Agbogbo FK, Haagensen FD, Milam D, Wenger KS (2007) Fermentation of acid-pretreated corn stover to ethanol without detoxification using Pichia stipitis. In: Biotechnology for Fuels and Chemicals. Springer; p53-58.
Arora R, Behera S, Kumar S (2015) Bioprospecting thermophilic/thermotolerant microbes for production of lignocellulosic ethanol: a future perspective. Renew Sust Energ Rev 51: 699-717.
Arora R, Behera S, Sharma NK, Kumar S (2015) A new search for thermotolerant yeasts, its characterization and optimization using response surface methodology for ethanol production. Front Microbiol 6:889.
Arora R, Behera S, Sharma NK, Kumar S (2017) Augmentation of ethanol production through statistically designed growth and fermentation medium using novel thermotolerant yeast isolates. Renew Ener 109:406-421.
Arora R, Behera S, Sharma, NK, Kumar S (2019) Evaluating the pathway for co-fermentation of glucose and xylose for enhanced bioethanol production using flux balance analysis. Biotechnol Bioproc Eng 24:924-933.
Bailey JE, Ollis DF (1986) Biochemical engineering fundamentals. New York, NY: McGraw-Hill.
Biswas D, Datt M, Aggarwal M, Mondal AK (2013) Molecular cloning, characterization, and engineering of xylitol dehydrogenase from Debaryomyces hansenii. Appl Microbiol Biotechnol 97:1613-1623.
Cadière A, Ortiz-Julien A, Camarasa C, Dequin S (2011) Evolutionary engineered Saccharomyces cerevisiae wine yeast strains with increased in vivo flux through the pentose phosphate pathway. Metab Eng 13:263-271.
Dasgupta D, Ghosh D, Bandhu S, Agrawal D, Suman SK, Adhikari DK (2016) Purification, characterization and molecular docking study of NADPH dependent xylose reductase from thermotolerant Kluyveromyces sp. IIPE453. Process Biochem 51:124-133.
Dhaliwal SS, Oberoi HS, Sandhu SK, Nanda D, Kumar D, Uppal SK (2011) Enhanced ethanol production from sugarcane juice by galactose adaptation of a newly isolated thermotolerant strain of Pichia kudriavzevii. Bioresour Technol 102:5968-5975.
Goshima T, Negi K, Tsuji M, Inoue H, Yano S, Hoshino T, Matsushika A (2013) Ethanol fermentation from xylose by metabolically engineered strains of Kluyveromyces marxianus. J Biosci Bioeng 116:551-554.
Hamacher T, Becker J, Gárdonyi M, Hahn-Hägerdal B, Boles E (2002) Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiol 148:2783-2788.
Ikeuchi T, Kiritani R, Azuma M, Ooshima H (2000) Effect of D‐glucose on induction of xylose reductase and xylitol dehydrogenase in Candida tropicalis in the presence of NaCl. J Basic Microbiol 40:167-175.
Jeppsson M, Träff K, Johansson B, Hahn-Hägerdal B, Gorwa-Grauslund MF (2003) Effect of enhanced xylose reductase activity on xylose consumption and product distribution in xylose-fermenting recombinant Saccharomyces cerevisiae. FEMS Yeast Res 3:167-175.
Khattab SMR, Saimura M, Kodaki T (2013) Boost in bioethanol production using recombinant Saccharomyces cerevisiae with mutated strictly NADPH-dependent xylose reductase and NADP+ -dependent xylitol dehydrogenase. J Biotechnol 65:153-156.
Komeda H, Yamasaki-Yashiki S, Hoshino K, Asano Y (2015) Identification and characterization of d-xylose reductase involved in pentose catabolism of the zygomycetous fungus Rhizomucor pusillus. J Biosci Bioeng 119:57-64.
Koppram R, Albers E, Olsson L (2012) Evolutionary engineering strategies to enhance tolerance of xylose utilizing recombinant yeast to inhibitors derived from spruce biomass. Biotechnol Biofuels 5:32.
Landaeta R, Aroca G, Acevedo F, Teixeira JA (2013) Mussatto SI. Adaptation of a flocculent Saccharomyces cerevisiae strain to lignocellulosic inhibitors by cell recycle batch fermentation. Appl Ener 102:124-130.
Martín C, Marcet M, Almazán O, Jönsson L (2007) Adaptation of a recombinant xylose-utilizing Saccharomyces cerevisiae strain to a sugarcane bagasse hydrolysate with high content of fermentation inhibitors. Bioresour Technol 98:1767-1773.
New AM, Cerulus B, Govers SK, Perez-Samper G, Zhu B, Boogmans S, Xavier JB, Verstrepen K (2014) Different levels of catabolite repression optimize growth in stable and variable environments. Plos Biol. 12:e1001764.
Nielsen F, Tomás-Pejó E, Olsson L, Wallberg O (2015) Short-term adaptation during propagation improves the performance of xylose-fermenting Saccharomyces cerevisiae in simultaneous saccharification and co-fermentation. Biotechnol Biofuels 8:219.
Pereira SR, Nogué VS, Frazão CJ, Serafim LS, Gorwa-Grauslund MF, Xavier, AMRB (2015) Adaptation of Scheffersomyces stipitis to hardwood spent sulfite liquor by evolutionary engineering. Biotechnol Biofuels 8:50.
Qi X, Zha J, Liu GG, Zhang W, Li BZ, Yuan YJ (2015) Heterologous xylose isomerase pathway and evolutionary engineering improve xylose utilization in Saccharomyces cerevisiae. Front. Microbiol 6:1165.
Rodrussamee N, Sattayawat P, Yamada M (2018) Highly efficient conversion of xylose to ethanol without glucose repression by newly isolated thermotolerant Spathaspora passalidarum CMUWF1–2. BMC Microbiol 18:73.
Sharma NK, Behera S, Arora R, Kumar S (2016) Enhancement in xylose utilization using Kluyveromyces marxianus NIRE-K1 through evolutionary adaptation approach. Bioproc Biosyst Eng 39:835-843.
Sharma NK, Behera S, Arora R, Kumar S (2017) Evolutionary adaptation of Kluyveromyces marxianus NIRE-K3 for enhanced xylose utilization. Front Ener Res 5:32.
Sharma NK, Bibra M, Kumar S (2019) Genetic and metabolic engineering of microbes for efficient lignocellulosic ethanol. In: Advances in bio-fuel production, Kumar A, Garg S (Eds.) 1:79-136. Nova Science Publishers Inc, New York.
Signori L, Passolunghi S, Ruohonen L, Porro D, Branduardi P (2014) Effect of oxygenation and temperature on glucose-xylose fermentation in Kluyveromyces marxianus CBS712 strain. Microb Cell Fact 13:51.
Silva C, Roberto I (2001) Improvement of xylitol production by Candida guilliermondii FTI 20037 previously adapted to rice straw hemicellulosic hydrolysate. Lett Appl Microbiol 32:248-252.
Slininger PJ, Shea-Andersh MA, Thompson SR, Dien BS, Kurtzman CP, Balan V, da Costa Sousa L, Uppugundla N, Dale BE, Cotta MA (2015) Evolved strains of Scheffersomyces stipitis achieving high ethanol productivity on acid-and base-pretreated biomass hydrolyzate at high solids loading. Biotechnol Biofuels 8:60.
Sonderegger M, Sauer U (2003) Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose. Appl Environ Microbiol 69:1990-1998.
Wang R, Li L, Zhang B, Gao X, Wang D, Hong J (2013) Improved xylose fermentation of Kluyveromyces marxianus at elevated temperature through construction of a xylose isomerase pathway. J Ind Microbiol Biotechnol 40:841-854.
Wei N, Xu H, Kim SR, Jin YS (2013) Deletion of FPS1 coding for aquaglyceroporin Fps1p improves xylose fermentation by engineered Saccharomyces cerevisiae. Appl Environ Microbio. 79:3193-3201.
Yablochkova E, Bolotnikova O, Mikhailova N, Nemova N, Ginak A (2003) The activity of xylose reductase and xylitol dehydrogenase in yeasts. Microbiol 72:414-417.
Yamasaki-Yashiki S, Komeda H, Hoshino K, Asano Y (2014) Molecular analysis of NAD+-dependent xylitol dehydrogenase from the zygomycetous fungus Rhizomucor pusillus and reversal of the coenzyme preference. Biosci Biotechnol Biochem 78:1943-1953.
Zhang B, Sun H, Li J, Wan Y, Li Y, Zhang Y (2016) High-titer-ethanol production from cellulosic hydrolysate by an engineered strain of Saccharomyces cerevisiae during an in situ removal process reducing the inhibition of ethanol on xylose metabolism. Process Biochem 51:967-972.
Zhang J, Zhang B, Wang D, Gao X, Sun L, Hong J (2015) Rapid ethanol production at elevated temperatures by engineered thermotolerant Kluyveromyces marxianus via the NADP (H)-preferring xylose reductase-xylitol dehydrogenase pathway. Metab Eng 31:140-152.
Zhou H, Cheng JS, Wang BL, Fink GR, Stephanopoulos G (2012) Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metab Eng 14:611-622.