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Abstract
Historical and future simulated temperature data from �ve climate models in the Coupled Model
Intercomparing Project Phase 6 (CMIP6) are used to understand how climate change might alter cold air
outbreaks (CAOs) in the future. Three different Shared Socioeconomic Pathways (SSPs), SSP 1 – 2.6,
SSP 2 – 4.5, and SSP 5 – 8.5 are examined to identify potential �uctuations in CAOs across the globe
between 2015 and 2054. Though CAOs may remain persistent or even increase in some regions through
2040, all �ve climate models show CAOs disappearing by 2054 based on current climate percentiles.
Climate models were able to accurately simulate the spatial distribution and trends of historical CAOs,
but there were large errors in the simulated interannual frequency of CAOs in the North Atlantic and North
Paci�c.  Fluctuations in complex processes, such as Atlantic Meridional Overturning Circulation, may be
contributing to each model’s inability to simulate historical CAOs in these regions.

Plain Language Summary
Cold air outbreaks (CAOs) are extreme events that can have large, negative impacts on society. Because
of these impacts it is important to understand how climate change might alter CAOs in the future. Three
future scenarios from �ve different climate models are examined to see where CAOs might change the
most between 2015 and 2054. While changes in CAOs may be small for some regions through 2040, all
the climate models show CAOs disappearing by 2054. Where the climate models did a good job
simulating historical CAOs, like in North America, we have con�dence that future projections are relatively
accurate. Where the models did poorly at simulating historical CAOs, like the North Atlantic and North
Paci�c, we have less con�dence in future projections.  More work needs to be done to understand the
complex processes that lead to these errors. 

Introduction
Cold Air Outbreaks (CAO) are extreme events that can negatively impact multiple facets of society.
Though infrequent, extreme weather events cause signi�cantly more damage than non-extreme events
(Bell et al., 2018; Schewe et al., 2019). CAOs have been shown to increase the risk of human mortality
(Smith & Sheridan, 2019), cause agricultural production losses (Lesk et al., 2016), and cause widespread
power outages from increased energy consumption (Y. Kim & Lee, 2019; Klinger et al., 2014). Because of
the large impacts on society, accurately projecting how extremes like CAOs will change under future
warming scenarios is a critical step in developing a more resilient society. 

Climate models, which are derived from substantiated physical principles of the earth system process, are
the best tool we have for predicting changes in CAOs (Flato, 2011; Raäisaänen, 2007; Randall et al.,
2007). Climate models use dynamical and statistical calculations to represent earth’s climate system and
propagate the current atmospheric state forward in time (Collins et al., 2013; Randall et al., 2007;
Richardson, 2007). The accuracy of future projections depends on the data used to initialize the climate
model, thus small inaccuracies are exacerbated through time, leading to increased error with longer range
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projections (Polkova et al., 2019). With no way to evaluate future projections from climate models, the
ability of a climate model to represent future climates must be assessed by comparing simulations of
historical climates with observations or reanalysis datasets (Edwards, 2011). While observations are
point based, atmospheric reanalysis datasets are a gridded historical dataset of global atmospheric
circulation that use weather models to reanalyze assimilated observations over much shorter timescales
than climate models (Dee et al., 2011). Because reanalysis datasets are gridded, they provide an easier
comparison with climate model output. They also allow comparisons in data sparse regions like the
Arctic and across oceans.  

The Coupled Model Intercomparison Project (CMIP) has become the foundation for numerous climate
assessments (IPCC, 2013). CMIP uses multiple climate models from modelling centers around the world
to better understand past climates and future changes (Eyring et al., 2016). Phase 6 of CMIP (CMIP6)
aims to make the multi-model output publicly available and more user-friendly by standardizing the
format. New to CMIP6 is the Scenario Model Intercomparison Project (ScenarioMIP), which integrates
inputs from both the climate science and integrated assessment modelling communities to create future
modeling scenarios (Eyring et al., 2016; O’Neill et al., 2016; Tebaldi et al., 2020). These new scenarios,
called Shared Socioeconomic Pathways (SSPs), combine pathways of future radiative forcing with
alternative pathways of socioeconomic development to characterize the range of uncertainty in climate
adaptation and mitigation efforts (O’Neill et al., 2014). Global energy systems, which are the leading
contributor to carbon emissions, are particularly vulnerable to climate changes, yet developments are
limited by political and social acceptance (Bauer et al., 2017). The addition of SSPs in CMIP6 is an
essential step in determining how carbon emissions may �uctuate with changes in global energy
systems (Davis et al., 2018; X. Liu et al., 2019).  

Though we cannot be certain if modeled changes in CAOs will be realized, we can get a good idea if
models are on the right track based on how models simulate historical climates (Jeuken et al., 1996; Han-
Li Liu et al., 2018). While many studies have examined projected changes in air temperature (Almazroui et
al., 2020; Friedrich et al., 2016; Jones et al., 2013; Kumar et al., 2013; Tokarska et al., 2020), only a few
studies have explicitly investigated changes in CAOs (Kolstad & Bracegirdle, 2008; Vavrus et al., 2006).
These studies showed that while CAOs have decreased across much of the globe in recent decades, there
was also an increase in some regions (J. L. Cohen et al., 2012; Smith & Sheridan, 2020). While this
increase in CAOs may continue over the next few decades for some regions (Kolstad & Bracegirdle, 2008;
Vavrus et al., 2006), most places will likely experience a large decrease in CAOs throughout the 21st

century (Ayarzagüena & Screen, 2016; Vavrus et al., 2006; Zahn & von Storch, 2010).  

This study uses climate model output from CMIP6 to better understand how the frequency of CAOs may
change across the globe between 2015 and 2054. Historical climate model simulations from 1979 –
2014 are examined to determine how well �ve different climate models reproduce the spatial and
temporal distribution of CAOs. Three different SSPs are examined to determine a range of potential
�uctuations in CAOs between 2015 and 2054. These �ndings have the potential to mitigate damages and
future energy system vulnerabilities by quantifying regional changes in CAOs.
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Data And Methods
The global CAO dataset from Smith (2020) and CAO regions created by Smith & Sheridan (2020) were
used to compare historical CMIP6 CAO simulations with actual CAOs. This CAO dataset was created
from daily mean T2m from the ERA5 reanalysis dataset from the European Center for Medium-Range
Weather Forecasts (ECMWF; from https://cds.climate.copernicus.eu/cdsapp#!/home; Copernicus Climate
Change Service) at a 1o spatial resolution from 1979 – 2014. CAOs were quanti�ed using a set of criteria
concerning intensity, duration, and spatial extent of the extreme cold airmass, where the daily mean T2m
was required to be below the 2.5th percentile, based on the 1981 – 2010 climate normal period, for at
least 5 consecutive days for a contiguous area of at least 1,000,000 km2 (Smith & Sheridan, 2020). The
use of a percentile threshold limits the impact of the skewness of the data on the spatial distribution of
CAOs. Future simulations of CAOs use the percentile thresholds from the 1981 – 2010 climate normal
period. CAO regions were used to simplify the analysis from thousands of grid points to 10 regions with
similar CAO characteristics and CAO trends (Smith & Sheridan, 2020). 

As CMIP6 is still in progress, output from all models is not yet available. Historical and projected daily
mean two-meter temperature (T2m) data were acquired from the same variant, r1i1p1f1, of �ve Earth
System Models: CESM2, CESM2-WACCM, MPI-ESM1-2-HR, MRI-ESM2-0, and CanESM5 (Danabasoglu et
al., 2020; Gutjahr et al. 2019; Swart et al., 2019; Yukimoto et al., 2019). Three different shared
socioeconomic pathways (SSPs), SSP1, SSP2, and SSP5 are integrated with three different forcing
pathways stabilizing at 2.6 W m−2, 4.5 W m−2, 8.5 W m−2 to create three scenarios of future climate and
societal change (O’Neill et al., 2014). From each of the �ve climate models, these integrated scenarios,
denoted as SSP1-2.6 (SSP126), SSP2-4.5 (SSP245), and SSP5-8.5 (SSP585), were used to explore a
range of potential changes in CAOs across the globe. Data from the CMIP6 archive is publicly available
from the Earth System Grid Federation (ESGF; https://esgf-node.llnl.gov/search/cmip6/). To maintain
consistency with the time period used in Smith & Sheridan (2020) and because CMIP6 historical output
ends in 2014, historical T2m was acquired for 1979 – 2014 while projected T2m was acquired for 2015 –
2054. These �ve models allow for an in-depth analysis of both historical climate simulations and future
projections of CAOs. The T2m for each climate model was regridded to a 1o x 1o resolution using a
bilinear interpolation to match the resolution of the ERA5 derived CAO dataset. Because bilinear
interpolation creates a quadratic sample by linearly interpolating the data in two different directions, it is
generally better at rescaling data than a linear interpolation (Wang et al., 2016).  

Trends in the annual number of CAO days, derived from historical T2m climate model output, were
calculated and compared with the observed trends. This is used to determine if each climate model is
able to accurately simulates spatial and temporal �uctuations in CAOs. As outlined by Smith & Sheridan
(2020), trends for the Southern Hemisphere (SH) were calculated for 36 winter seasons (January 1 –
December 31) while trends in the Northern Hemisphere (NH) were calculated for 35 winter seasons (July
1 – June 30). Due to the limited sample size (35 in NH and 36 in SH), a Theil-Sen slope estimation was
calculated from 1000 bootstrapped samples and statistical signi�cance determined from the con�dence

https://esgf-node.llnl.gov/search/cmip6/
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intervals produced from the bootstrapped samples. Moreover, a false detection rate was used to limit the
false signi�cance of the spatiotemporal relationships of the gridded data (Wilks, 2016).  

Because of inherent errors in climate model simulations, various statistical or dynamical techniques are
often used to reduce biases (Maraun, 2016). However, many of these methods can mask the uncertainty
in projections by altering simulations without providing a physical mechanism to explain why the
corrections reduce the bias (Ehret et al., 2012). Climate projections based on an ensemble of several
models increase the reliability and consistency of independent projections while maintaining
transparency of systematic model errors (Tebaldi et al., 2020; Yun et al., 2003). For this reason, the mean
of the �ve climate models is used as an ensemble for both historical simulations and each SSP to
provide the least biased estimate of future changes in CAOs. 

Results
3.1 Historical Simulations of CAOs

From 1979 – 2014, CAOs occurred most frequently across North America and Eurasia. Each of the �ve
climate models were able to reproduce the same general spatial distribution of CAOs as observed with
the ERA5, however, each model had a warm bias in the North Atlantic, with the CESM2, WACCM, and MPI
having the largest bias (Figure 1). This bias can likely be attributed to how each climate model handles
the Atlantic Meridional Overturning Circulation (AMOC; Gent, 2018) or air-sea interactions from
�uctuations in Arctic sea ice (Kolstad & Bracegirdle, 2008). Climate model simulations have been shown
to underestimate the weakening of the AMOC (Hu et al., 2013; Meehl et al., 2020), which favors more
CAOs in the North Atlantic. This may account for the simulation of too few CAOs early in the historical
period (R4; Figure A1). The CanESM5 has a cold bias across the western United States and like the MPI, a
warm bias across the oceans which is largest in the Southern Paci�c. Conversely, the MRI has a large
cold bias in the Northern Hemisphere (NH), particularly across the Arctic.  

Spatial and temporal similarity were calculated to determine which climate model most accurately
simulated the spatial distribution and annual frequency of CAOs for each region (Table 2). While each
model was able to simulate the general spatial distribution of CAOs, some regions were better modeled
than others (SS; Table 2). Moreover, there were large discrepancies between the time series of mean
regional annual CAO days simulated by the climate models and the mean regional annual CAO days from
the ERA5 (mean absolute error; MAE; Table2). The CESM2 and MPI had a large warm bias across multiple
regions and the largest total error in the SS of annual CAO days. The WACCM (full name: CESM2-
WACCM), an extension of CESM2 that models the entire atmosphere (Liu et al., 2010), had less overall
bias in SS than the CESM2, followed by theCanESM5 and the MRI. The MRI had the lowest MAE with
North America (R1 and R2) while the MPI and WACCM had the lowest MAE in Eurasia. In nearly every
region, the model ensemble reduces the errors in spatial similarity (SS) and temporal similarity (MAE).

Table 1: Climate model spatial (SS) and temporal (MAE) historical simulation accuracy (1979-2014).
Spatial similarity (SS) - difference between regional mean annual CAO days and the observed annual
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mean CAO days from the ERA5. The mean absolute error (MAE) is calculated for the annual number of
CAO days per region in the historical climate model simulations and the observed (ERA5). Red/blue SS
shows where the mean annual CAO days is less than/more than the ERA5. A red/yellow MAE shows
where the MAE is large/small. Color intensity of the MAE is relative to the region. Total error is the sum of
the absolute values of each column.

 CESM2 WACCM MPI MRI CanESM5 Ensemble

Region SS MAE SS MAE SS MAE SS MAE SS MAE SS MAE

R1 -1.0 3.7 0.2 4.1 -0.5 3.9 -0.2 3.2 0.2 3.9 -0.3 2.8

R2 -0.2 5.2 -0.2 6.0 0.0 6.3 0.2 4.6 0.0 4.7 0.0 4.2

R3 0.3 5.4 0.1 5.5 -1.2 5.0 0.2 5.3 -0.4 5.7 -0.2 4.3

R4 -1.7 4.3 -1.6 5.0 -1.9 5.0 -1.0 5.6 -1.0 4.1 -1.4 4.2

R5 -0.6 5.5 0.4 4.9 0.1 5.1 0.9 5.6 0.8 6.7 0.3 4.4

R6 0.2 5.4 0.0 4.7 -0.3 4.5 0.5 5.8 -0.1 5.5 0.1 3.9

R7 -0.8 4.6 -0.4 4.8 -0.9 4.0 -1.0 3.3 -0.5 3.2 -0.7 3.3

R8 0.0 3.6 0.6 3.6 0.6 3.4 -0.3 2.9 0.8 3.9 0.3 2.9

R9 -1.0 2.6 -0.2 2.6 0.3 2.5 0.6 3.3 -0.3 2.2 -0.1 2.2

R10 -0.1 1.5 0.2 2.0 -0.6 1.6 0.1 1.5 0.3 1.7 0.0 1.3

Total Error 5.7 42.0 4.0 43.3 6.5 41.2 4.9 41.2 4.4 41.8 3.5 33.6

While there were large discrepancies between the observed and simulated annual number of CAO days
(MAE), the spatial distribution of the simulated trends matched the observed trends relatively well (Figure
2). Each model shows the largest decreases in annual CAO days across Northern Hemispheric
landmasses. The MPI had the smallest historical trends because the simulation produced too few CAOs
early in the historical period and too many late in the period for most places. On the other hand, the MRI
has a large negative trend because it produced too many CAOs in the Arctic and western Eurasia early in
the historical period. Similar to the observed trends from the ERA5, both the MPI and CESM2 had a
neutral to positive trend in CAO days in Eurasia. However, the MPI more accurately replicated the location
of this positive trend than the CESM2.  Like the ERA5, very few simulated trends in the SH were
statistically signi�cant, though the MRI and CanESM5 most accurately simulated the positive trend in
CAOs across parts of the Southern Ocean. 

3.2 Future Projections of CAOs

Similar to (Vavrus et al., 2006), CAOs are expected to continue decreasing across most of the globe over
the next few decades. Compared to the historical period, the ensemble of each SSP shows the mean



Page 7/19

annual number of CAO days between 2015 and 2054 will decrease between 50% and 100% in most
locations (Figure 3). The largest decrease in annual CAO days is in North America and Europe where
CAOs have historically occurred most frequently. The CESM2, WACCM, and MRI show a large increase in
CAOs across the North Atlantic, consistent with previous studies that have shown a continued weakening
of the AMOC in climate model projections (Figure A2; Meehl et al., 2020; Zhang et al., 2019). The MPI and
MRI also maintain a relatively large number of mean annual CAO days across North America in all three
SSPs. While there are generally fewer annual CAO days with SSP245 and SSP585 than in SSP126,
SSP245 and SSP585 do not necessarily result in a larger systematic decrease in CAOs. In the MPI model,
more CAOs occur in the Southern Atlantic with SSP245 than SSP126. In the CESM2 model, more CAOs
occur in the North Atlantic (R4) from SSP245 than SSP126. SSP585 in the MPI, WACCM, and CESM2 also
favor more CAOs in Eurasia (R5 and R6) than in SSP245. Moreover, the WACCM SSP245 simulation
shows more CAOs in South America (R9) under than the SSP126 simulation. 

Climate models simulate the spatial distribution and trends of CAOs well but are unable to accurately
model interannual variability. Though a perfect match is not expected, the large discrepancies between
historically simulated and observed annual CAO days indicate the models may be simulating the correct
trends for the wrong reasons (Luca et al., 2020). These inaccurate representations of historical climate
variability in the models can exacerbate errors in future projections of CAOs (Maraun, 2016). As shown
with the historical simulations, an ensemble can be used to reduce the magnitude of individual model
error, thus an ensemble is also used for each SSP to better estimate changes in CAOs in each region
between 2015 and 2054 (Figure 4).  

When compared with the observed annual number of CAO days for each region, the ensemble matches
the annual variations and trends well (Figure 4). Only R4 and R5 have particularly poor historical
simulations. Climate models have been shown to underestimate variability in R4 (W. M. Kim et al., 2018),
which may explain why historical simulations simulated too few CAOs early in the historical period. The
complex interaction between and ampli�ed Arctic and surface temperatures in Siberia, which is poorly
represented in climate models, may account for much of the discrepancy between annual CAO days
simulated in R5 (Cohen et al., 2018; Labe et al., 2020). 

Future simulations show a consistent decrease in annual CAO days for most regions with several
exceptions. All three SSPs simulate a large increase in annual CAO days between 2030 and 2050 in R4.
Though historical simulations for R4 where poor, sea ice melt and a weakening of the AMOC supports the
notion that the North Atlantic may be a region of large variability in coming decades. In R1 and R2, future
simulations show a slight increase in annual CAO days through 2025 and remaining persistent through
2035 before decreasing to approximately zero annual CAO days by 2054. In R3 (Alaska), historical
simulations overestimate the annual number of CAO days early in the historical period and underestimate
the annual number of CAO days late in the period which results in an overly negative trend. This suggests
the models may be misrepresenting variability in the North Paci�c, thus the steady decline in annual CAO
days in R3, at least in the near-term, may be off-base. Like R3, historical simulations also underestimated
the number of CAO days in R6 (Europe) between 2005 and 2015. Since winter extremes in Europe are
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heavily reliant on North Atlantic circulation (D. M. Smith et al., 2020), a misrepresentation of variability in
the North Atlantic may have caused the discrepancies in observed and simulated CAO days in R6. In
South America, annual CAO days remain consistent through 2035 in all SSPs before declining to
approximately zero annual CAO days in all but SSP126. Across southern Africa, the already infrequent
CAO days are shown to steadily decline to approximately zero annual CAO days by 2035. 

Conclusion
CMIP6 climate models can replicate the historical spatial distribution of CAOs and capture the decreasing
frequency of CAOs for most of the globe. However, there are still large interannual discrepancies between
the historically simulated and observed number of CAO days. An ensemble of historical simulations from
different climate models was used to reduce errors in individual models. This ensemble approach was
applied to each SSP to provide the best estimate of changes in CAOs for 10 regions across the globe. 

Future simulations of CAOs show the decreasing frequency of CAOs in most regions will continue over
the coming decades and in most cases disappear by 2054, however, there are several instances where
CAOs increase. CAOs in the North Atlantic (R4) are shown to increase in frequency between 2035 and
2050 which may be a response to the continued weakening of the AMOC (Gent, 2018). The frequency of
CAOs in North America and Eurasia may also remain consistent over the next 10 to 20 years before
decreasing to approximately zero annual CAO days by 2054. In several regions, climate models
incorrectly continued a decreasing trend in CAOs from the historical simulation through the onset of the
future simulations. This was true in Europe (R6), Siberia (R5), Alaska (R3), and to a lesser extent the
eastern United States (R1) where the frequency of CAOs increased in the last decade. While this observed
increase is not likely to persist in a warming climate, the underestimated frequency of CAOs at the
beginning of the future simulations may have impacted the projected number of CAOs through 2054.
Errors in historical CAO simulations may indicate inaccuracies in future projections, thus projections of
CAOs in the North Atlantic and Alaska should be interpreted with caution. 

Outside of the North Atlantic, all three SSPs showed the largest changes in CAO frequency to be on land
as opposed to the oceans. This is to be expected as the higher heat capacity of water causes the oceans
to change more slowly than land (Rathore et al., 2020). Though SSP126 generally favors a higher
frequency of CAOs through 2054, SSP245 and SSP585 have a higher frequency of CAOs in the near-term
for several regions. This suggests interannual �uctuations in CAO frequency may be more dependent on
regional climate forcing than systematic warming. Nonetheless, the decrease in the frequency of CAOs is
evident in even the most conservative scenario (SSP126) for every region.  

Because this study uses the 1981 – 2010 climate normal period in the calculation of CAOs, adjusting this
period would certainly impact the frequency of CAOs in future simulations. Though infrastructure often
depends on absolute temperature thresholds, humans have been shown to be negatively impacted by
relative extremes (Sheridan et al., 2019). It would be worthwhile for future studies to explore projected
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changes in the frequency of CAOs with a dynamic 30-year climate normal period as opposed to a single
static 30-year period. 
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Tables
Table 2 is not available with this version.

Figures

Figure 1



Page 16/19

Observed annual cold air outbreak (CAO) days from 1979 – 2014 (ERA5) and the difference between the
simulated annual CAO days for the �ve CMIP6 climate models (CESM2, WACCM, MPI, MRI, and
CanESM5) and the ensemble. Regions are denoted with bounding boxes in the ERA5 �gure (Smith and
Sheridan, 2020).

Figure 2

Change in the mean annual number of CAO days. For the observed trends (ERA5), every 5th signi�cant
grid point at the α = 0.05 level is denoted with green dots. Size and spacing of Ensemble green dots are
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altered because of the number of dots.

Figure 3

Left - ensemble of simulated annual CAO days from 2015 – 2054 for three future scenarios: SSP126,
SSP245 and SSP585. Right - difference between each SSP and the mean annual number of CAO days
from 1979 – 2014.
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Figure 4

Smoothed time series of observed annual CAO days per region from the ERA5 (black), the simulated
historical time series for the climate model ensemble (green) from 1979 – 2014, and the climate model
ensemble projections of annual CAO days per region for each of the three SSP scenarios, SSP126 (blue),
SSP245 (orange), and SSP585 (red), from 2015 - 2054.
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