1. Association AD (2004) Gestational Diabetes Mellitus. Diabetes Care 27(suppl 1):s88–s90. https://doi.org/10.2337/diacare.27.2007.S88
2. Landon MB, Carpenter MW, Wapner RJ, et al (2009) A Multicenter, Randomized Trial of Treatment for Mild Gestational Diabetes. The New England Journal of Medicine 10
3. Dabelea D, Hanson RL, Lindsay RS, et al (2000) Intrauterine exposure to diabetes conveys risks for type 2 diabetes and obesity: a study of discordant sibships. Diabetes 49(12):2208–2211. https://doi.org/10.2337/diabetes.49.12.2208
4. Poirier C, Desgagné V, Guérin R, Bouchard L (2017) MicroRNAs in Pregnancy and Gestational Diabetes Mellitus: Emerging Role in Maternal Metabolic Regulation. Curr Diab Rep 17(5):35. https://doi.org/10.1007/s11892-017-0856-5
5. Guarino E, Delli Poggi C, Grieco GE, et al (2018) Circulating MicroRNAs as Biomarkers of Gestational Diabetes Mellitus: Updates and Perspectives. International Journal of Endocrinology 2018:1–11. https://doi.org/10.1155/2018/6380463
6. Liu L, Zhang X, Rong C, et al (2014) Distinct DNA Methylomes of Human Placentas Between Pre-Eclampsia and Gestational Diabetes Mellitus. Cell Physiol Biochem 34(6):1877–1889. https://doi.org/10.1159/000366386
7. Özcan S (2014) Minireview: MicroRNA Function in Pancreatic β Cells. Molecular Endocrinology 28(12):1922–1933. https://doi.org/10.1210/me.2014-1306
8. Needhamsen M, White RB, Giles KM, Dunlop SA, Thomas MG (2014) Regulation of Human PAX6 Expression by miR-7. Evol Bioinform Online 10:EBO.S13739. https://doi.org/10.4137/EBO.S13739
9. Meza-Sosa KF, Pérez-García EI, Camacho-Concha N, López-Gutiérrez O, Pedraza-Alva G, Pérez-Martínez L (2014) MiR-7 Promotes Epithelial Cell Transformation by Targeting the Tumor Suppressor KLF4. PLoS ONE 9(9):e103987. https://doi.org/10.1371/journal.pone.0103987
10. Davalos A, Goedeke L, Smibert P, et al (2011) miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proceedings of the National Academy of Sciences 108(22):9232–9237. https://doi.org/10.1073/pnas.1102281108
11. Feng Y, Qu X, Chen Y, et al (2020) MicroRNA-33a-5p sponges to inhibit pancreatic β-cell function in gestational diabetes mellitus LncRNA DANCR. Reprod Biol Endocrinol 18(1):61. https://doi.org/10.1186/s12958-020-00618-8
12. Wang T, Zhu H, Yang S, Fei X (2019) Let‑7a‑5p may participate in the pathogenesis of diabetic nephropathy through targeting HMGA2. Mol Med Report. https://doi.org/10.3892/mmr.2019.10057
13. Xu H, Guo S, Li W, Yu P (2015) The circular RNA Cdr1as, via miR-7 and its targets, regulates insulin transcription and secretion in islet cells. Sci Rep 5(1):12453. https://doi.org/10.1038/srep12453
14. Hu D, Wang Y, Zhang H, Kong D (2018) Identification of miR-9 as a negative factor of insulin secretion from beta cells. J Physiol Biochem 74(2):291–299. https://doi.org/10.1007/s13105-018-0615-3
15. Bartel DP (2009) MicroRNAs: Target Recognition and Regulatory Functions. Cell 136(2):215–233. https://doi.org/10.1016/j.cell.2009.01.002
16. Wong N, Wang X (2015) miRDB: an online resource for microRNA target prediction and functional annotations. Nucleic Acids Research 43(D1):D146–D152. https://doi.org/10.1093/nar/gku1104
17. Szklarczyk D, Gable AL, Lyon D, et al (2019) STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research 47(D1):D607–D613. https://doi.org/10.1093/nar/gky1131
18. Kohl M, Wiese S, Warscheid B (2011) Cytoscape: Software for Visualization and Analysis of Biological Networks. In: Hamacher M, Eisenacher M, Stephan C (eds) Data Mining in Proteomics. Humana Press, Totowa, NJ, pp 291–303
19. Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57. https://doi.org/10.1038/nprot.2008.211
20. Wang S-S, Li Y-Q, Liang Y-Z, et al (2017) Expression of miR-18a and miR-34c in circulating monocytes associated with vulnerability to type 2 diabetes mellitus and insulin resistance. J Cell Mol Med 21(12):3372–3380. https://doi.org/10.1111/jcmm.13240
21. Wan S, Wang J, Wang J, et al (2017) Increased serum miR-7 is a promising biomarker for type 2 diabetes mellitus and its microvascular complications. Diabetes Research and Clinical Practice 130:171–179. https://doi.org/10.1016/j.diabres.2017.06.005
22. Yang Z, Chen H, Si H, et al (2014) Serum miR-23a, a potential biomarker for diagnosis of pre-diabetes and type 2 diabetes. Acta Diabetol 51(5):823–831. https://doi.org/10.1007/s00592-014-0617-8
23. Ahmed K, LaPierre MP, Gasser E, et al (2017) Loss of microRNA-7a2 induces hypogonadotropic hypogonadism and infertility. Journal of Clinical Investigation 127(3):1061–1074. https://doi.org/10.1172/JCI90031
24. Peng C, Wang Y-L (2018) Editorial: MicroRNAs as New Players in Endocrinology. Front Endocrinol 9:459. https://doi.org/10.3389/fendo.2018.00459
25. Latreille M, Hausser J, Stützer I, et al (2014) MicroRNA-7a regulates pancreatic β cell function. J Clin Invest 124(6):2722–2735. https://doi.org/10.1172/JCI73066
26. Harreiter J, Dovjak G, Kautzky-Willer A (2014) Gestational Diabetes Mellitus and Cardiovascular Risk after Pregnancy. Womens Health (Lond Engl) 10(1):91–108. https://doi.org/10.2217/WHE.13.69
27. Fraser A, Lawlor DA (2014) Long-Term Health Outcomes in Offspring Born to Women with Diabetes in Pregnancy. Curr Diab Rep 14(5):489. https://doi.org/10.1007/s11892-014-0489-x
28. Ludwig N, Leidinger P, Becker K, et al (2016) Distribution of miRNA expression across human tissues. Nucleic Acids Res 44(8):3865–3877. https://doi.org/10.1093/nar/gkw116
29. Thomou T, Mori MA, Dreyfuss JM, et al (2017) Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature 542(7642):450–455. https://doi.org/10.1038/nature21365
30. Sebastiani G, Guarino E, Grieco GE, et al (2017) Circulating microRNA (miRNA) Expression Profiling in Plasma of Patients with Gestational Diabetes Mellitus Reveals Upregulation of miRNA miR-330-3p. Front Endocrinol 8:345. https://doi.org/10.3389/fendo.2017.00345
31. Zhu Y, Tian F, Li H, Zhou Y, Lu J, Ge Q (2015) Profiling maternal plasma microRNA expression in early pregnancy to predict gestational diabetes mellitus. International Journal of Gynecology & Obstetrics 130(1):49–53. https://doi.org/10.1016/j.ijgo.2015.01.010
32. Shi Z, Zhao C, Guo X, et al (2014) Differential Expression of MicroRNAs in Omental Adipose Tissue From Gestational Diabetes Mellitus Subjects Reveals miR-222 as a Regulator of ERα Expression in Estrogen-Induced Insulin Resistance. Endocrinology 155(5):1982–1990. https://doi.org/10.1210/en.2013-2046
33. Tryggestad JB, Vishwanath A, Jiang S, et al (2016) Influence of gestational diabetes mellitus on human umbilical vein endothelial cell miRNA. Clinical Science 130(21):1955–1967. https://doi.org/10.1042/CS20160305
34. Ding R, Guo F, Zhang Y, et al (2018) Integrated Transcriptome Sequencing Analysis Reveals Role of miR-138-5p/ TBL1X in Placenta from Gestational Diabetes Mellitus. Cell Physiol Biochem 51(2):630–646. https://doi.org/10.1159/000495319
35. Wang Y, Liu J, Liu C, Naji A, Stoffers DA (2013) MicroRNA-7 Regulates the mTOR Pathway and Proliferation in Adult Pancreatic -Cells. Diabetes 62(3):887–895. https://doi.org/10.2337/db12-0451
36. Sorokin AV, Chen J (2013) MEMO1, a new IRS1-interacting protein, induces epithelial–mesenchymal transition in mammary epithelial cells. Oncogene 32(26):3130–3138. https://doi.org/10.1038/onc.2012.327
37. Besse-Patin A, Jeromson S, Levesque-Damphousse P, Secco B, Laplante M, Estall JL (2019) PGC1A regulates the IRS1:IRS2 ratio during fasting to influence hepatic metabolism downstream of insulin. Proc Natl Acad Sci USA 116(10):4285–4290. https://doi.org/10.1073/pnas.1815150116
38. Germann UA, Furey BF, Markland W, et al (2017) Targeting the MAPK Signaling Pathway in Cancer: Promising Preclinical Activity with the Novel Selective ERK1/2 Inhibitor BVD-523 (Ulixertinib). Mol Cancer Ther 16(11):2351–2363. https://doi.org/10.1158/1535-7163.MCT-17-0456
39. Bost F, Aouadi M, Caron L, Binétruy B (2005) The role of MAPKs in adipocyte differentiation and obesity. Biochimie 87(1):51–56. https://doi.org/10.1016/j.biochi.2004.10.018
40. Zhang W, Thompson BJ, Hietakangas V, Cohen SM (2011) MAPK/ERK Signaling Regulates Insulin Sensitivity to Control Glucose Metabolism in Drosophila. PLoS Genet 7(12):e1002429. https://doi.org/10.1371/journal.pgen.1002429
41. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420(6917):860–867. https://doi.org/10.1038/nature01322
42. Duncan BB, Schmidt MI, Pankow JS, et al (2003) Low-Grade Systemic Inflammation and the Development of Type 2 Diabetes: The Atherosclerosis Risk in Communities Study. Diabetes 52(7):1799–1805. https://doi.org/10.2337/diabetes.52.7.1799
43. Chen X, Yang F, Zhang T, et al (2019) MiR-9 promotes tumorigenesis and angiogenesis and is activated by MYC and OCT4 in human glioma. J Exp Clin Cancer Res 38(1):99. https://doi.org/10.1186/s13046-019-1078-2
44. Mai S, Xiao R, Shi L, et al (2019) MicroRNA-18a promotes cancer progression through SMG1 suppression and mTOR pathway activation in nasopharyngeal carcinoma. Cell Death Dis 10(11):819. https://doi.org/10.1038/s41419-019-2060-9
45. Deng YH, Deng ZH, Hao H, et al (2018) MicroRNA-23a promotes colorectal cancer cell survival by targeting PDK4. Experimental Cell Research 373(1–2):171–179. https://doi.org/10.1016/j.yexcr.2018.10.010
46. Chirshev E, Oberg KC, Ioffe YJ, Unternaehrer JJ (2019) Let-7 as biomarker, prognostic indicator, and therapy for precision medicine in cancer. Clin Transl Med 8. https://doi.org/10.1186/s40169-019-0240-y
47. Chen L, Deng H, Cui H, et al (2018) Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 9(6):7204–7218. https://doi.org/10.18632/oncotarget.23208
48. Pantham P, Aye ILMH, Powell TL (2015) Inflammation in maternal obesity and gestational diabetes mellitus. Placenta 36(7):709–715. https://doi.org/10.1016/j.placenta.2015.04.006
49. Correa-Medina M, Bravo-Egana V, Rosero S, et al (2009) MicroRNA miR-7 is preferentially expressed in endocrine cells of the developing and adult human pancreas. Gene Expression Patterns 9(4):193–199. https://doi.org/10.1016/j.gep.2008.12.003
50. Saylor PJ, Keating NL, Freedland SJ, Smith MR (2011) Gonadotropin releasing hormone (GnRH) agonists and the risks of diabetes and cardiovascular disease in men with prostate cancer. Drugs 71(3):255–261. https://doi.org/10.2165/11588930-000000000-00000