1. Bellver, J. and J. Donnez. Introduction: Infertility etiology and offspring health. Fertil Steril, 2019. 111(6): 1033-1035, DOI: 10.1016/j.fertnstert.2019.04.043.
2. Group., R.E.A.-S.P.C.W. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril, 2004. 81(1): 19-25, DOI: https://doi.org/10.1093/humrep/deh098.
3. Zawadzki, J.K. and A. Dunaif. Diagnostic criteria for polycystic ovary syndrome: towards a rational approach. Boston, 1992: 77-84.
4. Azziz, R., E. Carmina, D. Dewailly, et al. The Androgen Excess and PCOS Society criteria for the polycystic ovary syndrome: the complete task force report. Fertil Steril, 2009. 91(2): 456-88, DOI: 10.1016/j.fertnstert.2008.06.035.
5. Gibson-Helm, M., H. Teede, A. Dunaif, and A. Dokras. Delayed Diagnosis and a Lack of Information Associated With Dissatisfaction in Women With Polycystic Ovary Syndrome. J Clin Endocrinol Metab, 2017. 102(2): 604-612, DOI: 10.1210/jc.2016-2963.
6. Dokras, A. and S.F. Witchel. Are young adult women with polycystic ovary syndrome slipping through the healthcare cracks? J Clin Endocrinol Metab, 2014. 99(5): 1583-5, DOI: 10.1210/jc.2013-4190.
7. Witchel, S.F., H.J. Teede, and A.S. Peña. Curtailing PCOS. Pediatr Res, 2020. 87(2): 353-361, DOI: 10.1038/s41390-019-0615-1.
8. Tsai, C.Y., S.C. Hsieh, C.W. Liu, and C.H. Lu. The Expression of Non-Coding RNAs and Their Target Molecules in Rheumatoid Arthritis: A Molecular Basis for Rheumatoid Pathogenesis and Its Potential Clinical Applications. 2021. 22(11), DOI: 10.3390/ijms22115689.
9. Weale, C.J. and D.M. Matshazi. MicroRNAs-1299, -126-3p and -30e-3p as Potential Diagnostic Biomarkers for Prediabetes. 2021. 11(6), DOI: 10.3390/diagnostics11060949.
10. He, L. and G.J. Hannon. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet, 2004. 5(7): 522-31, DOI: 10.1038/nrg1379.
11. Aldakheel, F.M., A.A. Abuderman, S.A. Alduraywish, Y. Xiao, and W.W. Guo. MicroRNA-21 inhibits ovarian granulosa cell proliferation by targeting SNHG7 in premature ovarian failure with polycystic ovary syndrome. J Reprod Immunol, 2021. 146: 103328, DOI: 10.1016/j.jri.2021.103328.
12. Butler, A.E., V. Ramachandran, T.K. Cunningham, et al. Increased MicroRNA Levels in Women With Polycystic Ovarian Syndrome but Without Insulin Resistance: A Pilot Prospective Study. Front Endocrinol (Lausanne), 2020. 11: 571357, DOI: 10.3389/fendo.2020.571357.
13. Yuan, D., J. Luo, Y. Sun, L. Hao, J. Zheng, and Z. Yang. PCOS follicular fluid derived exosomal miR-424-5p induces granulosa cells senescence by targeting CDCA4 expression. Cell Signal, 2021: 110030, DOI: 10.1016/j.cellsig.2021.110030.
14. Arancio, W., M. Calogero Amato, M. Magliozzo, G. Pizzolanti, R. Vesco, and C. Giordano. Serum miRNAs in women affected by hyperandrogenic polycystic ovary syndrome: the potential role of miR-155 as a biomarker for monitoring the estroprogestinic treatment. Gynecol Endocrinol, 2018. 34(8): 704-708, DOI: 10.1080/09513590.2018.1428299.
15. Moher, D., L. Shamseer, M. Clarke, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev, 2015. 4: 1, DOI: 10.1186/2046-4053-4-1.
16. Shamseer, L., D. Moher, M. Clarke, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. Bmj, 2015. 350: g7647, DOI: 10.1136/bmj.g7647.
17. Whiting, P.F., A.W. Rutjes, M.E. Westwood, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med, 2011. 155(8): 529-36, DOI: 10.7326/0003-4819-155-8-201110180-00009.
18. Deswal, R. and A.S. Dang. Dissecting the role of micro-RNAs as a diagnostic marker for polycystic ovary syndrome: a systematic review and meta-analysis. Fertility and Sterility, 2020. 113(3): 661-669.e2, DOI: 10.1016/j.fertnstert.2019.11.001.
19. Rashad, N.M., M.A. Ateya, Y.S. Saraya, et al. Association of miRNA - 320 expression level and its target gene endothelin-1 with the susceptibility and clinical features of polycystic ovary syndrome. J Ovarian Res, 2019. 12(1): 39, DOI: 10.1186/s13048-019-0513-5.
20. Scalici, E., S. Traver, T. Mullet, et al. Circulating microRNAs in follicular fluid, powerful tools to explore in vitro fertilization process. Sci Rep, 2016. 6: 24976, DOI: 10.1038/srep24976.
21. Naji, M., S. Nekoonam, A. Aleyasin, et al. Expression of miR-15a, miR-145, and miR-182 in granulosa-lutein cells, follicular fluid, and serum of women with polycystic ovary syndrome (PCOS). Arch Gynecol Obstet, 2018. 297(1): 221-231, DOI: 10.1007/s00404-017-4570-y.
22. Wang, Y., S. Xu, Y. Wang, et al. Identification and potential value of candidate microRNAs in granulosa cells of polycystic ovary syndrome. Technol Health Care, 2019, DOI: 10.3233/THC-181510.
23. Sathyapalan, T., R. David, N.J. Gooderham, and S.L. Atkin. Increased expression of circulating miRNA-93 in women with polycystic ovary syndrome may represent a novel, non-invasive biomarker for diagnosis. Sci Rep, 2015. 5: 16890, DOI: 10.1038/srep16890.
24. Long, W., C. Zhao, C. Ji, et al. Characterization of Serum MicroRNAs Profile of PCOS and Identification of Novel Non-Invasive Biomarkers. Cellular Physiology and Biochemistry, 2014. 33(5): 1304-1315, DOI: 10.1159/000358698.
25. Jiang, L., J. Huang, Y. Chen, et al. Identification of several circulating microRNAs from a genome-wide circulating microRNA expression profile as potential biomarkers for impaired glucose metabolism in polycystic ovarian syndrome. Endocrine, 2016. 53(1): 280-90, DOI: 10.1007/s12020-016-0878-9.
26. Tabrizi, Z.P.F., S. Miraj, S. Tahmasebian, and S. Ghasemi. Plasma Levels of miR-27a, miR-130b, and miR-301a in Polycystic Ovary Syndrome. International Journal of Molecular and Cellular Medicine, 2020. 9(3): 198-206, DOI: 10.22088/ijmcm.bums.9.3.198.
27. Hou, Y., Y. Wang, S. Xu, G. Qi, and X. Wu. Bioinformatics identification of microRNAs involved in polycystic ovary syndrome based on microarray data. Mol Med Rep, 2019. 20(1): 281-291, DOI: 10.3892/mmr.2019.10253.
28. Cirillo, F., C. Catellani, P. Lazzeroni, et al. MiRNAs Regulating Insulin Sensitivity Are Dysregulated in Polycystic Ovary Syndrome (PCOS) Ovaries and Are Associated With Markers of Inflammation and Insulin Sensitivity. Front Endocrinol (Lausanne), 2019. 10: 879, DOI: 10.3389/fendo.2019.00879.
29. Casarini, L. and P. Crépieux. Molecular Mechanisms of Action of FSH. Front Endocrinol (Lausanne), 2019. 10: 305, DOI: 10.3389/fendo.2019.00305.
30. Sang, Q., Z. Yao, H. Wang, et al. Identification of microRNAs in human follicular fluid: characterization of microRNAs that govern steroidogenesis in vitro and are associated with polycystic ovary syndrome in vivo. J Clin Endocrinol Metab, 2013. 98(7): 3068-79, DOI: 10.1210/jc.2013-1715.
31. Mulin Liu, S.D., Shijun Li. Association of IL-29 with the lipid metabolic features of polycystic ovary International Journal of Clinical and Experimental Medicine, 2018. 11(9): 9552-9558.
32. Mitchell, P.S., R.K. Parkin, E.M. Kroh, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A, 2008. 105(30): 10513-8, DOI: 10.1073/pnas.0804549105.
33. Lopez-Vazquez, C., I. Bandín, and C.P. Dopazo. Real-time RT-PCR for detection, identification and absolute quantification of viral haemorrhagic septicaemia virus using different types of standards. Dis Aquat Organ, 2015. 114(2): 99-116, DOI: 10.3354/dao02840.
34. Nisenblat, V., D.J. Sharkey, Z. Wang, et al. Plasma miRNAs Display Limited Potential as Diagnostic Tools for Endometriosis. J Clin Endocrinol Metab, 2019. 104(6): 1999-2022, DOI: 10.1210/jc.2018-01464.
35. Parmin, N.A., U. Hashim, S.C.B. Gopinath, et al. Potentials of MicroRNA in Early Detection of Ovarian Cancer by Analytical Electrical Biosensors. Crit Rev Anal Chem, 2021: 1-13, DOI: 10.1080/10408347.2021.1890543.
36. Ricciardiello, F., M. Falco, G. Tortoriello, F. Riccardi, R. Pellini, and B. Iorio. Poorly Differentiated Neuroendocrine Larynx Carcinoma: Clinical Features and miRNAs Signature-A New Goal for Early Diagnosis and Therapy? 2021. 10(9), DOI: 10.3390/jcm10092019.
37. West, S., H. Lashen, A. Bloigu, et al. Irregular menstruation and hyperandrogenaemia in adolescence are associated with polycystic ovary syndrome and infertility in later life: Northern Finland Birth Cohort 1986 study. Hum Reprod, 2014. 29(10): 2339-51, DOI: 10.1093/humrep/deu200.
38. Xiang, Y., Y. Song, Y. Li, D. Zhao, L. Ma, and L. Tan. miR-483 is Down-Regulated in Polycystic Ovarian Syndrome and Inhibits KGN Cell Proliferation via Targeting Insulin-Like Growth Factor 1 (IGF1). Med Sci Monit, 2016. 22: 3383-3393, DOI: 10.12659/msm.897301.