The small cracks in concrete constructions are inevitable due to deterioration during their service life throughout different load combination factors. In this study, we aimed to isolate, identify, and construct a bacterial consortium able to heal small cracks of concrete and enhance the different properties of concrete. Six isolates of bacillus, endospore-forming bacteria were isolated. There are only three isolates out of the six coded as NW-1, MK and NW-9 were showed the ability to produce urease enzyme and able to grow at 60°C with optimum growth at a temperature of 40°C. These isolates were survived in high pH, where isolate NW-1 was tolerated pH up to 11 with optimum growth at 10 while the isolates NW-9 and MK showed growth at pH 12 with an ideal growth at 10. CaCO3 production was observed by the three bacterial isolates whether in pure or mixed cultures (bacterial consortium) but the consortium consisting of MK and NW-9 was significantly the highest in productivity among them. Therefore, these two isolates were identified using 16s as Bacillus flexus MK-FYT-3 and Bacillus haynesii MK-NW-9 and deposited to GenBank under accession numbers MN965692 and MN965693 respectively. The effect of bacteria on some properties of concrete was studied, and the results showed that the compressive and tensile strengths of bio-concrete specimens were significantly increased by 31.29, 29 % after 7 days and 36.3, 39 % after 28 days of curing compared to control specimens. The results of permeability indicated that the bio-concrete specimens significantly showed less permeability than the control specimens by 21.1, 23.1% after 7 and 28 of curing, respectively. To determine the concrete density, Ultrasonic Pulse Velocity (UPV) test was performed, and the bio-concrete specimens gave higher values than control specimens by 26 and 20% after curing for 7 and 28 days, respectively. Also, surface healing of concrete was observed visually, the bio-concrete showed white precipitates around and inside the cracks after 7 days, which led to almost complete sealing of concrete after 28 days of curing, while the control samples were showed only very slight deposits on the surface and away from the cracks. The micro-analysis of concrete samples using SEM and XRD were done. It was found that the bio-concrete specimens showed crystalline precipitate with different shapes under SEM, while no such deposits appeared in the control specimens. On the other hand, the XRD profile was explained the characteristic peaks of calcium carbonate in both the bio-concrete and the control specimens, but the peak intensity was higher in the bio-concrete than the control specimens. This reflects the effectiveness of bacterial consortium in repairing and preventing the concrete cracks from spreading in addition to improving the various properties of concrete leading to increasing its life and sustainability.