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Abstract
Background

To comprehensively understand the molecular mechanism of tamoxifen resistance (TamR) acquisition
by epigenetically regulated genes, it is essential to identify pivotal genes by genome-wide methylation
analysis and verify their function in xenograft animal model and cancer patients.

Methods

The MCF-7/TamR breast cancer cell line was developed and a genome-wide methylation array was
performed. The methylation and expression of ELOVL2 was validated in cultured cells, xenografted tumor
tissue, and breast cancer patients by methylation-specific PCR, qRT-PCR, Western blot analysis, and
immunohistochemistry. Deregulation of ELOVL2 and THEM4 was achieved using siRNA or generating
stable transfectants. Tam sensitivity, cell growth, and apoptosis were monitored by colorimetric and
colony formation assay and flow cytometric analysis. Pathway analysis was performed to generate
networks for the differentially methylated genes in the MCF-7/TamR cells and for the differentially
expressed genes in the ELOVL2-overexpressing cells.

Results

Genome-wide methylation analysis in the MCF-7/TamR cells identified elongation of very-long chain fatty
acid protein 2 (ELOVL2) to be significantly hypermethylated and downregulated, which was further
verified in the tumor tissues from TamR breast cancer patients (n=28) compared with those from Tam-
sensitive (TamS) patients (n=33) (P<0.001). Immunohistochemical analysis of tissues from cancer
patients showed lower expression of ELOVL2 in the TamR than TamS tissues. Growth of the MCF-
7/TamR cells overexpressing ELOVL2 was retarded in cell culture and also in xenograft tumor tissue.
Strikingly, ELOVL2 attenuated resistance to Tam up to 70% judged by the colorimetric and colony
formation assay and xenograft mouse model. ELOVL2 contributed to the recovery of Tam sensitivity by
regulating a group of genes in the AKT and ERa signaling pathways, e.g., THEM4, which plays crucial
roles in drug resistance.

Conclusions

ELOVL2 was hypermethylated and downregulated in TamR breast cancer patients compared with TamS
patients. ELOVL2 is responsible for the recovery of Tam sensitivity. AKT- and ERa-hubbed networks are
pivotal in ELOVLZ2 signaling, where THEM4 contributes to the relaying ELOVLZ2 signaling. This study
implies that deregulation of a gene in fatty acid metabolism can lead to drug resistance, giving insight
into the development of a new therapeutic strategy for drug-resistant breast cancer.
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Background

Tamoxifen is a non-steroidal antagonist of the estrogen receptor. It has been the first choice for adjuvant
therapy in estrogen receptor-positive breast cancer as it reduces cancer recurrence and the annual
mortality rate [1]. Despite the obvious benefits, 40% of breast cancer patient show cancer recurrence 5-
10 years after initial therapy, which is one of the major setbacks for the clinicians [2]. This is partly
because of the complexity of the signaling pathways that influence estrogen-mediated regulation in
breast cancer [3, 4]. Thus, identifying the key molecular markers and elucidating the molecular
mechanism of drug resistance are pivotal for offering appropriate treatment options to cancer patients.
During the course of tamoxifen-resistance (TamR) acquisition, cancer cells undergo cellular as well as
molecular changes. A key change in these cells is increased proliferation and decreased apoptosis via
BAX and BCL2 regulation [5]. In addition, the TamR cells show greater stemness phenotype by over-
expressing Nanog, Oct3/4, and Sox2 [6].

Complex factors/pathways are attributed to TamR cells, including the activation of estrogen receptor (ER)
signaling, up-regulation of growth factors (HER2, EGFR, FGFR, and IGF1R), alterations in RTK, a crosstalk
among them, and consequently, the deregulation of the PI3K/AKT/mTOR pathway [7]. Cyclin D1/CDK4/6
complex is a target of the PI3K/AKT/mTOR pathway and has also been shown to crosstalk with the ER
signaling pathway [8]. Previous studies have shown different Tam targets and their dysregulation from
ER in TamR cancer, e.g., androgen receptor [9], Hedgehog signaling pathway [10], and non-coding RNAs
[11], suggesting that the mechanism of TamR is far more complicated than just the modulation of ER-
associated activity.

Therapeutic strategies for treating TamR cancer are under development, mainly targeting RTK pathways
and PI3K/AKT/mTOR axis [12]. Further, cell cycle proteins can be targeted, for example, by using CDK4/6
inhibitors in combination with Tam [13]. Other approaches include targeting AKT pathway [14] and MYC
[15] that are highly expressed in TamR cancer cells. However, clinical improvement has only been modest
for these approaches till date; this may be because the affected pathways differ between patients. Thus,
establishing accurate prognostic markers would hold the key to effective therapy for TamR breast cancer.

ELOVLZ2 is a member of the mammalian microsomal ELOVL fatty acid enzyme family, involved in the
elongation of very long-chain fatty acids required for various cellular functions in mammals [16]. A study
using Elovl2™/~ mice reaffirmed the importance of ELOVL2 for the elongation activity in rodents [17]. A
prime characteristic of the gene is that the CpG near the gene exhibits consistent age-related changes in
various tissues [18]. These strong associations have led to the development of a predictor that can
accurately estimate the chronological age based on the methylation levels at the specific CpG site [19].
However, the relationship of ELOVL2 with cancer occurrence or development is unknown. Furthermore, no
role of ELOVL2 in cancer drug resistance has been elucidated. In this study, ELOVL2 was identified to be
downregulated by hypermethylation in TamR breast cancer. The involvement of ELOVL2 in the recovery
of Tam sensitivity was suggested by presenting experimental evidence via in vitro as well as in vivo
xenograft animal models. It was also suggested that ELOVLZ2 is a novel tumor suppressor by showing its

Page 4/28



lower expression in cancer and its inhibitory effect on cancer cell growth. Finally, the molecular
mechanism of how ELOVL2 overcomes TamR was elucidated by revealing the signaling pathway.

Materials And Methods

Cell culture and establishment of tamoxifen-resistant MCF-
7 (MCF-7/TamR) cells

The human epithelial breast cancer cell line MCF-7 was obtained from the American Type Culture
Collection (ATCC, Manassas, VA, USA) and was cultured under a humidified condition at 37 °C, 5% CO, in
RPMI 1640 medium (Gibco BRL, Carlsbad, CA, USA) containing 10% fetal bovine serum (Capricorn,
Germany) and 2% penicillin/streptomycin (Capricorn). All cells were used within 12 passages after
resuscitation of stocks. The MCF-7/TamR cells were generated by culturing MCF-7 cells in the presence
of 4-hydroxytamoxifen (Tam) (Sigma-Aldrich, St. Louis, MO, USA) in complete RPMI 1640 medium. The
cells were continuously exposed to increasing concentrations of Tam up to 160 nM over a period of 22
weeks, during which the medium was changed twice a week.

Study subjects

Solid tissues and slide-mounted formalin-fixed paraffin-embedded (FFPE) tissue sections of tumor
samples were obtained from patients who underwent surgery between 2012 and 2013 at the National
Cancer Center (NCC) in Korea. TamS tissues were obtained from patients who showed a clinical response
to Tam, i.e, no tumor recurrence (n=33). TamR tissues were obtained from patients who subsequently
developed TamR (defined as disease recurrence while administering Tam; n=28). Clinical details are
presented in Table S1. All patients provided written informed consent to donate the removed tissues to
NCC in Korea, and samples were obtained according to the protocols approved by the Research Ethics
Board of NCC.

Generation of stable cell lines

Lentiviral particles with control clones and human ELOVL2 ORF clones containing C-terminal mGFP tag
were purchased from OriGene (Rockville, MD, USA). MCF-7 and MCF-7/TamR cells were seeded at a
density of 5x 102 cells/well in a 96-well plate 1 day before transduction. The next day, the cells were
infected with lentivirus for 4 h in the presence of 8 ug/mL polybrene (Sigma-Aldrich), and then the
medium was replaced with a fresh complete medium. After 72 h, the cells were selected using 1 pg/mL
puromycin (Thermo Fisher Scientific, Waltham, MA, USA) for 10 days.

Cell Transfection

siRNAs against ELOVL2 and THEM4 were purchased from Bioneer (Daejeon, Korea), and an ELOVL2-

overexpressing vector was developed using the pEZ-MT02 plasmid vector (GeneCopoeia, Rockville, MD,
USA) by CosmoGenetech (Seoul, Korea). All siRNAs were diluted in Opti-MEM Medium (Gibco BRL) with
Lipofectamine RNAIMAX (Invitrogen, Carlsbad, CA, USA), and the mixture was incubated for 5 min. The
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cells were transiently transfected at final concentrations of 20 nM or 40 nM with siRNA following the
manufacturer’s instructions. Overexpression vectors (2 pg) were transfected into the cells using
Lipofectamine 3000 transfection reagent (Invitrogen). After 24 h of transfection, cells were harvested and
used for the following experiments. All results for the optimization of transfection are demonstrated in
Fig. S1.

Cell proliferation assay

The cell growth rate was monitored by colony formation assay and colorimetric assay using CCK-8
reagent (Dojindo, Kumamoto, Japan). In all, 3 x 108 cells/well were seeded onto a 96-well plate and
cultured up to 5-7 days. Following staining with CCK-8 solution according to the provided instructions,
optical densities were measured on a microplate reader (Sunrise, Tecan, Switzerland) and OD5q5 Was

eliminated from the OD 4. For colony formation assay, cells were seeded at a density of 3 x 103
cells/dish on a 60-mm culture dish. After transfection and Tam treatment, cells were maintained in a 5%
CO, incubator (37 °C) for 14—20 days. Colonies were fixed with a 7:1 mixture of methanol and acetic
acid, stained using 0.2% crystal violet (Gibco BRL), and counted with ImageJ software (NIH, MD, USA).

Flow cytometric analysis

Apoptosis was analyzed using an APC Annexin V Apoptosis Detection Kit with Pl (BioLegend, San Diego,
CA, USA). Annexin V staining was performed for cells diluted in Annexin V binding buffer for 8 min
followed by propidium iodide (PI) reagent treatment for 10 min. Samples were measured using an Accuri
C6 flow cytometer (BD Biosciences, San Jose, CA, USA) with 488-nm and 640-nm lasers. To monitor Tam
uptake by cells, 1 x 10° cells seeded in a 60-mm dish were treated with FLTX1 (Aobious, Gloucester, MA,
USA, AOB4054) for 2 h at final concentration of 10 uM. Cells were then harvested after washing with PBS,
and a concentration of 1 x 10° cells/mL was prepared. FLTX1 fluorescence was detected with Becton
Dickinson FACSAria Il (BD Biosciences) and analyzed with the Flowing Software 2.5
(http://flowingsoftware.btk.fi/).

Tam sensitivity assay

Alterations in sensitivity to Tam were measured by cytotoxicity assay. Briefly, 1 x 10 cells were seeded
per well in a 96-well plate and transfected with recombinant cDNA-harboring plasmids and/or siRNAs. On
the following day, Tam dissolved in sterile-filtered ethanol was added to cells at final concentrations of 0,
0.05, 0.1, 0.5, and 2 pM with a final ethanol concentration 0.1%. After 24 h, 10 pL of CCK-8 solution was
added to each well and the plate was incubated for 90 min. Following this, the plate was read at 450 nm
on a plate reader.

Methylation and expression microarray experiment

Genome-wide methylation analysis was performed with Macrogen (Seoul, Korea) on lllumina Infinium
Human Methylation 450K and Illlumina Infinium Methylation EPIC BeadChip (lllumina, San Diego, CA,
USA) covering over 450,000 and 850,000 CpG sites, respectively, to compare the DNA methylation profiles
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between MCF-7 and MCF-7/TamR. All arrays were processed with lllumina GenomeStudio v2011.1. To
identify global gene expression profiles, total RNA of MCF-7/TamR/ORF NC or MCF-7/TamR/ELOVL2
ORF cells was profiled using the SurePrint G3 Human Gene Expression 8 x 60K v3 microarray technology
(Agilent, Santa Clara, CA, USA) containing 58,201 probes by Lugen Sci (Seoul, Korea). Agilent Feature
Extraction software (v11.0.1.1) was used to extract and process raw data. The microarray data are
deposited in the GEO database website (http://www.ncbi.nlm.nih.gov/geo/) with the SuperSeries
accession number GSE132617: expression array, GSE132614; methylation array, GSE132615 and
GSE132616.

Pathway and clustering analysis

Ingenuity Pathway Analysis tool (Ingenuity Systems, Redwood City, CA, USA) was used to generate
significant networks and biological functions for the differentially methylated genes within the promoter
(IAB| = 0.2, Pvalue < 0.05) by acquisition of Tam resistance, and for the differentially expressed genes
(Ifold change| = 2, Pvalue<0.05) by overexpressing ELOVL2 in MCF-7/TamR. Genes with significant
changes were clustered using Clustering 3.0 software
(http://bonsai.hgc.jp/~mdehoon/software/cluster/) and the results were visualized using the TreeView
v1.1.6 program (http://jtreeview. sourceforge.net/).

Methylation-specific PCR (MSP) and quantitative real-time
RT-PCR (qPCR)

MSP was performed to determine the methylation level of specific CpG sites, as previously described [20].
Briefly, DNA and RNA from FFPE sections were extracted using the RecoverAll Multi-Sample RNA/DNA
Workflow (Invitrogen). Total DNA and RNA were prepared using ZR-Duet DNA/RNA MiniPrep kit (Zymo
research, Irvine, CA, USA) from solid tissues and cultured cells. For preparing samples for methylation
analysis, the genomic DNA was treated with bisulfite using a Zymo Research EZ DNA Methylation Kit
(Zymo Research). Demethylation of the cytosine residues was achieved by exposing the cells to culture
media containing a methyltransferase inhibitor, 5-Aza-2'-deoxycytidine (Aza) (Sigma-Aldrich), at a
concentration of 5 uM for 72 h. PCR was conducted using 4-8 ng of DNA, and the yielded signals were
calculated. To identify the transcript level of coding genes, cDNA was synthesized using a ReverTra Ace
gPCR RT MasterMix with gDNA Remover kit (Toyobo, Osaka, Japan). qPCR analysis was conducted
using KAPA SYBR FAST gPCR Kit (Kapa Biosystems, Wilmington, MA, USA) on an ABI 7300 instrument
(Applied Biosystems, Foster City, CA, USA). Oligonucleotide primers were purchased from Bionics
(Daejeon, Korea) (Table S2).

Western blot analysis

Protein extraction from cultured cells and Western blot analysis were performed as previously described
[21]. The following antibodies were used: anti-ELOVL2 (1:500, Bioss, Woburn, MA, USA, bs-7053R), anti-
THEM4 (1:500, Abcam, Cambridge, MA, USA, ab106435), anti-B-Actin (1:1000, Bioss, bs-0061R), anti-
phospho-AKT (1:300, Bioss, bs-5182R), anti-AKT (1:2500, Abcam, ab179463), and HRP-conjugated anti-
rabbit IgG antibody (1:1000, GeneTex, Irvine, CA, USA, GTX213110-01). The bands on the membrane were
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detected using the ECL reagent (Abfrontier, Seoul, Korea) and analyzed with Image Lab software (Bio-Rad,
Herculer, CA, USA). The whole blot can be accessed in Fig. S2.

Tumor xenograft experiments

All mouse experiments were approved by the Institutional Animal Care and Use Committee (IACUC) of
Dongguk University (No: IACUC-2017-010-1). We used 6- to 7-week-old female BALB/c nude mice (Orient
Bio, Seongnam, Korea) for MCF-7 and MCF-7/TamR-derived xenograft models. The mice were
anesthetized with a mixture of isoflurane (Piramal Critical Care, Mettawa, IL, USA) and oxygen, and
administered 17B-estradiol pellets (0.72 mg/pellet total dose; Innovative Research of America, Sonnasota,
FL, USA) subcutaneously in the lateral neck area. On the next day, subcutaneous injections of 1 x 107
breast cancer cells resuspended with 100 pL of 1:1 mixture of PBS (Gibco BRL) and Matrigel (BD
Biosciences, Bedford, MA, USA) were administered to the mice. Tumor growth was monitored weekly, and
tumor volumes were calculated based on the following formula: length x width? x 0.5. When tumor sizes
reached approximately 100 mm?, the mice were randomized into two groups for Tam treatment (Sigma-
Aldrich). One group received intraperitoneal administration of 100 pyL of 1 mg/kg Tam in corn oil (Sigma-
Aldrich) and the other group was injected with a vehicle control for 5 days a week during the experiment.
After 7 weeks of implantation, animals were sacrificed and tumors were harvested. The cancer tissues
were fixed in 4% paraformaldehyde and embedded in paraffin blocks for histological analysis by Logone
Bio (Seoul, Korea).

Immunohistochemical staining

Immunohistochemical analysis was performed using tumor tissues of xenograft mice. To do this,
paraffin blocks were sectioned 10 um thick, organized into slides, and rehydrated through a graded
ethanol series. Endogenous peroxidase activity in sections was ceased with 0.3% H,0, treatment for

15 min and then rabbit anti-ELOVL2 (1:400, Bioss, bs-7053R) or rabbit anti-THEM4 (1:100, Abcam,
ab106435) was applied for 1 h at room temperature followed by incubation with horseradish peroxidase-
conjugated anti-rabbit antibodies (Dako, Glostrup, Denmark, K4003). Liquid diaminobenzidine
tetrahydrochloride (DAB) (Dako, K3468) was used as a chromogen to detect horseradish peroxidase
activity. After counterstaining with Mayer's hematoxylin, immunohistochemical images were generated
using panoramic MIDI scanner (3Dhistech, Budapest, Hungary). The ImageJ program (NIH) was used to
profile the DAB-positive areas of immunohistochemical images.

Statistical analysis

For microarray data, observations with adjusted Pvalues = 0.05 were removed and were excluded from
further analysis. Adjustments were made to control for false discoveries. Following adjustments, the
remaining genes were defined as differentially methylated if they displayed an increased or decreased
methylation level which was equal to or higher than 0.2 compared with the control, or differentially
expressed if they displayed at least a 2-fold difference compared with the control. Student’s t-test was
implemented to demonstrate statistical significance for all data from gPCR, MSP, IHC, and Western blot
analysis comparing samples and control groups. Chi-squared test was used to analyze the differences in
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the rate of each variable for tumor tissues. Statistical analyses were conducted using SPSS for Windows,
release 17.0 (SPSS Inc., Chicago, IL, USA). The results are expressed as the mean * standard error and
considered statistically significant at Pvalue<0.05.

Results
Generation of MCF/TamR cells

As a prerequisite to explore the molecular mechanism of TamR, a MCF-7/TamR cell line was established
by exposing the MCF-7 cells to increasing concentrations of Tam up to 160 nM for 22 weeks (Fig. S3a).
The finally developed MCF-7/TamR cells showed a higher growth rate compared with their parental cells
(Fig. S3b) and also a large number of cells survived against high concentrations of Tam (0.1 and 0.5
ump) as judged by the colony formation assay (Fig. S3c). The apoptosis rate was lower in TamR cells
and less affected by Tam than in the MCF-7 cells (Fig. S3d and Fig. S4), possibly explaining the higher
growth and survival rate in the presence of Tam. The acquisition of TamR was further monitored by
examining a few marker genes, the expressions of which were previously known to be altered in the
course of TamR acquisition. Thus, EGFR, CCND1, CD146, and BCAR3 were upregulated, whereas BAG1
and IGF1 were downregulated, as previously observed [22-25], confirming appropriate generation of
MCF-7/TamR cells (Fig. S3e). Notably, the level of Tam inside the TamR cells was not decreased
compared with that in the parental MCF-7 cells after the two cell types were equally treated with Tam,
indicating that the resistance is not caused by a net decrease of the drug transport across the plasma
membrane (Fig. S3f)

ELOVL2 is downregulated by DNA hypermethylation in
TamR breast cancer

Genome-wide methylation analysis was performed in duplicates for each sample of MCF-7 and MCF-
7/TamR cells. Comparison of the two cell types showed hyper- and hypo-methylation with |AB| = 0.2 at
331 and 94 CpG sites, respectively, corresponding to 356 unique genes (Fig. 1a). Among highly altered
genes, ESR1 (AR =0.35), MAGED1 (AB =0.3), and RASAL1(AB = 0.36) were listed, alteration in methylation
of which in TamR cells has been previously known [26—28], indicating the reliability of MCF-7/TamR cells
developed in the current study. The microarray data were also verified by examining the expression of five
randomly selected genes from the highly altered genes via qPCR. Consequently, hypermethylated
SCL19A1, SKAP1, and ELOVL2 were downregulated, whereas hypomethylated CD59 and MMP1 were
upregulated (Fig. 1b), supporting the close relationship between methylation and expression. Next, the
356 genes were examined for functional inter-relatedness using the IPA software tool. The top network
with the highest confidence was “Skeletal and Muscular Disorders, Cellular Assembly and Organization,
Connective Tissue Development and Function” (Fig. 1c¢). Canonical pathway analysis identified
“Neuroactive ligand-receptor interaction” as the predominant pathway (Fig. 1d). Disease and function
annotation analysis indicated that genes associated with “Cancer” and “Cell death and survival” are
frequently included (Fig. Te).
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To identify a novel and pivotal marker that contributes to the acquisition of TamR, ELOVL2 in Table S3
was selected because the gene showed significant hypermethylation (AB = 0.49), but its role in cancer or
drug resistance is not yet known. Both transcripts and proteins were downregulated in the MCF-7/TamR
cells compared with those in MCF-7 cells (Fig. 1b and 2a). Induction of lower methylation by treating the
MCEF-7/TamR cells with Aza, a methyltransferase inhibitor, upregulated ELOVL2, suggesting an epigenetic
regulation of the gene (Fig. 2b). Next, the methylation and expression of the gene were examined in
breast cancer tissues obtained from patients showing resistance to clinical treatment with Tam. The
result indicated that ELOVL2 was hypermethylated and downregulated in the TamR cancer tissues (n=
28) compared with the Tamoxifen sensitive (TamS) tissues (n=33) (P<0.001) (Fig. 2c).
Immunohistochemical analysis of tissues from cancer patients showed lower expression of ELOVL2 in
the TamR tissues than in the TamS tissues (Fig. 2d). The rate of distant metastasis-free survival (DMFS)
for breast cancer patients, which was investigated through the GOBO database, indicates that lower rates
of DMFS were observed in cancer patients with lower expression of ELOVL2, whereas higher rates of
DMFS were observed in patients with a higher ELOVL2 expression (P< 0.05) (Fig. 2e).

ELOVL2 inhibits MCF-7/TamR cell proliferation and recovers
Tam sensitivity

To obtain information about the role of ELOVL2 in the acquisition of TamR, its effect on cell growth and
drug sensitivity recovery was examined after constructing ELOVL2-overexpressing MCF-7/TamR cells
(MCF-7/TamR-ELOVL2 ORF). The growth rate of MCF-7/TamR-ELOVL2 ORF cells was retarded up to 18%
compared with that of MCF-7/TamR cells (Fig. 3a). In the presence of Tam, the growth rate of the MCF-
7/TamR-ELOVL2 ORF cells was further retarded, especially at Tam concentrations of <0.5 pM (Fig. 3b).
This observation was also reproduced in the cell survival experiment of colony formation assay, where a
lower number of colonies were observed in the MCF-7/TamR-ELOVL2 ORF cells under Tam pressure

(Fig. 3c).

Next, the effect of ELOVL2 on the recovery of Tam sensitivity was monitored in a mouse xenograft model
where the cancer cells were subcutaneously injected. As a result, MCF-7/TamR cells grew faster than
MCF-7 (Fig. 4a) and showed larger tumor volume in all the eight mice sacrificed 7 weeks after injection
(Fig. 4b). A decrease in ELOVL2 protein expression in the tumor was observed by Western blot and
immunohistochemical analysis (Fig. 4c and d). The animals implanted with MCF-7/TamR-ELOVL2 ORF
showed retarded tumor growth compared with animals with MCF-7/TamR cells (Fig. 4e and f), indicating
the tumor suppressive activity of ELOVL2. Furthermore, the tumors over-expressing ELOVL2 showed an
increased sensitivity to Tam by representing a smaller tumor size (Fig. 4e and f).

ELOVL2 resists Tam by suppressing the AKT pathway

To get an insight into the regulatory mechanism of ELOVL2 for drug resistance, a genome-wide
expression assay was performed in duplicates for identifying target genes. A comparison of the
expression profile between MCF-7/TamR and MCF-7/TamR- ELOVL2 ORF revealed 969 genes that were
significantly altered (expression level change >2) (Fig. 5a). IPA analysis identified “Cardiovascular
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Disease, Cell-To-Cell Signaling and Interaction, Inflammatory Response” pathway and “Behavior,
Reproductive System Development and Function, Cardiac Infarction” pathway as the top first and second
networks, respectively (Fig. 5b). In accordance with this, the canonical pathway analysis (Fig. 5c) and the
disease and function analysis (Fig. 5d) predicted the immune-related pathway and cancer as the top
categories, respectively. Notably, AKT and ERa are placed at the center of each network, interacting
directly or indirectly with many genes in the pathways, such as THEM4, BMF, and FTO in the case of AKT
pathway and HYOU1, CDC42EP2, and S100A9 in the case of ERa. The expression of the genes in the two
pathways were further examined by gPCR and the result confirmed the same direction of expression
alteration as observed in the expression array (Fig. S5). The AKT pathway is a key pathway responsible
for cell metabolism, growth and division, apoptosis suppression, and angiogenesis [29]. In particular,
THEM4 is known to promote AKT phosphorylation and functions as an oncogenic molecule in breast
cancer [30].

THEM4 is downregulated by ELOVL2 recovering Tam
sensitivity

To elucidate the molecular mechanism of how THEM4 induced TamR in association with ELOVL2, its
expression was examined in cell lines and tumor tissues from xenografted mice. THEM4 was upregulated
in the MCF-7/TamR cells compared with MCF-7 cells at both RNA and protein levels (Fig. 6a).
Overexpression of ELOVL2 in the MCF-7/TamR cells set back the THEM4 expression to a lower level than
that observed in the control MCF-7/TamR cells (Fig. 6b). Western blot analysis (Fig. 6¢) and
immunohistochemical analysis (Fig. 6d, €) also found a similar expression profile for THEM4 in the tumor
tissues of the xenografted mice, which were generated from MCF-7/TamR and MCF-7/TamR-ELOVL2
ORF. Subsequently, the association of THEM4 with ELOVL2 was tested with regard to TamR, cell growth,
and apoptosis. siRNA-induced downregulation of THEM4 contributed to the recovery of Tam sensitivity
as shown by the colony formation assay (Fig. 6f), and this effect was strengthened by ELOVL2 (Fig. 6g).
The dye-based CCK assay using the same THEM4-siRNA and ELOVL2-overexpression strategy confirmed
the results of the colony formation assay (Fig. 6h, i), suggesting an inhibitory and a stimulatory effect of
ELOVL2 and THEM4, respectively, for the acquisition of TamR. However, the total apoptosis rate was not
changed significantly, even though early and late apoptosis was decreased and increased, respectively, by
the downregulation of THEM4 (Fig. S6).

Considering all the experimental findings from this study and the previous literature, which indicate a
close association of AKT and THEM4 in the signaling pathway, it is suggested that ELOVL2 contributes to
the recovery of TamR by regulating pivotal genes such as THEM4 in the AKT pathway (Fig. 7).

Discussion

This study aimed at identifying epigenetically regulated marker genes responsible for TamR in breast

cancer patients and then elucidating the molecular mechanism to give an insight for the prevention and

treatment of TamR recurrence in cancer patients. Occasionally, drug-resistant cancer cells have shown to
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actively pump the drug out of the cells, reducing the net amount of drug inside cells. This fact could
partly explain drug resistance. For instance, a 10-fold lower Tam concentration was found in extracts
from TamR tumors than that in TamS tumors in mice [31]. However, it is controversial whether all TamR
cells acquire the high efflux rate, because the P-glycoprotein, an efflux pump that is known to bind to Tam,
is not expressed in these tumors. Furthermore, the TamR cells generated and used in our study showed
no significant change in Tam transport compared with the parental MCF-7 cells. Therefore, we speculated
that genetic changes may have more strongly contributed to TamR than alterations in the drug efflux rate.

ELOVL2 has consistently shown hypermethylation and downregulation in TamR cancer, indicating its
potential application as an epigenetic marker for the diagnosis of TamR cancer. However, no significant
difference of methylation or expression between normal and cancer tissues of breast was found. In
normal tissue, ELOVL2 has been known to undergo hypermethylation on the promoter DNA as one ages.
The downregulation of ELOVL2 induced by the hypermethylation is not considered enough to drive cells
into cancer, although suppression of ELOVL2 stimulated cell proliferation in our study. This may imply
that the deregulation of ELOVL2 is crucial during the acquisition of TamR, rather than during the
development of the primary cancer. Moreover, an association between ELOVL2 DNA methylation and
future breast and colorectal cancer development has been observed [32].

ELOVL2 Expression has been previously known to be enhanced by ERa in breast cancer cells [33]. In this
study, Tam exposure specifically abolished ELOVL2 expression. Our microarray analysis also revealed
upregulation of ERa by ELOVL2, suggesting a positive feedback mechanism for the regulation of the two
genes. In addition, many ERa-regulated genes such as HYOU1 (3.8-fold decrease), ST00A9 (1.2-fold
decrease), and CDC42EP2 (2.4-fold decrease) were also deregulated by ELOVL2. HYOU1 is a hypoxia-
induced protein and its upregulation suppresses programmed cell death, contributing to invasiveness in
breast cancer [34]. STO00A9 has been identified to be expressed by epithelial cells involved in malignancy
and its expression levels are inversely correlated with ERa in breast cancer [35]. CDC42EP2 is a member
of the binder of Rho GTPases (Borg) family and little is known about its role in the disease [36].

The AKT pathway is a pivotal one wherein a few TamR-related genes have been identified [23]. In
accordance, previously identified AKT-regulated genes also appeared in the ELOVL2-overexpression
network, such as THEM4, BMF, and FTO (Fig. 5b). Furthermore, other genes involved in the AKT pathway,
including mTOR, PIK3CA, and CREB1, were shown to be downregulated by ELOVL2 (Fig. S7a). Notably,
the expression of Akt as well as the phosphorylated form was downregulated in a similar ratio by ELOVL2
(Fig. S7b). Therefore, the decrease of the phosphorylated form is caused by the lowered total AKT levels,
suggesting that ELOVL2 regulates AKT and not p-AKT. The two networks closely communicating each
other by sharing a few common genes. For example, NFATS5 is regulated by an estrogen-induced
microRNA [37] and the regulation is mediated via PI3K/AKT-signaling pathways [38]. In addition, AT00AO9,
a calcium-binding protein that is highly expressed in malignant breast cancer, induces a decrease of ERa
in MCF-7 cell [35], and inhibits PI3K/AKT pathway in pancreatic adenocarcinoma cells [39]. Collectively,
the current study proposes that ELOVLZ2 is an integral signaling molecule of the AKT axis in ER-positive
breast cancer cells.
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Further it is noteworthy that a representative aging marker gene is associated with drug resistance.
ELOVL2 has shown to increase methylation at the promoter CpGs with aging, which accompanies a
decreased expression with aging [18]. Considering the increased drug resistance and lower expression of
ELOVLZ2 in cancer cells of patients, epigenetic aging could make cancer patients more vulnerable to
acquisition of drug resistance. This gives us an insight on how to design the strategy for treating drug-
resistant cancers. Meanwhile, it should be mentioned that ELOVL2 function is not limited to epigenetic
aging and drug resistance. The gene showed tumor suppressor-like activity by inhibiting cancer cell
growth in cultures cancer cells as well as in the xenografted mouse model. Therefore, ELOVL2 is
considered to have a wide spectrum of biological functions in addition to the fatty acid elongation
activity.

Genome-wide methylation analysis has found that numerous genes were deregulated in addition to
ELOVL2 in TamR cells, suggesting distortion of multiple pathways during the course of drug resistance
acquisition. A genome-wide expression array also found > 1,200 genes clustered into ERa function, cell
cycle regulation, transcription/translation, and mitochondrial dysfunction [40]. Therefore, to completely
understand the molecular mechanisms and to conquer TamR in cancer, a further comprehensive
approach is needed.

Conclusions

Altogether, a genome-wide profile of epigenetic changes during TamR acquisition in breast cancer cells
was constructed. ELOVL2 was identified as a marker that was hypermethylated and downregulated in
TamR cancer compared with TamS cancer. ELOVL2 is responsible for the recovery of TamS, which was
shown in an in vivo animal xenograft model. AKT- and ERa-hubbed networks are pivotal in ELOVL2
signaling, where THEM4 contributes to the relaying ELOVL2 signaling. This study is the first to identify a
linkage between drug resistance and a gene involved in fatty acid synthesis. Our data may give credence
to elucidating the mechanism of TamR cancer and to developing its treatment strategy.
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Figure 1

Highest confidence network and pathway of genes displaying altered methylation in MCF-7/TamR. a
Clustering of genes in which methylation is affected in TamR. A heatmap is constructed with 405 CpG-
containing genes showing significant methylation changes (JAB| = 0.2 P < 0.05) from duplicated
microarrays of MCF-7 vs. MCF-7/TamR. b Expression of genes showing highest methylation changes in
the microarray assay. Five genes are selected from Table S3 and their expression is examined by qPCR. ¢

Page 18/28



Genome-wide methylation analysis with 356 genes identifies “Skeletal and Muscular Disorders, Cellular
Assembly and Organization, Connective Tissue Development and Function” pathway as the top network.
Genes hypermethylated in MCF-7/TamR are shaded in red, whereas those hypomethylated are shaded in
green, with the color intensity signifying the magnitude of methylation change. Solid lines represent direct
interactions, and dashed lines represent indirect interactions. Top canonical pathways (d) and disease
and biofunction (e) for the genes in which methylation is significantly altered in MCF-7/TamR.
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ELOVL2 is hypermethylated and downregulated in TamR breast cancer. a Downregulation of ELOVL2 in
MCF-7/TamR. Expression of ELOVL2 is examined by Western blot analysis. b Demethylation of CpGs is
induced by Aza in the MCF-7/TamR cells and ELOVL2 expression is analyzed by qPCR. ¢
Hypermethylation and downregulation of ELOVL2 in breast cancer tissues. MSP and gqPCR are performed
for breast tissues from Tam-sensitive and Tam-resistant cancer patients. N: number of samples. d
Immunohistochemical analysis of ELOVL2 in Tam-sensitive and Tam-resistant cancer tissues. Three
tissue sets are analyzed and the protein expression is denoted by the bar graph. Images from two tissue
sets are represented. Scale bar, 50 um. e Kaplan—Meier survival analysis of ELOVL2 expression in breast
cancer. Samples (n = 1,746) are stratified into two groups based on ELOVL2 expression level. The log-
rank test is performed in all tumor samples using distant metastasis-free survival (DMFS) as the
endpoint. High ELOVL2 expression is significantly associated with higher DMFS in cancer patients (P <
0.005).
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Figure 3

ELOVLZ2 inhibits MCF-7/TamR cell growth and sensitizes cells to Tam. ELOVL2 is upregulated in MCF-
7/TamR by transiently transfecting a recombinant plasmid vector. a Effect of ELOVL2 on cell proliferation
is examined by a dye-based CCK assay. b Effect of ELOVL2 on Tam sensitivity is examined after treating
the MCF-7/TamR cells with Tam and then measuring the growth rate as described above. ¢ Effect of
ELOVL2 on Tam sensitivity is examined by colony formation assay. All the assays are performed in
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triplicates, and the result is depicted as mean + SE. Representative images are shown for the colony
formation assay. NC, negative control vector. ORF, open reading frame.
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Figure 4

ELOVL2 suppresses tumor growth and attenuates TamR in an in vivo animal model. a MCF-7/TamR cells
grow faster than MCF-7 in a xenograft animal model. MCF-7 and MCF-7/TamR cells are subcutaneously
injected into nude mice and the tumor volume is measured for 7 weeks. n = 8. b Mice are sacrificed 8
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weeks after transplantation to obtain the tumor tissues. Expression of ELOVL2 in the xenografted tumor
is examined by Western blot analysis (c) and immunohistochemical analysis (d). Three tumor sets are
analyzed and the average protein expression is denoted in a bar graph. Representative images are shown.
Scale bar, 50 ym. e MCF-7/TamR cells that are stably transfected with ELOVL2-expressing cDNA or
control DNA are subcutaneously injected into nude mice and Tam is administered 3 weeks after cell
injection. The tumor volume is measured for 7 weeks. f At week 8, mice are sacrificed to obtain the tumor
tissues (n = 6 for corn oil-treated mice; n = 4 for Tam-treated mice).
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Figure 5

Highest confidence network of genes displaying altered ELOVL2 expression in MCF-7/TamR. ELOVL2 is
overexpressed in MCF-7/TamR and a genome-wide expression analysis is performed. a Heatmap
analysis of 969 genes that are significantly deregulated by ELOVL2. The data are from the microarray in
duplicates. b Highest confidence network of genes displaying altered expression identifies
“Cardiovascular Disease, Cell-To-Cell Signaling and Interaction, Inflammatory Response” pathway and
“Behavior, Reproductive System Development and Function, Cardiac Infarction” pathway as the top
networks. Genes that are upregulated are shaded in red, whereas those that are downregulated are
shaded in green, with the color intensity signifying the magnitude of expression change. Solid lines
representing direct interactions, and dashed lines representing indirect interactions. ¢ Top 10 canonical
pathways and d disease and function annotation of the genes of which expression is significantly altered
by ELOVL2. The most significant canonical pathway is “Antigen Presentation Pathway” and disease and
function annotation is “Solid tumor”.
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Figure 6

THEM4 is downregulated by ELOVL2 and increases Tam resistance. a Increased expression of THEM4 in
MCF-7/TamR cells. gPCR (left) and Western blot analysis (right) are performed in MCF-7/TamR and MCF-
7 cells. b Downregulation of THEM4 by ELOVL2 in MCF-7/TamR cells, determined by gPCR. ELOVL2 ORF:
cells stably transfected with ELOVL2 cDNA; ORF NC; negative cDNA control. ¢ Increased expression of
THEM4 in the xenografted MCF-7/TamR but suppression by ELOVL2. Western blot analysis is performed
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for tumor tissues from ELOVL2 ORF and control. Immunohistochemical analysis of THEM4 in
xenografted tumor tissue of MCF-7/TamR (d) and cells stably transfected with ELOVL2 cDNA (e) Scale
bar, 50 um. Effect of THEM4 on recovery of Tam sensitivity. THEM4 is downregulated via a siRNA in
MCF-7/TamR (f) and ELOVL2-overexpressing MCF-7/TamR cells (g). Sensitivity to Tam is examined by
colony formation assay. Representative images from three independent assays are shown. h Effect of
THEM4 on cell proliferation is examined by a dye-based CCK assay. i Effect of THEM4 on TamR is
examined by exposing the cells to Tam after downregulating the gene with siRNA. All the assays are
performed in triplicates, and the result is depicted as mean + SE.
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Figure 7

Schematic illustration of the regulatory pathway by ELOVL2. The uptake ratio of Tam across plasma
membrane in MCF-7/TamR cells is similar to that in the parental MCF-7 cells. ERK and ELOVL2 crosstalk
to regulate each other. ELOVL2 blocks the PI3K/AKT/mTOR pathway via inhibiting THEM4 and PI3K. In
TamR cancer, ELOVL2 is downregulated by hypermethylation, resulting in loss of inactivation of AKT and
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also downstream genes such as CREB and mTOR, or activation of downstream genes such as BMF,
eventually leading to Tam resistance and increased cell proliferation.
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