[1] X. Lv, Z. Li, S. Chen, M. Xie, J. Huang, X. Peng, R. Yang, H. Wang, Y. Xu, C. Feng, Structural and functional evaluation of oxygenating keratin/silk fibroin scaffold and initial assessment of their potential for urethral tissue engineering. Biomaterials. 2016; 84: 99-110.
[2] N. Lumen, W. Oosterlinck, P. Hoebeke, Urethral reconstruction using buccal mucosa or penile skin grafts: systematic review and meta-analysis. Urologia internationalis. 2012; 89: 387-94.
[3] H. Orabi, T. AbouShwareb, Y. Zhang, J.J. Yoo, A. Atala, Cell-seeded tubularized scaffolds for reconstruction of long urethral defects: a preclinical study. European urology. 2013; 63: 531-8.
[4] S. Bhargava, J.M. Patterson, R.D. Inman, S. MacNeil, C.R. Chapple, Tissue-engineered buccal mucosa urethroplasty-clinical outcomes. European urology. 2008; 53: 1263-9.
[5] J.R. Choi, K.W. Yong, W.K.Z. Wan Safwani, Effect of hypoxia on human adipose-derived mesenchymal stem cells and its potential clinical applications. Cellular and molecular life sciences : CMLS. 2017; 74: 2587-2600.
[6] T.H. Qazi, D.J. Mooney, G.N. Duda, S. Geissler, Biomaterials that promote cell-cell interactions enhance the paracrine function of MSCs. Biomaterials. 2017;140: 103-14.
[7] P.R. Baraniak, T.C. McDevitt, Stem cell paracrine actions and tissue regeneration. Regenerative medicine. 2010; 5: 121-43.
[8] A.I. Caplan, D. Correa, The MSC: an injury drugstore. Cell stem cell. 2011; 9: 11-5.
[9] J. Beegle, K. Lakatos, S. Kalomoiris, H. Stewart, R.R. Isseroff, J.A. Nolta, F.A. Fierro, Hypoxic preconditioning of mesenchymal stromal cells induces metabolic changes, enhances survival, and promotes cell retention in vivo. Stem cells (Dayton, Ohio). 2015; 33: 1818-28.
[10] X. Hu, Y. Xu, Z. Zhong, Y. Wu, J. Zhao, Y. Wang, H. Cheng, M. Kong, F. Zhang, Q. Chen, J. Sun, Q. Li, J. Jin, Q. Li, L. Chen, C. Wang, H. Zhan, Y. Fan, Q. Yang, L. Yu, R. Wu, J. Liang, J. Zhu, Y. Wang, Y. Jin, Y. Lin, F. Yang, L. Jia, W. Zhu, J. Chen, H. Yu, J. Zhang, J. Wang, A Large-Scale Investigation of Hypoxia-Preconditioned Allogeneic Mesenchymal Stem Cells for Myocardial Repair in Nonhuman Primates: Paracrine Activity Without Remuscularization. Circulation research. 2016; 118: 970-83.
[11] S. Kang, S.M. Kim, J.H. Sung, Cellular and molecular stimulation of adipose-derived stem cells under hypoxia. Cell biology international. 2014; 38: 553-62.
[12] E. Przybyt, G. Krenning, M.G. Brinker, M.C. Harmsen, Adipose stromal cells primed with hypoxia and inflammation enhance cardiomyocyte proliferation rate in vitro through STAT3 and Erk1/2. Journal of translational medicine. 2013; 11: 39.
[13] M.L. Skiles, S. Sahai, L. Rucker, J.O. Blanchette, Use of culture geometry to control hypoxia-induced vascular endothelial growth factor secretion from adipose-derived stem cells: optimizing a cell-based approach to drive vascular growth. Tissue engineering Part A. 2013; 19: 2330-8.
[14] H. Zhu, A. Sun, Y. Zou, J. Ge, Inducible metabolic adaptation promotes mesenchymal stem cell therapy for ischemia: a hypoxia-induced and glycogen-based energy prestorage strategy. Arteriosclerosis, thrombosis, and vascular biology. 2014; 34: 870-6.
[15] L.C. Yeh, S.P. Chen, F.H. Liao, T.H. Wu, Y.T. Huang, S.Y. Lin, The Bioactive Core and Corona Synergism of Quantized Gold Enables Slowed Inflammation and Increased Tissue Regeneration in Wound Hypoxia. International journal of molecular sciences. 2020: 21: 1699.
[16] S. Rey, W. Luo, L.A. Shimoda, G.L. Semenza, Metabolic reprogramming by HIF-1 promotes the survival of bone marrow-derived angiogenic cells in ischemic tissue. Blood. 2011; 117: 4988-98.
[17] S.T. Hsiao, Z. Lokmic, H. Peshavariya, K.M. Abberton, G.J. Dusting, S.Y. Lim, R.J. Dilley, Hypoxic conditioning enhances the angiogenic paracrine activity of human adipose-derived stem cells. Stem cells and development. 2013; 22: 1614-23.
[18] Y. Han, J. Ren, Y. Bai, X. Pei, Y. Han, Exosomes from hypoxia-treated human adipose-derived mesenchymal stem cells enhance angiogenesis through VEGF/VEGF-R. The international journal of biochemistry & cell biology. 2019; 109: 59-68.
[19] Y. Zhang, Z. Hao, P. Wang, Y. Xia, J. Wu, D. Xia, S. Fang, S. Xu, Exosomes from human umbilical cord mesenchymal stem cells enhance fracture healing through HIF-1α-mediated promotion of angiogenesis in a rat model of stabilized fracture. Cell proliferation. 2019; 52: e12570.
[20] K. De Bock, M. Georgiadou, P. Carmeliet, Role of endothelial cell metabolism in vessel sprouting. Cell metabolism. 2013; 18: 634-47.
[21] Y. Li, R. Sun, J. Zou, Y. Ying, Z. Luo, Dual Roles of the AMP-Activated Protein Kinase Pathway in Angiogenesis. Cells. 2019; 8: 752.
[22] K. De Bock, M. Georgiadou, S. Schoors, A. Kuchnio, B.W. Wong, A.R. Cantelmo, A. Quaegebeur, B. Ghesquiere, S. Cauwenberghs, G. Eelen, L.K. Phng, I. Betz, B. Tembuyser, K. Brepoels, J. Welti, I. Geudens, I. Segura, B. Cruys, F. Bifari, I. Decimo, R. Blanco, S. Wyns, J. Vangindertael, S. Rocha, R.T. Collins, S. Munck, D. Daelemans, H. Imamura, R. Devlieger, M. Rider, P.P. Van Veldhoven, F. Schuit, R. Bartrons, J. Hofkens, P. Fraisl, S. Telang, R.J. Deberardinis, L. Schoonjans, S. Vinckier, J. Chesney, H. Gerhardt, M. Dewerchin, P. Carmeliet, Role of PFKFB3-driven glycolysis in vessel sprouting. Cell. 2013; 154: 651-63.
[23] Y. An, W.J. Liu, P. Xue, Y. Ma, L.Q. Zhang, B. Zhu, M. Qi, L.Y. Li, Y.J. Zhang, Q.T. Wang, Y. Jin, Autophagy promotes MSC-mediated vascularization in cutaneous wound healing via regulation of VEGF secretion. Cell death & disease. 2018: 9: 58.
[24] X. Wan, D. Zheng, H. Yao, S. Fu, Z. Wei, Z. Wang, M. Xie, An extracellular matrix-mimicking, bilayered, heterogeneous, porous, nanofibrous scaffold for anterior urethroplasty in a rabbit model. Biomedical materials (Bristol, England). 2020; Jun 24.
[25] W. Wang, W. Nie, X. Zhou, W. Feng, L. Chen, Q. Zhang, Z. You, Q. Shi, C. Peng, C. He, Fabrication of heterogeneous porous bilayered nanofibrous vascular grafts by two-step phase separation technique. Acta biomaterialia. 2018; 79:168-81.
[26] W. Wang, W. Nie, D. Liu, H. Du, X. Zhou, L. Chen, H. Wang, X. Mo, L. Li, C. He, Macroporous nanofibrous vascular scaffold with improved biodegradability and smooth muscle cells infiltration prepared by dual phase separation technique. International journal of nanomedicine. 2018; 13: 7003-18.
[27] X. Chen, L. Yan, Z. Guo, Z. Chen, Y. Chen, M. Li, C. Huang, X. Zhang, L. Chen, Adipose-derived mesenchymal stem cells promote the survival of fat grafts via crosstalk between the Nrf2 and TLR4 pathways. Cell death & disease. 2016; 7: e2369.
[28] G.L. Semenza, HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. The Journal of clinical investigation. 2013; 123: 3664-71.
[29] D. Eberli, L. Freitas Filho, A. Atala, J.J. Yoo, Composite scaffolds for the engineering of hollow organs and tissues. Methods (San Diego, Calif.). 2009; 47: 109-15.
[30] M. Horst, S. Madduri, V. Milleret, T. Sulser, R. Gobet, D. Eberli, A bilayered hybrid microfibrous PLGA--acellular matrix scaffold for hollow organ tissue engineering. Biomaterials. 2013; 34: 1537-45.
[31] K. Kang, J.B. Chuai, B.D. Xie, J.Z. Li, H. Qu, H. Wu, S.H. Fang, J.J. Cui, L.L. Xiu, J.C. Han, T.H. Cao, X.P. Leng, H. Tian, R.K. Li, S.L. Jiang, Mesenchymal Stromal Cells from Patients with Cyanotic Congenital Heart Disease are Optimal Candidate for Cardiac Tissue Engineering. Biomaterials. 2020; 230: 119574.
[32] W. Zhang, L. Liu, Y. Huo, Y. Yang, Y. Wang, Hypoxia-pretreated human MSCs attenuate acute kidney injury through enhanced angiogenic and antioxidative capacities. BioMed research international. 2014; 2014: 462472.
[33] M.G. Valorani, E. Montelatici, A. Germani, A. Biddle, D. D'Alessandro, R. Strollo, M.P. Patrizi, L. Lazzari, E. Nye, W.R. Otto, P. Pozzilli, M.R. Alison, Pre-culturing human adipose tissue mesenchymal stem cells under hypoxia increases their adipogenic and osteogenic differentiation potentials. Cell proliferation. 2012; 45: 225-38.
[34] S.L. Stubbs, S.T. Hsiao, H.M. Peshavariya, S.Y. Lim, G.J. Dusting, R.J. Dilley, Hypoxic preconditioning enhances survival of human adipose-derived stem cells and conditions endothelial cells in vitro. Stem cells and development. 2012; 21: 1887-96.
[35] X. Xia, P.W.Y. Chiu, P.K. Lam, W.C. Chin, E.K.W. Ng, J.Y.W. Lau, Secretome from hypoxia-conditioned adipose-derived mesenchymal stem cells promotes the healing of gastric mucosal injury in a rodent model. Biochimica et biophysica acta Molecular basis of disease. 2018; 1864: 178-88.
[36] C.K. Domigan, C.M. Warren, V. Antanesian, K. Happel, S. Ziyad, S. Lee, A. Krall, L. Duan, A.X. Torres-Collado, L.W. Castellani, D. Elashoff, H.R. Christofk, A.M. van der Bliek, M. Potente, M.L. Iruela-Arispe, Autocrine VEGF maintains endothelial survival through regulation of metabolism and autophagy. Journal of cell science. 2015; 128: 2236-48.
[37] N.C. Denko, Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nature reviews Cancer. 2008; 8: 705-13.
[38] M. Simons, E. Gordon, L. Claesson-Welsh, Mechanisms and regulation of endothelial VEGF receptor signalling. Nature reviews Molecular cell biology. 2016; 17: 611-25.
[39] M.G. Vander Heiden, L.C. Cantley, C.B. Thompson, Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science (New York, N.Y.). 2009; 324: 1029-33.
[40] P. Buchwald, A local glucose-and oxygen concentration-based insulin secretion model for pancreatic islets, Theoretical biology & medical modelling 2011; 8: 20.
[41] R.A. Gatenby, R.J. Gillies, Why do cancers have high aerobic glycolysis?. Nature reviews Cancer. 2004; 4: 891-9.
[42] H. Wessells, K.W. Angermeier, S. Elliott, C.M. Gonzalez, R. Kodama, A.C. Peterson, J. Reston, K. Rourke, J.T. Stoffel, A.J. Vanni, B.B. Voelzke, L. Zhao, R.A. Santucci, Male Urethral Stricture: American Urological Association Guideline. The Journal of urology. 2017; 197: 182-90.
[43] G. Ram-Liebig, J. Bednarz, B. Stuerzebecher, D. Fahlenkamp, G. Barbagli, G. Romano, U. Balsmeyer, M.E. Spiegeler, S. Liebig, H. Knispel, Regulatory challenges for autologous tissue engineered products on their way from bench to bedside in Europe. Advanced drug delivery reviews. 2015; 82-83: 181-91.
[44] Y. Liu, W. Ma, B. Liu, Y. Wang, J. Chu, G. Xiong, L. Shen, C. Long, T. Lin, D. He, D. Butnaru, L. Alexey, Y. Zhang, D. Zhang, G. Wei, Urethral reconstruction with autologous urine-derived stem cells seeded in three-dimensional porous small intestinal submucosa in a rabbit model. Stem cell research & therapy. 2017; 8: 63.
[45] C.L. Li, W.B. Liao, S.X. Yang, C. Song, Y.W. Li, Y.H. Xiong, L. Chen, Urethral reconstruction using bone marrow mesenchymal stem cell- and smooth muscle cell-seeded bladder acellular matrix. Transplantation proceedings. 2013; 45: 3402-7.
[46] R.E. De Filippo, B.S. Kornitzer, J.J. Yoo, A. Atala, Penile urethra replacement with autologous cell-seeded tubularized collagen matrices. Journal of tissue engineering and regenerative medicine. 2015; 9: 257-64.
[47] K. Pinnagoda, H.M. Larsson, G. Vythilingam, E. Vardar, E.M. Engelhardt, R.C. Thambidorai, J.A. Hubbell, P. Frey, Engineered acellular collagen scaffold for endogenous cell guidance, a novel approach in urethral regeneration. Acta biomaterialia. 2016; 43: 208-17.
[48] Y. Lai, H. Cao, X. Wang, S. Chen, M. Zhang, N. Wang, Z. Yao, Y. Dai, X. Xie, P. Zhang, X. Yao, L. Qin, Porous composite scaffold incorporating osteogenic phytomolecule icariin for promoting skeletal regeneration in challenging osteonecrotic bone in rabbits. Biomaterials. 2018; 153: 1-13.
[49] V.P. Ribeiro, A. da Silva Morais, F.R. Maia, R.F. Canadas, J.B. Costa, A.L. Oliveira, J.M. Oliveira, R.L. Reis, Combinatory approach for developing silk fibroin scaffolds for cartilage regeneration. Acta biomaterialia. 2018; 72: 167-81.