Prevalence of potential mediators of artemisinin resistance in African isolates of Plasmodium falciparum

DOI: https://doi.org/10.21203/rs.3.rs-696177/v1

Abstract

The devastating public health impact of malaria has prompted the need for effective interventions. Malaria control gained traction after the introduction of artemisinin-based combination therapies (ACTs). However, the emergence of artemisinin (ART) resistance in South-East Asia and reports of delayed parasite sensitivity to ACTs in African parasites signal an imminent treatment failure. Monitoring the prevalence of mutations associated with artemisinin resistance in African populations is required to stop resistance in its tracks. Plasmodium falciparum Kelch-13 (Pfk13), Pfcoronin and PfATPase6 gene mutations have been associated with ART resistance. In this review, we collated findings from published research articles to establish the prevalence of Pfk13, Pfcoronin and PfATPase6 polymorphisms in Africa. We searched PubMed, Embase and Google Scholar for relevant articles reporting polymorphisms in these genes across Africa between 2014 to 2021. Seventy-two studies which passed the inclusion criteria reported 739 single nucleotide polymorphisms (331 unique variants) from 34,353 samples collected in 26 African countries. Four validated Pfk13 resistant markers linked with delayed parasite clearance were identified in Africa: R561H in Rwanda and Tanzania, M476I in Tanzania, and F446I in Mali, and P553L in Angola. In Tanzania, three (L263E, E431K, and S769N) of the four mutations (L263E, E431K, A623E, and S769N) in PfATPase6 gene previously associated with delayed parasite clearance in presence of artemisinin were reported. Pfcoronin polymorphisms were reported in Senegal, Gabon, Ghana, Kenya and Congo, with P76S being the most prevalent Pfcoronin mutation. Our findings demonstrate independent emergence and widespread distribution of Pfk13, Pfcoronin and PfATPase6 mutations in Africa. Understanding the phenotypic consequences of these mutations can provide information on the efficacy status of artemisinin-based treatment of malaria in Africa.

Introduction

Malaria is a leading cause of mortality and morbidity especially among children under five years in Africa (WHO, 2020). Interventions such as insecticide-treated nets, space spraying, indoor residual spraying, larval control and antimalarial therapeutics have been adopted to reduce malaria burden across the continent (Bhatt et al., 2015). However, these strategies have been hampered by the emergence of resistant strains of both mosquitoes and parasites (Akinola et al., 2019; Baraka et al., 2018; Okell et al., 2008).

A major setback in malaria control is the emergence and spread of artemisinin-resistant strains of Plasmodium falciparum in South-East Asia (SEA) where decreased parasite susceptibility to artemisinin is associated with polymorphisms in the parasite Kelch-13 propeller gene (Amaratunga et al., 2012; Ariey et al., 2014; Dondorp et al., 2009; Noedl et al., 2008; Takala-Harrison et al., 2015). The Kelch-13 (Pfk13) gene mutations that have been associated with delayed artemisinin parasite clearance in SEA include C580Y, R561H, F446I, N458Y, I543T M476I, R539T, Y493H, and P553L (Ariey et al., 2014). In addition, polymorphisms in P. falciparum coronin (Pfcoronin) gene have been linked artemisinin resistance (Sharma et al., 2020). The Pfcoronin protein belongs to the actin-binding protein family which has been associated with the motility of sporozoites (Olshina et al., 2015). Pfcoronin gene polymorphism (P76S) has been identified in three different countries in Africa (Delandre et al., 2020; Velavan et al., 2019). This polymorphism has been suspected to have a correlation with delayed parasite clearance (Velavan et al., 2019).

Earlier reports also suspected the contribution of PfATPase6 mutations to reduced sensitivity of African parasites (Li et al., 2016; Yobi et al., 2020). The dependency on artemisinin derivatives for falciparum malaria treatment has stressed the need for a synergistic effort to monitor the emergence and spread of artemisinin resistant strains of P. falciparum in Africa. Here, we dissected published research documents to determine the prevalence of Pfk13, Pfcoronin and PfATPase6 mutations across Africa.

Methodology

This article followed the guidelines for systematic reviews and meta-analyses (Moher et al., 2009). Two electronic biomedical databases (PubMed and Embase) were methodically explored for peer-reviewed articles published between 2014 and 2021 which had the relevant study population, study design and expected outcomes for this review. Google Scholar was also combed for relevant peer-reviewed articles. Both interventional and observational studies were retrieved and included in the review using the “MeSH” search terms “OR” and “AND’’: “kelch13” OR “kelch-13” OR “Pfk13” OR “Pfkelch13” OR “Pfkelch-13” OR “Plasmodium falciparum drug resistance” OR “ATP6” OR ““Plasmodium falciparum ATP6” OR “Plasmodium falciparum ATPase6” OR “PfATP6” “PfATPase6” OR “Plasmodium falciparum coronin” OR “Pfcoronin” OR “Plasmodium falciparum coronin” OR “molecular marker” OR “Plasmodium falciparum” “P. falciparum” OR “falciparum malaria” AND (“African” OR “Africa” OR  with each name of the 54 countries in Africa). The citations of the individual search were saved and sent to the reference manager (EndNote version 9.0). The full text of retrieved citations was downloaded using EndNote. Articles with data from unknown countries and/or sampling sites as well as systematic reviews, conference presentations, letters or correspondence to editors and abstracts with insufficient information were removed.

Inclusion criteria

The articles included in this review strictly reported P. falciparum artemisinin resistance markers, single nucleotide polymorphisms (SNPs) in African countries, polymorphisms in Pfk13-gene, Pfcoronin and PfATPase6 confirmed through targeted or whole-genome sequencing. Articles from cross-sectional studies such as clinical or community surveys were included in addition to longitudinal studies of treatment efficacy. Specific studies reporting synonymous and nonsynonymous SNPs in Pfk13, PfATpase6 and Pfcoronin were eligible for this meta-analysis.

Exclusion criteria

Articles reporting molecular markers other than Pfk13, PfATpase6, and Pfcoronin were excluded from this review. In addition, studies with no definite Pfk13, PfATpase6, and Pfcoronin SNPs reported either in the main manuscript or supplementary files were excluded. Studies reporting Pfk13, PfATpase6, and Pfcoronin polymorphisms without sequencing techniques were not included.

Definitions 

P. falciparum artemisinin resistance is defined as delayed, slow or decreased parasite clearance rate (WHO, 2019). This delayed parasite clearance results in partial resistance that affects ring-stage parasites (WHO, 2019). P. falciparum artemisinin resistance mutations are described polymorphisms in the major genes (Pfk13, Pfcoronin, and PfATPase6) associated with ACT resistance in vitro, ex vivo or in vivo. This review utilized the World Health Organisation (WHO) updated list of P. falciparum artemisinin resistance SNPs (WHO, 2019) classifying Pfk13 mutations into validated and candidate SNPs. Pfk13 validated SNPs are significantly associated with reduced drug susceptibility in laboratory assays and a slow parasite clearance rate in field studies. Validated Pfk13 SNPs include C580Y, R561H, F446I, N458Y, I543T M476I, R539T, P553L and Y493H (WHO, 2019). On the other hand, candidate SNPs are mutations strongly associated with slow parasite clearance in clinical trials but not confirmed in vitro. These include A675V, P441L, P574L, G449A, C469F, N537I, P527H, G538V, V1568G, F673I, and A481V (WHO, 2019).

Data extraction

The extracted data from each article captured first and last author affiliations, the year the studies were conducted (Figure 1), year of article publication (Figure 2), geographic location of the study area, duration of the study, age of the participants and the type of study design (that is, interventional vs observational). Data involving sampling strategies, molecular assays performed, clinical status of the study population, markers (synonymous and non-synonymous mutations) and publication affiliation were also reported (Figures 3 and 4). 

Results

This review searched PubMed, Embase, and Google Scholar databases for all the relevant articles. Our search yielded a total of 421 articles of which 284 articles on P. falciparum k13, Pfcoronin and PfATPase6 genes single nucleotide polymorphisms (SNPs) met inclusion conditions. Following an adjustment for duplication, redundant articles were discarded. Eleven articles with unobtainable full texts were removed. After prior screening and filtering, a total number of 72 articles (66 on Pfk13, two on Pfcoronin and six on PfATPase 6) from 34,353 samples collected in 26 African countries were included in this review (supplementary data sheet). 

Structure of Kelch-13 protein

P. falciparum Kelch-13 encodes 726 amino acids. The polypeptide consists of a poorly conserved N-terminal region (Apicomplexa-specific; amino acid from 1 to 211) and three highly conserved regions (Ariey et al., 2014). It has a coiled-coil-containing (CCC; amino acid from 212–341), broad-complex, tram track, and bric-a-brac (BTB; amino acid from 350–437) and a C-terminal kelch-repeat propeller (KREP; amino acid from 443–726) which harbours virtually all Pfk13 allelic variants associated with artemisinin resistance (Anderson et al., 2017) (Figure 5). Kelch-13 gene is putatively associated with intraerythrocytic growth and proliferation of both P. falciparum asexual parasites (Bushell et al., 2017; Zhang et al., 2017).

Sample pre-processing and Pfk13 genotyping

Majority of the studies collected blood samples for genotyping on filter paper (Abubakar et al., 2020; Ahouidi et al., 2021; Balikagala et al., 2017; Conrad et al., 2019; Djaman et al., 2017) while others did not report the method used for collection (Uwimana et al., 2020; Velavan et al., 2019) P. falciparum polymerase chain reaction positive (PCR+) samples were 18,292 out of 32,406 total samples collected (Mayengue et al., 2018; Nzoumbou-Boko et al., 2020; Oboh et al., 2018; Ocan et al., 2016; Pacheco et al., 2020; Tornyigah et al., 2020; Uwimana et al., 2020). Five studies did not report the number of PCR+ samples (Castaneda-Mogollon et al., 2019; Chebore et al., 2018; de Laurent et al., 2018; Hemming-Schroeder et al., 2018; Ikeda et al., 2018). Pfk13 gene was successfully genotyped in 15,861 (86.71%) samples. The variant calling algorithms and data analysis software used include Mega software, Jalview, phylo, DnaSp, Genescan, Genome Assembly Program, PROVEAN and R software (Gaye et al., 2020; Guerra et al., 2017; Gupta et al., 2020; Hussien et al., 2020)

Polymorphisms in Pfk13 gene

Three hundred and thirty-one (331) non-synonymous mutations were reported, of which 291 (87.92%) occurred inside the propeller domain of Pfk13 gene (amino acid from 441). Only 12.08% (Ahouidi et al., 2021; Balikagala et al., 2017; Castaneda-Mogollon et al., 2019; Pacheco et al., 2020) mutations were observed outside the propeller domain (amino acid below 440). The reported Pfk13 non-synonymous SNPs  occurring inside the propeller domain include A578S/D/V (88 isolates); R561H (20 isolates); R622G/K/I (20); N587K/I (16 isolates); V555A/L (9 isolates); S522C/M/N (9 isolates); T677A/K/R (9 isolates); Q613E/H (7 isolates), F509G (7 isolates) and V637I (6 isolates); N554H/K/D and A626S/T/V (5 isolates each); and N609D/L/S (5) (Ahouidi et al., 2021; Ishengoma et al., 2019; Kakolwa et al., 2018; Kayiba et al., 2021; Yobi et al., 2021). The most frequently reported mutations outside the propeller domain include K189T/N (105 isolates), E208K (10 isolates), N142NN (9 isolates), T149S (6 isolates), E433D (6 isolates), and E401Q (5 isolates)  (Guerra et al., 2017; Lu et al., 2017; Madamet et al., 2017; Ocan et al., 2016). Apart from D389H/N/Y (3 isolates), K378R (2 isolates) and D281V (2 isolates), other reported mutations outside the propeller domain (31/40) occurred singly (Bayih et al., 2016; Boussaroque et al., 2016b; Hussien et al., 2020; Igbasi et al., 2019). We also found that K189T/N mutation had a high prevalence in Senegal  (Boussaroque et al., 2016a; Gaye et al., 2020; Torrentino-Madamet et al., 2015). 

Prevalence of Pfk13 nonsynonymous mutations across Africa

The articles reviewed in this study reported 331 unique non-synonymous mutations in Pfk13 gene across Africa (Figure 6). An insertion was recorded in nine samples (N142NN). Of the nine validated Pfk13 mutations (C580Y, R561H, F446I, N458Y, I543T M476I, R539T, P553L, and Y493H) causing a delay in artemisinin parasite clearance (Menard et al., 2016), three (R561H, P553L, and M476I) were identified in Africa (Kakolwa et al., 2018; Talundzic et al., 2017; Uwimana et al., 2020).  R561H was identified in Rwanda and Tanzania (Uwimana et al., 2020), P553L in Angola (Xu et al., 2018), and M476I in Tanzania (Kakolwa et al., 2018). In two isolates from Ghana (Tornyigah et al., 2020), asparagine in position 458 (N458) was found to be replaced by aspartate (D) instead of tyrosine (Y). Though their link with delayed parasite clearance is yet to be established, other non-synonymous mutations reported are A481C in Ghana, A675V in Kenya (3 isolates), Rwanda (2 isolates) and Uganda (2 isolates); C469W/Y/F in Ghana, Kenya, Rwanda and Uganda; G538S in Democratic Republic of the Congo; G449S/C in Mali and Tanzania; N672I in Ghana (2 isolates); P574L in Uganda and Rwanda (1 and 3 isolates respectively); R539I/K in Kenya and Senegal as well as V568G in Kenya (3 isolates). The most frequent Pfk13 mutations reported are K189T/N (105, 14.21%, A578S/D (88, 11.91%), R561H (20, 2.71%) which is a validated Pfk13 linked with artemisinin resistance, and N587K/I (16, 2.17%). Furthermore, non‑synonymous SNPs outside Pfk13 propeller region (< 440) have been describedK189T variant is most frequently reported non-propeller Pfk13 mutation (Gaye et al., 2020; Torrentino-Madamet et al., 2014). It was reported in 105 isolates from three countries (Equatorial Guinea, Eritrea, and Senegal). E208K was also reported in 10 isolates from Eritrea occurred at codon position. Non-propeller mutation at codon position 189 (K to T) has been associated with delayed ACTs P. falciparum parasite clearance (Gaye et al., 2020; Torrentino-Madamet et al., 2014). 

Structure of Pfcoronin and PfATPase6 proteins

Pfcoronin encodes 602 amino acids. The propeller domain of Plasmodium falciparum coronin gene has seven blades. This domain is made up of the WD40 repeats (tryptophan-aspartic acid 40) and a β-propeller in the N terminus region (Ashley et al., 2014). The Pfcoronin gene is structurally similar to the six-bladed PfKelch13 propeller domain. (Ashley et al., 2014). PfCoronin is involved in organization of F-actin via its N-terminal propeller region and localizes to the parasite membrane (Olshina et al., 2015). On the other hand, Pfatpase6 contains 925 amino acids sequence. The function of PfATPase 6 is mainly related to calcium metabolism (Jambou et al., 2005). The amino acid sequence from 1-47 is the cation ATPase N-ternimus (cation transporter), region 69-318 is the E1-E2 ATPase (a superfamily of ion-pumping ATPases), region 647-700 is the cation ATPase (P-type) while region 842-920 is the soluble P-type ATPase (conserved domain).

Prevalence of Pfcoronin and PfATPase6 nonsynonymous mutations in Africa

The two studies reporting Pfcoronin mutation collected a total number of 624 samples, the whole samples were PCR+. Pfcoronin gene was sequenced in 624 (100%) isolates (Delandre et al., 2020; Velavan et al., 2019).  On the other hand, six studies reported PfATPase6 polymorphisms. The six studies involved 1323 samples of which 752 P. falciparum isolates were PCR+, 644(85.63%) were successfully sequenced (Heuchert et al., 2015; Koukouikila-Koussounda et al., 2017; Kwansa-Bentum et al., 2011; J. Li et al., 2016). In Tanzania (Chilongola et al., 2015), three  (L263E, E431K, and S769N) of the four mutations (L263E, E431K, A623E, and S769N) in PfATPase6 gene associated with delayed parasite clearance in presence of artemisinin were reported (Table 1). PfATPase 6 E431K was reported in Congo and Ethiopia (Figure 8). 

Pfcoronin mutations were reported in five countries (Senegal, Gabon, Ghana, Kenya, and Democratic Replublic of the Congo) P76S polymorphism was identified in four countries (Sengal, Gabon, Ghana, and Kenya) (Delandre et al., 2020; Velavan et al., 2019). The frequency of occurrence of P76S was higher in Senegal compared with the three other countries. Likewise, V62M was reported in Ghana and Gabon. (Table 2).


Table 1: The prevalence of PfATPase6 single nucleotide polymorphisms in Africa

Country

Mutation (no of isolates)

Reference

Congo

H243Y(2), I291V (1), L402V (3), E431K (3), N569K (7), A630S(3), G632E (1), G639D, F646F (1), H747Y (1)

(Koukouikila-Koussounda et al., 2017)

Equatorial Guinea

N569K (11), A630S (2), I723V (1)

(J. Li et al., 2016)

Ghana

D639G (34), E431K (7), D443E (5), M813Q (5), Q622H (3), L402V (2), F414L (2), D419N (2), C356Y (1), R377K, E384K (1), T403K(1), D405 (1), A425T(1), E432K (1), A630S (1), C645G (1), E696G (1), E710K (10, D734G (1)

(Kwansa-Bentum et al., 2011)

Ethiopia

E431K (1)

(Heuchert et al., 2015)

Tanzania

L263E (8), E431K (17), S769N (5)

(Chilongola et al., 2015)

Ivory Coast

Y148F (1), D153E (1), S158N (1), Q254H (4), H638P (1), N663Y (1), N668Y (1), N669Y (6), S670C (5), W681G (10, D734Y (12)

(Koukouikila-Koussounda et al., 2017)

 

Table 2: The prevalence of Pfcoronin single nucleotide polymorphisms in Africa

Country

Mutation (no of isolates)

Reference

Senegal

P76S (53)

(Delandre et al., 2020)

Gabon

V62M (1), P76S (11)

(Velavan et al., 2019)

Ghana

I53I (1), V62M (1), K69I/R (3), P76S (9), N110Y (1)

(Velavan et al., 2019)

Kenya

P76S (4)

(Velavan et al., 2019)

Congo

K69I/R (11), P76S (8), N110Y/D (5), N112Y (10, K115E (1), L121F (1), K127E (1), K127I/R (5), N134Y/D (4), N137I/Y/D (12),

(Velavan et al., 2019)

Discussion

The emergence of P. falciparum artemisinin-resistance in SEA is an imminent danger to the successful treatment and a potential public health burden. The large spectrum of mutations associated with artemisinin resistance reported so far in Africa raises concern about potential adaptation of P. falciparum to artemisinin. Consequently, African health workers and policymakers are reminded of the need for accurate and effective use of artemisinin derivatives for malaria treatment.

Compared to SEA, low prevalence of Pfk13 SNPs were recorded across Africa. This could be associated with the late introduction of artemisinin in Africa (between 2000–2005), accompanied by a shorter period of artemisinin drug pressure unlike in SEA which experienced an early adoption of artemisinin in the 1970s (Li et al., 1994). Reports from SEA identified 31 major Pfk13 SNPs nine of which were validated by the World Health Organization (WHO) as Pf-artemisinin resistance markers (Ishengoma et al., 2019; Talundzic et al., 2017). Seven of these polymorphisms (V568G, F446I, P553L, M476I, A675, R539I/K, and P574L) have shown a strong association in delayed in vivo parasite clearance (Ariey et al., 2014; Ashley et al., 2014; Bonnington et al., 2017; Cheeseman et al., 2015). Meanwhile, P533L, M476I and F446I have shown a decrease in in-vitro response to artemisinin (Ariey et al., 2014; Straimer et al., 2015; Wang et al., 2018). Some validated Pfk13 markers have been identified in African isolates. For instance, P553L was identified in Ghana and Senegal (Talundzic et al., 2017). R561H was identified in Rwanda and Tanzania (Uwimana et al., 2020) and M476I was detected in Tanzania (Kakolwa et al., 2018). R539I was reported in Senegal, and in Kenya, lysine replaced isoleucine in R539 mutation (R539K) (de Laurent et al., 2018; Talundzic et al., 2017).

Furthermore, seven of the eleven unvalidated Pfk13 mutations have been found in Africa. Though not listed as validated SNPs, some of these markers have been associated with reduced susceptibility to artemisinin in vitro. V568G and A481C were identified in Kenya and Ghana, respectively (de Laurent et al., 2018; Tornyigah et al., 2020) while A675V was reported in Kenya, Rwanda, and Uganda (Ikeda et al., 2018; Tacoli et al., 2016). The other associated markers identified were C469Y/W (Escobar et al., 2015; Talundzic et al., 2017; Uwimana et al., 2020), G538S (Doudou 2021), G449S/C (Ouattara et al., 2014), N672I (Tornyigah et al., 2020) and P574L (Rwanda and Uganda), (Tacoli et al., 2016; Uwimana et al., 2020). The other Pfk13 mutations reported in African parasites such as C469Y, S522C, R575I/K, and P667R (Uwimana et al., 2020) were found at low frequencies and have not been substantially linked with artemisinin resistance in Africa (WHO, 2019) contrary to what was observed in SEA (WWARN, 2019). In the same vein, C469K mutation has been linked to low parasite clearance in SEA (WWARN, 2019) but not in Africa (Ikeda et al., 2018).

Therefore, it is possible that African parasites may have an artemisinin selection background that is different from SEA parasites. The suspected association of PfATPase6 and Pfcoronin with artemisinin resistance suggests the potential emergence of other non-Pfk13 mutations. PfATPase6 variants have been incriminated in delayed parasite clearance in Tanzania (Chilongola et al., 2015). PfATPase6 E431K was reported in Congo, Ethiopia and Ghana (Heuchert et al., 2015; Koukouikila-Koussounda et al., 2017; Kwansa-Bentum et al., 2011). The variant was also reported, in in vitro studies, to be associated with delayed artesunate-treated parasite clearance in Senegal (Jambou et al., 2005). However, a later study in Iran suggested that the role of E431K variant in artemisinin resistance was suspect (Zakeri, 2012). PfATPase6 E431K mutation often co-occurs with other PfATPase6 gene polymorphisms, usually the S769N and L623E mutations (Tahar et al., 2009).

Research on Pfcoronin as a potential marker of artemisinin resistance in African parasites is relatively recent and still evolving. Pfcoronin mutations reported so far include I53I, V62M, K69K/I/R, P76S, N110Y/D, N112Y/D, K115E, L121F, K127E, K127I/R, N134Y/D, N137Y/D, N137I/S (Delandre et al., 2020; Velavan et al., 2019). In five countries where Pfcoronin was genotyped, P76S variant was observed in all the populations at varying frequencies: 15% in Senegal, 11% in Gabon, 16% in Ghana, 4% in Kenya and 17% in DR Congo. None of the variants suspected to be associated with delayed parasite clearance in the presence of artemisinin pressure (E107V, G50E, and R100K) in laboratory isolates was reported in natural African populations. Even though Pfcoronin polymorphisms (Delandre et al., 2020; Velavan et al., 2019) have not yet been validated in clinical isolates as markers of delayed parasite clearance, their structural similarity with Pfkelch13 suggests the possibility of a common mechanism of resistance emergence (Delandre et al., 2020; Henrici and Sutherland, 2018). Detailed analysis of the phenotypic effects of these mutations can provide information on the continued efficacy or otherwise of artemisinin-based treatment of malaria in Africa.

Declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Not Applicable

Consent for publication

Not applicable

Availability of data and materials

The datasets generated and/or analysed during the current study are included in this published article and its supplementary information file. All codes generated and/or analysed during the current study are available in Github (https://github.com/CeGRIB/pfk13.coronin.atpase6).

Funding

K.M.O was supported by the European and Developing Countries Clinical Trials Partnership (EDCTP) Career Development Fellowship (TMA2019CDF-2782). The views expressed in this publication are those of the authors and not necessarily those of the European Union.

Authors’ contributions

A.O. and K.M.O. conducted the literature review and drafted the manuscript. A.O., M.J.O., E.T.I. and K.M.O reviewed the manuscript. All authors read and approved the final manuscript.

Acknowledgements

We appreciate the authors of all the articles reviewed in this paper.

References

Abubakar, U. F., Adam, R., Mukhtar, M. M., Muhammad, A., Yahuza, A. A., & Ibrahim, S. S. (2020). Identification of Mutations in Antimalarial Resistance Gene Kelch13 from plasmodium falciparum Isolates in Kano, Nigeria. Trop Med Infect Dis, 5(2). doi:10.3390/tropicalmed5020085

Ahouidi, A., Oliveira, R., Lobo, L., Diedhiou, C., Mboup, S., & Nogueira, F. (2021). Prevalence of pfk13 and pfmdr1 polymorphisms in Bounkiling, Southern Senegal. PLoS One, 16(3), e0249357. doi:10.1371/journal.pone.0249357

Akinola, O., Egboro, D. E., Iyenmoana, E., Abdulkadir, B. F., Yakub, Y. O., Adeosun, A. A., . . . Gbotosho, O. G. (2019). Prevalence of antimalarial drug resistant markers in kwara, north-central, Nigeria: A decade after replacement of chloroquine and antifolates as first-line regimen. American Journal of Tropical Medicine and Hygiene, 101(5), 78. doi:10.4269/ajtmh.abstract2019

Amaratunga, C., Sreng, S., Suon, S., Phelps, E. S., Stepniewska, K., Lim, P., . . . Fairhurst, R. M. (2012). Artemisinin-resistant Plasmodium falciparum in Pursat province, western Cambodia: a parasite clearance rate study. Lancet Infect Dis, 12(11), 851-858. doi:10.1016/S1473-3099(12)70181-0

Anderson, T. J., Nair, S., McDew-White, M., Cheeseman, I. H., Nkhoma, S., Bilgic, F., . . . Nosten, F. (2017). Population Parameters Underlying an Ongoing Soft Sweep in Southeast Asian Malaria Parasites. Mol Biol Evol, 34(1), 131-144. doi:10.1093/molbev/msw228

Ariey, F., Witkowski, B., Amaratunga, C., Beghain, J., Langlois, A. C., Khim, N., . . . Menard, D. (2014). A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature, 505(7481), 50-55. doi:10.1038/nature12876

Ashley, E. A., Dhorda, M., Fairhurst, R. M., Amaratunga, C., Lim, P., Suon, S., . . . Tracking Resistance to Artemisinin, C. (2014). Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med, 371(5), 411-423. doi:10.1056/NEJMoa1314981

Balikagala, B., Mita, T., Ikeda, M., Sakurai, M., Yatsushiro, S., Takahashi, N., . . . Tsuboi, T. (2017). Absence of in vivo selection for K13 mutations after artemether-lumefantrine treatment in Uganda. Malar J, 16(1), 23. doi:10.1186/s12936-016-1663-1

Baraka, V., Mavoko, H. M., Nabasumba, C., Francis, F., Lutumba, P., Alifrangis, M., & Van geertruyden, J. P. (2018). Impact of treatment and re-treatment with artemether-lumefantrine and artesunate-amodiaquine on selection of Plasmodium falciparum multidrug resistance gene-1 polymorphisms in the Democratic Republic of Congo and Uganda. PLoS One, 13(2). doi:10.1371/journal.pone.0191922

Bayih, A. G., Getnet, G., Alemu, A., Getie, S., Mohon, A. N., & Pillai, D. R. (2016). A unique plasmodium falciparum K13 gene mutation in Northwest Ethiopia. American Journal of Tropical Medicine and Hygiene, 94(1), 132-135. doi:10.4269/ajtmh.15-0477

Bhatt, S., Weiss, D. J., Cameron, E., Bisanzio, D., Mappin, B., Dalrymple, U., . . . Gething, P. W. (2015). The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature, 526(7572), 207-211. doi:10.1038/nature15535

Bonnington, C. A., Phyo, A. P., Ashley, E. A., Imwong, M., Sriprawat, K., Parker, D. M., . . . Nosten, F. (2017). Plasmodium falciparum Kelch 13 mutations and treatment response in patients in Hpa-Pun District, Northern Kayin State, Myanmar. Malar J, 16(1), 480. doi:10.1186/s12936-017-2128-x

Boussaroque, A., Fall, B., Madamet, M., Camara, C., Benoit, N., Fall, M., . . . Pradines, B. (2016a). Emergence of Mutations in the K13 Propeller Gene of Plasmodium falciparum Isolates from Dakar, Senegal, in 2013-2014. Antimicrob Agents Chemother, 60(1), 624-627. doi:10.1128/aac.01346-15

Boussaroque, A., Fall, B., Madamet, M., Camara, C., Benoit, N., Fall, M., . . . Pradines, B. (2016b). Emergence of mutations in the K13 propeller gene of Plasmodium falciparum isolates from Dakar, Senegal, in 2013-2014. Antimicrobial Agents and Chemotherapy, 60(1), 624-627. doi:10.1128/AAC.01346-15

Bushell, E., Gomes, A. R., Sanderson, T., Anar, B., Girling, G., Herd, C., . . . Billker, O. (2017). Functional Profiling of a Plasmodium Genome Reveals an Abundance of Essential Genes. Cell, 170(2), 260-272 e268. doi:10.1016/j.cell.2017.06.030

Castaneda-Mogollon, D. R., Bayih, A. G., Abere, A., Amarasekara, R., Tesfa, H., & Pillai, D. R. (2019). Using amplicon deep sequencing to characterize clonal expansion of a kelch 13 r622i mutant in Gondar, Ethiopia. American Journal of Tropical Medicine and Hygiene, 101(5), 102. doi:10.4269/ajtmh.abstract2019

Chebore, W., Zhou, Z., Westercamp, N., Otieno, K., Shi, Y. P., Sergent, S. B., . . . Kariuki, S. (2018). Prevalence of Pfmdr1, Pfk13 and Pfcrt polymorphisms during a therapeutic efficacy study in western Kenya. American Journal of Tropical Medicine and Hygiene, 99(4), 85-86. 

Cheeseman, I. H., McDew-White, M., Phyo, A. P., Sriprawat, K., Nosten, F., & Anderson, T. J. (2015). Pooled sequencing and rare variant association tests for identifying the determinants of emerging drug resistance in malaria parasites. Mol Biol Evol, 32(4), 1080-1090. doi:10.1093/molbev/msu397

Chilongola, J., Ndaro, A., Tarimo, H., Shedrack, T., Barthazary, S., Kaaya, R., . . . Lusingu, J. (2015). Occurrence of pfatpase6 Single Nucleotide Polymorphisms Associated with Artemisinin Resistance among Field Isolates of Plasmodium falciparum in North-Eastern Tanzania. Malar Res Treat, 2015, 279028. doi:10.1155/2015/279028

Conrad, M. D., Nsobya, S. L., & Rosenthal, P. J. (2019). The Diversity of the Plasmodium falciparum K13 Propeller Domain Did Not Increase after Implementation of Artemisinin-Based Combination Therapy in Uganda. Antimicrobial Agents and Chemotherapy, 63(10). doi:10.1128/AAC.01234-19

de Laurent, Z. R., Chebon, L. J., Ingasia, L. A., Akala, H. M., Andagalu, B., Ochola-Oyier, L. I., & Kamau, E. (2018). Polymorphisms in the K13 Gene in Plasmodium falciparum from Different Malaria Transmission Areas of Kenya. Am J Trop Med Hyg, 98(5), 1360-1366. doi:10.4269/ajtmh.17-0505

Delandre, O., Daffe, S. M., Gendrot, M., Diallo, M. N., Madamet, M., Kounta, M. B., . . . Pradines, B. (2020). Absence of association between polymorphisms in the pfcoronin and pfk13 genes and the presence of Plasmodium falciparum parasites after treatment with artemisinin derivatives in Senegal. International Journal of Antimicrobial Agents, 56(6). doi:10.1016/j.ijantimicag.2020.106190

Djaman, J. A., Olefongo, D., Ako, A. B., Roman, J., Ngane, V. F., Basco, L. K., & Tahar, R. (2017). Molecular Epidemiology of Malaria in Cameroon and Côte d'Ivoire. XXXI. Kelch 13 Propeller Sequences in Plasmodium falciparum Isolates before and after Implementation of Artemisinin-Based Combination Therapy. Am J Trop Med Hyg, 97(1), 222-224. doi:10.4269/ajtmh.16-0889

Dondorp, A. M., Nosten, F., Yi, P., Das, D., Phyo, A. P., Tarning, J., . . . White, N. J. (2009). Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med, 361(5), 455-467. doi:10.1056/NEJMoa0808859

Escobar, C., Pateira, S., Lobo, E., Lobo, L., Teodosio, R., Dias, F., . . . Nogueira, F. (2015). Polymorphisms in Plasmodium falciparum K13-propeller in Angola and Mozambique after the introduction of the ACTs. PLoS One, 10(3), e0119215. doi:10.1371/journal.pone.0119215

Gaye, A., Sy, M., Ndiaye, T., Siddle, K. J., Park, D. J., Deme, A. B., . . . Ndiaye, D. (2020). Amplicon deep sequencing of kelch13 in Plasmodium falciparum isolates from Senegal. Malar J, 19(1), 134. doi:10.1186/s12936-020-03193-w

Guerra, M., Neres, R., Salgueiro, P., Mendes, C., Ndong-Mabale, N., Berzosa, P., . . . Arez, A. P. (2017). Plasmodium falciparum genetic diversity in continental Equatorial Guinea before and after introduction of artemisininbased combination therapy. Antimicrobial Agents and Chemotherapy, 61(1). doi:10.1128/AAC.02556-15

Gupta, H., Galatas, B., Chidimatembue, A., Huijben, S., Cisteró, P., Matambisso, G., . . . Mayor, A. (2020). Effect of mass dihydroartemisinin–piperaquine administration in southern Mozambique on the carriage of molecular markers of antimalarial resistance. PLoS One, 15(10 October). doi:10.1371/journal.pone.0240174

Hemming-Schroeder, E., Umukoro, E., Lo, E., Fung, B., Tomás-Domingo, P., Zhou, G., . . . Yan, G. (2018). Impacts of Antimalarial Drugs on Plasmodium falciparum Drug Resistance Markers, Western Kenya, 2003-2015. Am J Trop Med Hyg, 98(3), 692-699. doi:10.4269/ajtmh.17-0763

Henrici, R. C., & Sutherland, C. J. (2018). Alternative pathway to reduced artemisinin susceptibility in Plasmodium falciparum. Proc Natl Acad Sci U S A, 115(50), 12556-12558. doi:10.1073/pnas.1818287115

Heuchert, A., Abduselam, N., Zeynudin, A., Eshetu, T., Loscher, T., Wieser, A., . . . Berens-Riha, N. (2015). Molecular markers of anti-malarial drug resistance in southwest Ethiopia over time: regional surveillance from 2006 to 2013. Malar J, 14, 208. doi:10.1186/s12936-015-0723-2

Hussien, M., Abdel Hamid, M. M., Elamin, E. A., Hassan, A. O., Elaagip, A. H., Salama, A. H. A., . . . Mohamed, A. O. (2020). Antimalarial drug resistance molecular makers of Plasmodium falciparum isolates from Sudan during 2015-2017. PLoS One, 15(8), e0235401. doi:10.1371/journal.pone.0235401

Igbasi, U., Oyibo, W., Omilabu, S., Quan, H., Chen, S. B., Shen, H. M., . . . Zhou, X. N. (2019). Kelch 13 propeller gene polymorphism among Plasmodium falciparum isolates in Lagos, Nigeria: Molecular Epidemiologic Study. Trop Med Int Health, 24(8), 1011-1017. doi:10.1111/tmi.13273

Ikeda, M., Kaneko, M., Tachibana, S. I., Balikagala, B., Sakurai-Yatsushiro, M., Yatsushiro, S., . . . Mita, T. (2018). Artemisinin-resistant plasmodium falciparum with high survival rates, uganda, 2014-2016. Emerg Infect Dis, 24(4), 718-726. doi:10.3201/eid2404.170141

Ishengoma, D. S., Mandara, C. I., Francis, F., Talundzic, E., Lucchi, N. W., Ngasala, B., . . . Udhayakumar, V. (2019). Efficacy and safety of artemether-lumefantrine for the treatment of uncomplicated malaria and prevalence of Pfk13 and Pfmdr1 polymorphisms after a decade of using artemisinin-based combination therapy in mainland Tanzania. Malaria Journal, 18(1). doi:10.1186/s12936-019-2730-1

Jambou, R., Legrand, E., Niang, M., Khim, N., Lim, P., Volney, B., . . . Mercereau-Puijalon, O. (2005). Resistance of Plasmodium falciparum field isolates to in-vitro artemether and point mutations of the SERCA-type PfATPase6. Lancet, 366(9501), 1960-1963. doi:10.1016/S0140-6736(05)67787-2

Kakolwa, M. A., Mahende, M. K., Ishengoma, D. S., Mandara, C. I., Ngasala, B., Kamugisha, E., . . . Kabanywanyi, A. M. (2018). Efficacy and safety of artemisinin-based combination therapy, and molecular markers for artemisinin and piperaquine resistance in Mainland Tanzania ACTRN12615000159550 ACTRN. Malaria Journal, 17(1). doi:10.1186/s12936-018-2524-x

Kayiba, N. K., Yobi, D. M., Tshibangu-Kabamba, E., Tuan, V. P., Yamaoka, Y., Devleesschauwer, B., . . . Speybroeck, N. (2021). Spatial and molecular mapping of Pfkelch13 gene polymorphism in Africa in the era of emerging Plasmodium falciparum resistance to artemisinin: a systematic review. Lancet Infect Dis, 21(4), e82-e92. doi:10.1016/s1473-3099(20)30493-x

Koukouikila-Koussounda, F., Jeyaraj, S., Nguetse, C. N., Nkonganyi, C. N., Kokou, K. C., Etoka-Beka, M. K., . . . Velavan, T. P. (2017). Molecular surveillance of Plasmodium falciparum drug resistance in the Republic of Congo: four and nine years after the introduction of artemisinin-based combination therapy. Malar J, 16(1), 155. doi:10.1186/s12936-017-1816-x

Kwansa-Bentum, B., Ayi, I., Suzuki, T., Otchere, J., Kumagai, T., Anyan, W. K., . . . Ohta, N. (2011). Plasmodium falciparum isolates from southern Ghana exhibit polymorphisms in the SERCA-type PfATPase6 though sensitive to artesunate in vitro. Malar J, 10, 187. doi:10.1186/1475-2875-10-187

Li, G. Q., Guo, X. B., Fu, L. C., Jian, H. X., & Wang, X. H. (1994). Clinical trials of artemisinin and its derivatives in the treatment of malaria in China. Trans R Soc Trop Med Hyg, 88 Suppl 1, S5-6. doi:10.1016/0035-9203(94)90460-x

Li, J., Chen, J., Xie, D., Eyi, U. M., Matesa, R. A., Ondo Obono, M. M., . . . Lin, M. (2016). Limited artemisinin resistance-associated polymorphisms in Plasmodium falciparum K13-propeller and PfATPase6 gene isolated from Bioko Island, Equatorial Guinea. International Journal for Parasitology: Drugs and Drug Resistance, 6(1), 54-59. doi:10.1016/j.ijpddr.2015.11.002

Lu, F., Culleton, R., Zhang, M., Ramaprasad, A., von Seidlein, L., Zhou, H., . . . Cao, J. (2017). Emergence of Indigenous Artemisinin-Resistant Plasmodium falciparum in Africa. N Engl J Med, 376(10), 991-993. doi:10.1056/NEJMc1612765

Madamet, M., Kounta, M. B., Wade, K. A., Lo, G., Diawara, S., Fall, M., . . . Pradines, B. (2017). Absence of association between polymorphisms in the K13 gene and the presence of Plasmodium falciparum parasites at day 3 after treatment with artemisinin derivatives in Senegal. International Journal of Antimicrobial Agents, 49(6), 754-756. doi:10.1016/j.ijantimicag.2017.01.032

Mayengue, P. I., Niama, R. F., Kouhounina Batsimba, D., Malonga-Massanga, A., Louzolo, I., Loukabou Bongolo, N. C., . . . Parra, H. J. (2018). No polymorphisms in K13-propeller gene associated with artemisinin resistance in Plasmodium falciparum isolated from Brazzaville, Republic of Congo. BMC Infect Dis, 18(1), 538. doi:10.1186/s12879-018-3453-6

Menard, S., Tchoufack, J. N., Maffo, C. N., Nsango, S. E., Iriart, X., Abate, L., . . . Berry, A. (2016). Insight into k13-propeller gene polymorphism and ex vivo DHA-response profiles from Cameroonian isolates. Malar J, 15(1), 572. doi:10.1186/s12936-016-1622-x

Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & Group, P. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med, 6(7), e1000097. doi:10.1371/journal.pmed.1000097

Noedl, H., Se, Y., Schaecher, K., Smith, B. L., Socheat, D., Fukuda, M. M., & Artemisinin Resistance in Cambodia 1 Study, C. (2008). Evidence of artemisinin-resistant malaria in western Cambodia. N Engl J Med, 359(24), 2619-2620. doi:10.1056/NEJMc0805011

Nzoumbou-Boko, R., Panté-Wockama, C. G., Ngoagoni, C., Petiot, N., Legrand, E., Vickos, U., . . . Ménard, D. (2020). Molecular assessment of kelch13 non-synonymous mutations in Plasmodium falciparum isolates from Central African Republic (2017-2019). Malar J, 19(1), 191. doi:10.1186/s12936-020-03264-y

Oboh, M. A., Ndiaye, D., Antony, H. A., Badiane, A. S., Singh, U. S., Ali, N. A., . . . Das, A. (2018). Status of Artemisinin Resistance in Malaria Parasite Plasmodium falciparum from Molecular Analyses of the Kelch13 Gene in Southwestern Nigeria. Biomed Res Int, 2018. doi:10.1155/2018/2305062

Ocan, M., Bwanga, F., Okeng, A., Katabazi, F., Kigozi, E., Kyobe, S., . . . Obua, C. (2016). Prevalence of K13-propeller gene polymorphisms among Plasmodium falciparum parasites isolated from adult symptomatic patients in northern Uganda. BMC Infect Dis, 16(1). doi:10.1186/s12879-016-1777-7

Okell, L. C., Drakeley, C. J., Ghani, A. C., Bousema, T., & Sutherland, C. J. (2008). Reduction of transmission from malaria patients by artemisinin combination therapies: a pooled analysis of six randomized trials. Malar J, 7, 125. doi:10.1186/1475-2875-7-125

Olshina, M. A., Angrisano, F., Marapana, D. S., Riglar, D. T., Bane, K., Wong, W., . . . Baum, J. (2015). Plasmodium falciparum coronin organizes arrays of parallel actin filaments potentially guiding directional motility in invasive malaria parasites. Malar J, 14, 280. doi:10.1186/s12936-015-0801-5

Ouattara, A., Kone, A., Adams, M., Fofana, B., Walling-Maiga, A., Gil, J. P., . . . Djimde, A. (2014). K13-propeller, MAL10 and MAL13 and polymorphisms in in vivo artemisinin susceptible plasmodium falciparum parasites from bougoula-hameau, Mali. American Journal of Tropical Medicine and Hygiene, 91(5), 97. 

Pacheco, M. A., Schneider, K. A., Cheng, Q., Munde, E. O., Ndege, C., Onyango, C., . . . Escalante, A. A. (2020). Changes in the frequencies of Plasmodium falciparum dhps and dhfr drug-resistant mutations in children from Western Kenya from 2005 to 2018: the rise of Pfdhps S436H. Malar J, 19(1), 378. doi:10.1186/s12936-020-03454-8

Sharma, A. I., Shin, S. H., Bopp, S., Volkman, S. K., Hartl, D. L., & Wirth, D. F. (2020). Genetic background and PfKelch13 affect artemisinin susceptibility of PfCoronin mutants in Plasmodium falciparum. PLoS Genet, 16(12), e1009266. doi:10.1371/journal.pgen.1009266

Straimer, J., Gnadig, N. F., Witkowski, B., Amaratunga, C., Duru, V., Ramadani, A. P., . . . Fidock, D. A. (2015). Drug resistance. K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates. Science, 347(6220), 428-431. doi:10.1126/science.1260867

Tacoli, C., Gai, P. P., Bayingana, C., Sifft, K., Geus, D., Ndoli, J., . . . Mockenhaupt, F. P. (2016). Artemisinin resistance-associated K13 polymorphisms of plasmodium falciparum in Southern Rwanda, 2010-2015. American Journal of Tropical Medicine and Hygiene, 95(5), 1090-1093. doi:10.4269/ajtmh.16-0483

Takala-Harrison, S., Jacob, C. G., Arze, C., Cummings, M. P., Silva, J. C., Dondorp, A. M., . . . Plowe, C. V. (2015). Independent emergence of artemisinin resistance mutations among Plasmodium falciparum in Southeast Asia. J Infect Dis, 211(5), 670-679. doi:10.1093/infdis/jiu491

Talundzic, E., Ndiaye, Y. D., Deme, A. B., Olsen, C., Patel, D. S., Biliya, S., . . . Ndiaye, D. (2017). Molecular Epidemiology of Plasmodium falciparum kelch13 Mutations in Senegal Determined by Using Targeted Amplicon Deep Sequencing. Antimicrob Agents Chemother, 61(3). doi:10.1128/aac.02116-16

Tornyigah, B., Coppée, R., Houze, P., Kusi, K. A., Adu, B., Quakyi, I., . . . Ndam, N. T. (2020). Effect of drug pressure on promoting the emergence of antimalarial-resistant parasites among pregnant women in Ghana. Antimicrobial Agents and Chemotherapy, 64(6). doi:10.1128/AAC.02029-19

Torrentino-Madamet, M., Collet, L., Lepère, J. F., Benoit, N., Amalvict, R., Ménard, D., & Pradines, B. (2015). K13-Propeller Polymorphisms in Plasmodium falciparum Isolates from Patients in Mayotte in 2013 and 2014. Antimicrob Agents Chemother, 59(12), 7878-7881. doi:10.1128/aac.01251-15

Torrentino-Madamet, M., Fall, B., Benoit, N., Camara, C., Amalvict, R., Fall, M., . . . Pradines, B. (2014). Limited polymorphisms in k13 gene in Plasmodium falciparum isolates from Dakar, Senegal in 2012-2013. Malar J, 13, 472. doi:10.1186/1475-2875-13-472

Uwimana, A., Legrand, E., Stokes, B. H., Ndikumana, J. M., Warsame, M., Umulisa, N., . . . Menard, D. (2020). Emergence and clonal expansion of in vitro artemisinin-resistant Plasmodium falciparum kelch13 R561H mutant parasites in Rwanda. Nat Med, 26(10), 1602-1608. doi:10.1038/s41591-020-1005-2

Velavan, T. P., Nderu, D., Agbenyega, T., Ntoumi, F., & Kremsner, P. G. (2019). An alternative dogma on reduced artemisinin susceptibility: A new shadow from east to west. Proc Natl Acad Sci U S A, 116(26), 12611-12612. doi:10.1073/pnas.1907142116

Wang, J., Huang, Y., Zhao, Y., Ye, R., Zhang, D., & Pan, W. (2018). Introduction of F446I mutation in the K13 propeller gene leads to increased ring survival rates in Plasmodium falciparum isolates. Malar J, 17(1), 248. doi:10.1186/s12936-018-2396-0

WHO. (2017). Global diffusion of eHealth: making universal health coverage achievable. Retrieved from Geneva, Switzerland: 

WHO. (2019). Artemisinin resistance and artemisinin-based combination therapy efficacy: status report. 2018. https://apps.who.int/iris/ handle/10665/274362

WWARN. (2019). Association of mutations in the Plasmodium falciparum Kelch13 gene (Pf3D7_1343700) with parasite clearance rates after artemisinin-based treatments-a WWARN individual patient data meta-analysis. BMC Med, 17(1), 1. doi:10.1186/s12916-018-1207-3

Xu, C., Wei, Q., Yin, K., Sun, H., Li, J., Xiao, T., . . . Huang, B. (2018). Surveillance of Antimalarial Resistance Pfcrt, Pfmdr1, and Pfkelch13 Polymorphisms in African Plasmodium falciparum imported to Shandong Province, China. Sci Rep, 8(1), 12951. doi:10.1038/s41598-018-31207-w

Yobi, D. M., Kayiba, N. K., Mvumbi, D. M., Boreux, R., Bontems, S., Kabututu, P. Z., . . . Hayette, M. P. (2020). The lack of K13-propeller mutations associated with artemisinin resistance in Plasmodium falciparum in Democratic Republic of Congo (DRC). PLoS One, 15(8 August 2020). doi:10.1371/journal.pone.0237791

Yobi, D. M., Kayiba, N. K., Mvumbi, D. M., Boreux, R., Kabututu, P. Z., Situakibanza, H. N. T., . . . Hayette, M. P. (2021). Assessment of Plasmodium falciparum anti-malarial drug resistance markers in pfk13-propeller, pfcrt and pfmdr1 genes in isolates from treatment failure patients in Democratic Republic of Congo, 2018–2019. Malaria Journal, 20(1). doi:10.1186/s12936-021-03636-y

Zhang, H. W., Li, S. J., Hu, T., Yu, Y. M., Yang, C. Y., Zhou, R. M., . . . Xu, B. L. (2017). Prolonged parasite clearance in a Chinese splenectomized patient with falciparum malaria imported from Nigeria. Infect Dis Poverty, 6(1). doi:10.1186/s40249-017-0259-5