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Abstract

A beam-steering antenna based on non-uniform metasurface superstrate and AMC, operating at 3.5 GHz,
is presented. The antenna can steer the beam along 6 = -18° and 18° with the superstrate and along 6 =0°
in the absence of the superstrate with almost zero scan loss. Antenna structure consists of a top layer of
non-uniform metasurface superstrate made of a 20 x 20 grid of electrically-small square-shaped metallic
pixels while the bottom part consists of AMC with a grid of 5 x 5 pixels. The radiating element, CPW-fed
monopole antenna, is placed between AMC and superstrate. The fabricated prototype shows desired
beam steering in directions of 6 =-18°, 0°, and 18° while maintaining uniform realized gain of 5.5 dB and
matches well with simulations.

l. Introduction

Fifth generation (5G) is the recent wireless technology that is the next step towards the evolution of
cellular communication systems [1], [2]. In 5G, the beam steering capability of the antenna plays the main
role for efficient coverage to all users [3]. Beam steering is the solution to today's network problems such
as call drops, multipath fading in crowded areas [4], [5]. Optical beam scanning for short range
communication is presented in [6], which achieved 10° beam scanning. Beam scanning is achieved with
the help of waffle and waffle iron waveguides. Many beam steering methods have been discussed and
reported in [7], which shows one of the methods of beam steering is Birefringent Prisms. However, this
method is limited as it requires prism thickness of more than 8 cm which may create the problem of
beam walkof [8], [9] when the beam needs to be steered by 20°. The precise beam steering is obtained
using 1D optical phased array on silicon-on-insulator which achieves 2.3° at wavelength of 1550 nm and
14.1° steering. The design is, however, limited due to its high cost and complication in designing with low
beam scanning [10]. The reconfigurable partial reflecting surface (PRS) structure was deployed to achieve
beam steering from - 15° to 15° as reported in [11]. Besides this, the microstrip leaky wave antenna has
achieved frequency scanning capability with two tapered slots in the leaky section and reduction of side
lobe level is obtained by Yagi elements [12]. Also, 0° to 40° beam scanning is reported in [13] with the help
of an electronically controlled microstrip antenna, and changing the capacitance value. The tilted beam
at +15° is observed in [14], by combining parasitic elements with inserted capacitances. The parasitic
phased array antenna with varactors and tuning capacitance which provides continuous scanning of +
15° is reported in [15]. A reconfigurable microstrip Yagi antenna is presented in [16] and beam scanning
from - 40° to +40° in H-plane is achieved by two hexagonal slotted tunable parasitic elements with the
gain of 3.36 dBi. The beam steering of -30°, 0°, + 30° is reported in [17], which used a grid of 5 x 5
electrically-small rectangular-shaped metallic pixels on the upper layer of the parasitic layer which are
connected by switches. However, 360° beam steering is presented in [18] by combining electronically
steerable parasitic array radiator (ESPAR) antenna and the water antenna, but it makes the design
complex and cannot be easily designed. In [19], phase varying metamaterial is used for compact
steerable directive antenna which achieves a + 20° steered beam. Furthermore, different beam steering
methods have been reported in [20].
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In next sections, we provide a step-by-step approach to design the proposed antenna. Sec. |l starts with
the design of a radiating element, CPW-fed monopole antenna. Once, radiating element is designed, the
design of AMC and superstrate is discussed. Next, in Sec. lll, various parameters of composite antenna
with AMC and superstrate are studied so that change in antenna behavior due to change in these
parameters can be quantified. This section also discusses desired radiation behaviors of the proposed
antenna. Finally, Sec. IV concludes the work with concluding remarks.

li. Geometry Of The Proposed Antenna

(@) Design of CPW fed monopole antenna

The radiating element, CPW fed monopole antenna, geometry is shown in Fig. 1. Due to simple design
and single side design on substrate, this radiating element is selected for this research. For design, the
length of the monopole antenna is denoted as / and width is denoted by W. The monopole antenna is fed
through 50 2 SMA connector. The antenna is fabricated on FR4 (¢, = 4.4, tan6=0.02) substrate with a
thickness of 1.6 mm. The other dimensions of the antenna are given as:

Lp = 35, Wp =22,1=16.7, m= 9.1, g = 0.3, ]; = 10(alldimensionsareinmm).

(b) Design of AMC for CPW fed monopole antenna

The center frequency of AMC operation is chosen to be 3.5 GHz. A unit cell of periodicity 10 mm x 10 mm
is used for AMC design. Square-shaped metallic patches of side 'a' are printed at the center of the unit cell
on FR4 substrate as shown in Fig. 2 (a). The substrate has thickness, h; = 3.2 mm with permittivity of 4.4,
and loss tangent of 0.02. For analysis of AMC, the periodic boundary condition (PBC) [19, 20, 21, 22, 23]
is used. It facilitates quick results instead of simulating the large structure of AMC. By using PBC, shown
in Fig. 2(b), the reflection phase is calculated by simulation with the help of Floquet port excitation.

In order to ascertain that the AMC is indeed working on desired 3.5 GHz, unit cell simulation with variable
side of the square pixel, g, is run and an attempt is made so that the reflection phase is 0° at desired 3.5
GHz. From Fig. 2(c), we can see that when the side of the pixel, g, is 9.6 mm, the reflection phase is 0°.
Henceforth, we will use AMC made of unit cells with a=9.6 mm to use with the monopole antenna
discussed earlier.

(c) Design of composite CPW fed monopole antenna with AMC and superstrate
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In the previous section, we designed AMC. Next, we place AMC underneath the antenna substrate as
shown in Fig. 3 so that the AMC enhances the radiation in forward direction, i.e., along vertically up
direction. It can be seen from Fig. 3 that the grid of 5 x 5AMC unit cells is placed under the monopole
antenna. It is well known that the superstrate can be used to increase the gain of the antenna [24, 25, 26,
27]. Mostly, the superstrate used for enhancing the design is either in the form of uniform pixels or pixels
whose size changes radially out from the center of the superstrate. In such applications, the primary role
of superstrate is to work in Fabry-Perot configuration and enhance the gain of the antenna element. In
this research, we have a dual purpose of the superstrate. On one hand we want to modify the gain of the
antenna and on the other, we want to steer the beam emanating from the antenna in the desired direction.
This type of beam steering is very important for upcoming 5G systems. Figure 4 (a) shows the geometry
of the proposed superstrate which comprises of metallic patches of different size from a;to a,,. The

dimensions of the proposed superstrate are given in Table 1.

In order to steer the beam in direction away from the broadside, there should be phase variation for waves
emanating from different locations of the superstrate. This phase-varying behavior is provided by a
nonuniform metasurface printed on the dielectric substrate acting as a superstrate. For this purpose, the
size of the unit cells of the superstrate increases monotonically from one edge to another of the
superstrate as shown in Fig. 4 (a). This way, the superstrate will help to steer the beam in an off-
broadside direction. If this superstrate sends the beam in + 6, rotating the superstrate by 180°, taking the
z-axis for rotation, will help to send the beam in the -6 direction. In order to send the beam in broadside
direction, the superstrate is removed. To ease the rotation, the interchange of the superstrate may be
accomplished by a mechanical solution. In this way, this design can be said to be reconfigurable.
However, the speed of beam steering will depend upon how quickly the mechanical motor can help to
rotate or remove the superstrate.

Figure 4 (b) shows the layered structure of the proposed CPW fed monopole antenna with AMC and
superstrate with different views. The fabricated prototype of the proposed antenna is shown in Fig. 5.

Table 1
Patch dimensions (in mm) used in metasurface superstrate.
a4 az ag ay as 3 ay ag a9 a10
0125 025 0.375 05 0625 0.75 0875 1 1125 1.25
ann a2 a3 a4 as a1e a7 arg a19 a0
1375 1.5 1.625 175 1875 2 2125 225 2375 25

lii. Results And Discussion
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All the simulations in this work are conducted using Ansys HFSS, full wave simulator. The simulated S-
parameter comparison of the monopole antenna, monopole antenna with AMC, monopole antenna with
AMC and superstrate is shown in Fig. 6.

The comparison of the realized gain for monopole antenna with AMC and superstrate is shown in Fig. 7.
It can be observed that there is 3.84 dBi increment in gain after applying AMC on the monopole antenna.
Furthermore, when the superstrate is applied, the gain of the antenna is 5.5 dBi at 3.5 GHz.

A. Parametric analysis of the antenna

The proposed antenna is fed by CPW as shown in Fig. 1. The parametric studies of the dimensions of the
monopole antenna, gap between antenna and superstrate has been carried out to achieve good
impedance matching and desired frequency band.

i) Length of monopole antenna, |

The length of the monopole antenna, /, is varied from 20 mm to 30 mm with the step size of 5 mm. As
shown in Fig. 8 (a) the reflection coefficient Sy ;is lower than - 10 dB for desired frequency bands. It can
also be observed that the S;; resonance moves to lower frequency as the length of the monopole
increases.

if) Gap between the antenna and superstrate

The gap between antenna and superstrate is varied from 4.2 mm to 10.2 mm with the step size of 3 mm.
It can be seen from Fig. 8. (b) that there is hardly any effect of varying the gap on the antenna
performance. In this way, the antenna will give almost the same results even if the gap changes due to
slight mishandling of the antenna.

B. Near field analysis

In order to get insights of working of the superstrate, near field behavior is very helpful [25]. Far field
pattern being the Fourier transform of the near-field pattern, can give better understanding of how the
superstrate is changing the near field that will eventually change the far field characteristics. To
accomplish it, a vertical plane in the center of the antenna is placed on which the dominant component of
the near field is studied. In our case, E, is the dominant electric field as the monopole is aligned along the
x-axis. In Fig. 9 and Fig. 10, E, magnitude and phase behavior in absence and presence of the superstrate
are shown. It is evident from Fig. 9 (a) and Fig. 10 (a) that the placement of the superstrate confines the
fields and hence shows slightly higher field magnitude in case of the superstrate. It is also evident from
Fig. 9 (b) and Fig. 10 (b) that due to placement of the superstrate, the direction of equi-phase front
changes. The phase front is changed towards left, signifying that the outward radiation is expected
towards left side when the superstrate is placed. From these figures, it is easy to understand that the
absence or presence of the superstrate decides the beam steering direction.
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After getting the desired radiation properties, the prototype of the antenna is fabricated as shown in
Fig. 5. The proposed antenna is tested using R & S ZNB40 vector network analyzer and anechoic
chamber for its properties.

C. S-parameter measurement

The simulated and measured S-parameters of the antenna are shown in Fig. 11. For acceptable
performance, the proposed antenna needs to provide good reflection coefficients, |S11], in the desired
frequency band. From Fig. 11, it is evident that the fabricated antenna has |S11| <-10 dB over the
frequency band of 3.1-3.7 GHz. The simulated and measured S-parameters are in good agreement. The
fabricated antenna has wide impedance bandwidth for 5G/WiMAX/WLAN applications.

D. Radiation pattern of the proposed antenna

Figure 12 shows the radiation pattern of the proposed antenna for ¢ = 0° cut. The non-uniform
superstrate was designed to steer the beam in 8=118°. The superstrate needs to be mechanically rotated
or removed depending upon the desired steering beam direction. While, currently, we manually did the
operation of mechanically placing and removing the superstrate but the superstrate can be moved by
mechanical motor to automate this operation. This type of mechanical movement of a superstrate is
simple and can be easily accomplished by mechanical motors.

It can be seen from Fig. 12 that the beam scans in £ 18° and 0° in elevation directions in presence of
superstrate and in absence respectively. It is also interesting to note that the antenna does not show
sidelobes in this plane. The realized gains at these steered angles are 5.5 dB signifying that the antenna
shows almost zero scan loss for + 18° scanning angles.

The proposed antenna radiation patterns (co- and cross-polarization) are measured in an anechoic
chamber at 3.5 GHz as shown in Figs. 13 and 14. In these figures, co-polarization is shown by red lines
and cross-polarization by black lines. It is evident from Figs. 13 and 14, that the antenna has very low
cross-polarization components. The simulated and measured results are also in good agreement.

E. Realized gain

Figure 15 shows the simulated and measured gain of the antenna with and without superstrate. It is
observed that the gain of the antenna in both cases is 5.5 dBi at 3.5 GHz. The simulated and measured
values are also in good agreement.
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Comparison table

In Table 2, all existing designs are compared with the current work. It is evident from Table 2 that the
proposed antenna gives a good beam steering with compact design.

Table 2
Comparison of present work with the previously published antennas
Ref Antenna type Size (A30) Frequency Realized Beam
band ain scanning
(GHz) dBi)
(Degrees)
[11] Phased array and 3.1 x 3.1 x 0.55 5.51t05.7 12 +159
reconfigurable PRS
structure
[14] Parasite patches and 1.56 x 0.63 x 0.013 2.45 5-8 +159
lumped capacitances
[15] Parasitic phased array 0.30 x 0.78 x 0.005 1 7.4 + 150
antennas
[16] Tunable parasitic 0.49 x 0.49 x 0.0013 2.43-2.47 3.36 +40°
This Metasurface monopole 0.58 x 0.58 x 0.16 3.1-3.7 5.53 +18°
Work Antenna

Iv. Conclusion

A beam-steering antenna based on non-uniform metasurface superstrate and AMC with CPW-fed
monopole antenna as radiating element operating at 3.5 GHz (3.1-3.7 GHz) was presented. The antenna
is able to steer beams in directions of -18°, 0° and - 18° in elevation while maintaining uniform gain of
5.5 dBi. The antenna is compact, has a good front to back ratio and low sideline levels. The antenna due
to these qualities is an ideal candidate for 5G, WiMAX and WLAN applications.
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Figures

Figure 1

Proposed CPW fed monopole antenna.
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Figure 2

AMC design for proposed CPW fed monopole antenna, (a) top view of AMC, (b) isometric view of AMC,
(c) reflection phase behavior of the AMC.
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CPW fed monopole antenna with AMC.
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Figure 4

CPW fed monopole antenna with AMC and superstrate. (a) layered structure, (b) side view.
(I_s=50,W_s=50,nh_1=3.2,h_2=1.6,h_3=1.6,g=0.17,g_p=7.2 (all dimensions in mm).
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Figure 5

Prototype of the proposed CPW fed antenna with AMC and superstrate, (a) top view, (b) side view, (c)

antenna in an anechoic chamber for measurement.
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Realized gain comparison of the monopole antenna with AMC and superstrate.
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Parametric analysis of the antenna using: (a) monopole antenna length ‘I'; (b) gap between antenna and
superstrate ‘g_p’.
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Simulated and measured radiation pattern of the antenna without superstrate, (a) ¢=0° cut (b) ¢=90° cut.
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Figure 14

Simulated and measured radiation pattern of the antenna with superstrate, (a) ¢=0° cut (b) ¢=90° cut.
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Figure 15

Peak realized gain of the antenna when the beam is steered in different directions.
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