Clot, B., Gilge, S., Hajkova, L. (2020). The EUMETNET AutoPollen programme: establishing a prototype automatic pollen monitoring network in Europe. Aerobiologia, https://doi.org/10.1007/s10453-020-09666-4
Buters, J. T. M., Antunes, C., Galveias, A., Bergmann, K. C., Thibaudon, M., Galan, C., et al. (2018). Pollen and spore monitoring in the world. Clinical and Translational Allergy, 8, 9
Kawashima, S., Clot, B., Fujita, T., Takahashi, Y., & Nakamura, K. (2007). An algorithm and a device for counting airborne pollen automatically using laser optics. Atmospheric Environment, 41, 7987–7993.
Kawashima, S., Thibaudon, M., Matsuda, S., Fujita, T., Lemonis, N., Clot, B., et al. (2017). Automated pollen monitoring system using laser optics for observing seasonal changes in the concentration of total airborne pollen. Aerobiologia, 33, 351–362.
Crouzy B, Stella M, Konzelmann T, Calpini B, Clot B. All-optical automatic pollen identification: towards an operational system. Atmos Environ. 2016;140:202–12.
Mitsumoto, K., Yabusaki, K., Kobayashi, K., & Aoyagi, H. (2010). Development of a novel real-time pollen-sorting counter using species-specific pollen autofluorescence. Aerobiologia, 26, 99–111.
Oteros, J., Pusch, G., Weichenmeier, I., Heimann, U., Mo¨ller, R., Ro¨seler, S., et al. (2015). Automatic and online pollen monitoring. Allergy and Immunology, 167, 158–166.
Oteros, J., Weber, A., Kutzor, S., Rojo, J., Heinz, S., Herr, C., Gebauer, R., B. Schmidt-Webera, C., Buters, J. T. M. (2020). An operational robotic pollen monitoring network based on automatic image recognition. Environmental Research, 91, 110031, https://doi.org/10.1016/jenves- 2020, 110031
Sˇauliene, I., Sˇukiene, L., Daunys, G., Valiulis, G., Vaitkevicˇius, L., Matavulj, P., et al. (2018). Automatic pollen recognition with the Rapid-E particle counter: The first-level procedure, experience and next steps. Atmos: Atmospheric Measurement Techniques. https://doi.org/10.5194/amt2018-432
Takahashi, Y., Suzuki, Y., Ohta, N., Kawashima, S., Mogami, K., Yamashita. Y., Kusada. A., Ozu. S. & Kakehata, S. (2019). Multi-point analysis of airborne C. japonica (Cryptomeria japonica D. Don) pollen by Pollen Robo and the relationship between pollen count and the severity of symptoms. Aerobiologia. 35, 635–646.
Takahashi, Y., Kawashima, S., Suzuki, Y., Ohta, N., & Kakehata, S. (2018). Enrichment of airborne C. japonica (Cryptomeria japonica) pollen in mountain ranges when passing through a front accompanying temperate low pressure. Aerobiologia, 34, 105–110.
Takahashi, Y., Aoyama, M., Abe, E., Aita, T., Kawashima, S., Ohta, N., et al. (2008). Development of electron spin resonance radical immunoassay for measurement of airborne orchard grass (Dactylis glomerata) pollen antigens. Aerobiologia, 24, 53–59.
Takahashi, Y., Aoyama, M., Yoshitake, M., Abe, E., Ohta, N., & Sakaguchi, M. (2007). Relationship between airborne Cry j 1 and the onset time of the symptoms of Japanese cedar pollinosis patients. Allergology International, 56, 277–283.
Takahashi, Y., Kawashima, S., Fujita, T., Itoh, C., Togashi, R., & Takeda, H. (2001). Comparison between real-time pollen monitor KH-3000 and Burkard sampler. Arerugi [Japanese Journal Allergology], 50, 1136–1142.
Takahashi, Y., Katagiri, S., Tohkairin, K., & Hikichi, I. (1989). Hourly variation in the dispersion of C. japonica (Cryptomeria japonica) pollen in the Yamagata Basin and the effect of cold and warm fronts on the pollen counts. Arerugi [Japanese Journal Allergology], 38, 407–412.