[1] R.P. Feynman, ‘There is plenty of room at the bottom’, Eng. Sci., vol. 23, pp. 22-36, 1960.
[2] J.D. Watson, F.H.C. Crick, Nature 171 (1953) 737–738
[3] A.Y. Kasumov, M. Kociak, S. Gu_eron, B. Reulet, V.T. Volkov, D.V. Klinov, H. Bouchiat, Science 291 (2001) 280.
[4] D. Duli_c, S. Tuukkanen, C.L. Chung, A. Isambert, P. Lavie, A. Filoramo, Nanotechnology 20 (2009) 115502.
[5] D. Porath, A. Bezryadin, S. de Vries, C. Dekker, Nature 403 (2000) 635.
[6] Vohra, R., Sawhney, R.S. Comparative evaluation of NANO transport properties for DNA nucleobase based molecular junction devices. J Mol Model 24, 330 (2018). https://doi.org/10.1007/s00894-018-3856-8
[7] Zhai, H.J., Zhao, Y.F., Li, W.L., Chen, Q., Bai, H., Hu, H.S., Piazza, Z.A., Tian, W.J., Lu, H.G., Wu, Y.B., Mu, Y.W., Wei, G.F., Liu, Z.P., Li, J., Li, S.D. and Wang, L.S., 2014. Observation of an all-boron fullerene. Nature Chemistry, 6, pp.727–731.
[8] Fa, W., Chen, S., Pande, S. and Zeng, X.C., 2015. Stability of metal encapsulating boron fullerene B40. The Journal of Physical Chemistry A, 119(45), pp.11208–11214.
[9] Wang, W., Guo, Y.D. and Yan, X.H., 2016. The spin-dependent transport of transition-metal-encapsulated B40 fullerene. RSC Advances, 6(46), pp.40155–40161.
[10] Vohra, R., Sawhney, R.S., Kaur, J. et al. Adenine based molecular junction as biosensor for detection of toxic phosgene gas. J Mol Model 26, 172 (2020). https://doi.org/10.1007/s00894-020-04427-z
[11] Kaur, Rupendeep & Kaur, Jupinder. (2017). The electronic transport properties of B40 fullerenes with chalcogens as anchor atoms. Journal of Molecular Modeling. 23. 10.1007/s00894-017-3520-8.
[12] Maniei,Z.,Shakerzadeh,E.andMahdavifar,Z.,2018.The theoretical approach into potential possibility of efficient tNO2 detection via B40 and Li@B40 fullerenes. Chemical Physics Letters, 691, pp.360–365.
[13] Rajan Vohra, Ravinder Singh Sawhney, Kunwar Partap Singh, Contemplating charge transport by modeling of DNA nucleobases based nano structures, Current Applied Physics, Volume 20, Issue 5, 2020,
[14] A. Aviram, M. Ratner, Molecular rectifiers, Chem. Phys. Lett. 29 (1974) 277
[15] Atomistic Toolkit Manual, Quantumwise Inc. Atomistix toolkit version 13.8.0, Quantumwise A/S (http://quantumwise.com)
[16] Lang ND (1995) Resistance of atomic wires. Phys Rev B Condens Matter Mater Phys 52(5335)
[17] Xue Y, Datta S, Ratner MA (2002) First-principles based matrix Green’s function approach to molecular electronic devices: general formalism. Chem Phys 281(151)
[18] Brandbyge M, Mozos JL, Ordejon P, Taylor J, Stokbro K (2002) Density-functional method for non-equilibrium electron transport. Phys Rev B Condens Matter Mater Phys 65(165401)
[19] Taylor J, Guo H, Wang J (2001) Ab initio modeling of quantum transport properties of molecular electronic devices. Phys Rev B Condens Matter Mater Phys 63(245407)
[20] J.P. Perdew, K. Burke, and M. Ernzerhof: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).
[21] V. Rodrigues, T. Fuhrer, and D. Ugarte: Signature of atomic structure in the quantum conductance of gold nanowires. Phys. Rev. Lett. 85, 4124 (2000).
[22] Y.P. An, M. Zhang, D. Wu, Z. Fu, T. Wang, C. Xia, Phys. Chem. Chem. Phys., vol. 18, pp. 12024-12028, 2016.
[23]. R. Landauer: Conductance determined by transmission: Probes and quantized constriction resistance. J. Phys.: Condens. Matter 1, 8099 (1989).
[24] J. Heurich, J.C. Cuevas, W. Wenzel, and G. Schon: Electrical transport through single-molecule junctions: From molecular orbitals to conduction channels. Phys. Rev. Lett. 88, 256803 (2002).
[25] J.W. Lawson and C.W. Bauschlieher: Transport in molecular junctions with different metallic contacts. Phys. Rev. B: Condens. Matter Mater. Phys. 74, 125401 (2006).
[26] Solomon, G., Herrmann, C., Hansen, T. et al. Exploring local currents in molecular junctions. Nature Chem 2, 223–228 (2010). https://doi.org/10.1038/nchem.546