from original SimCYP template. The result for Fluoxetine is from adjusted Fluoxetine
template. Upper and lower dashed grey curves represent 95 % confidential interval.
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Figure 3

The predicted concentration profiles using SimCYP drug template with input parameters from ADMET
Predictor (log Po:w, pKa ,B/P and Fu) and observed data of all drugs. Upper and lower dashed grey curves
represent 95 % confidential interval.
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Figure 4

The predicted concentration profiles using SimCYP drug template with input parameters from ADMET
Predictor (log Po:w, pKa ,B/P, Fu, Peff, Vd, and CYP parameters) and observed data of all drugs. Upper
and lower dashed grey curves represent 95 % confidential interval.
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Figure 5

The predicted concentration profiles of three versions and observed data of all predicted drugs.
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