2.1 Characterization of POD Gene Family in Grapevine
In this study, a total of 47 POD genes were identified from the grapevine genome and for simplicity, we denominated as VvPOD1-VvPOD47 based on their orthologous position with Arabidopsis thaliana. We also studied some useful information of PODs including, the protein identifier, chromosomal localization, coding sequence (CDS) length (bp), and various physicochemical properties such as, protein length (aa), molecular weight (MW) kDa, isoelectric point (PIs), and grand average of hydropathicity (GRAVY). While, the gene duplication types (i.e., dispersed, tandem, proximal, and segmental or whole-genome duplication) and subcellular localization analysis were also briefly studied for each of POD proteins (Supplementary Table S1). In brief, the CDS length varies from 801bp (VvPOD35) to 2188bp (VvPOD12) with an average of 1009.021 bp. Similarly, the protein length varies from 266 aa (VvPOD35) to 705 aa (VvPOD12) with an average of 335.34 aa, respectively. Also, the MW ranged from 28.50 kDa (VvPOD35) to 76.17 kDa (VvPOD12) with mean MW of 36.48 kDa, the PIs varies from 4.16 (VvPOD47) to 9.56 (VvPG13), respectively. The results of GRAVY ranged from -0.37 (VvPOD10) to 0.03 (VvPOD25). Intriguingly, the variability was observed in most of the genes for GRAVY, indicating mostly hydrophilic properties and only a few of them (VvPOD46, VvPOD43, VvPOD31, and VvPOD25) are hydrophobic in nature by showing positive values. Additionally, the gene duplication analysis intimated that most of the genes (20) were dispersed followed by tandem (15), segmental or whole-genome duplication (9), and proximal (3), respectively.
2.2 Phylogenetic Relationships, Gene Structure Organization of POD Gene Family in Grapevine
To investigate the evolutionary relationships, we used the 47 POD gene grapevine and 73 Arabidopsis thaliana to construct a maximum likelihood approach tree by using MEGA 7.0. The phylogenetic tree reveals that PODs can be further subcategorized into 7 subgroups (Figure 1). The results exhibited that there is an uneven distribution of VvPOD genes compared with AtPODs. For instance, we observed that subgroup 7 contains the most number of genes (15 and 17) as compared to other subgroups in grapevine and Arabidopsis. The phylogenetic tree also revealed the relatively close genetic relationships with Arabidopsis.
The 10 conserved motifs ranging from (motif 1-10) of VvPODs were explored by the MEME program. Markedly, motifs 1-4 were most common among the members of PODs, suggesting unique features among subgroups (Figure 2a). Also, the LOGOS for these motifs were obtained by MEME, the higher number (100) consensus sequences were observed in motif-2 while a less number (50) were recorded in motif 4, and motifs 8-10, respectively (Supplementary Figure S1). The gene structure organization was analyzed based on CDS and untranslated regions (UTRs) by using TBtools. The result reveals that VvPOD members are highly conserved within each other and displayed a similarity among subgroups (Figure 2b). Further, these findings indicated the structural diversification among VvPOD gene family.
2.3 Chromosomal Localization, Gene Collinearity, and Ka/Ks Analysis of POD
To illustrate the chromosomal localization among 47 POD members and the gene collinearity analysis between grapevine and Arabidopsis were drawn with the help of TBtools software. The results for PODs chromosomal localization unveiled the irregular distribution patterns ranging from 1-9 proteins per chromosome except (chr5, chr9, and chr15) across 19 different chromosomes (i.e., Chr01-Chr19) in the grapevine genome. Also, the number of genes on each chromosome were distinct such as the high number of genes (9) were observed on Chr12, followed by Chr1 and Chr18 each with 5 genes, chr6 has 4 genes, while 3 genes were allocated on the Chr7, Chr10 and unknown chromosome (ChrUn), respectively, as described in Figure 3. Thus, among POD members high variation patterns were observed in the grapevine genome. Furthermore, the gene collinearity relationships between V. vinifera (VvPOD) and Arabidopsis (AtPOD) was also illustrated by using circos plot with the help of TBtools software. As a consequence, high conservation was observed between VvPOD and AtPOD genes (Figure 3).
The selection pressure among various types of duplications (i.e., dispersed, tandem, proximal, segmental or WGD), also intended by calculating the rates of synonymous substitution (Ks) and non-synonymous substitution (Ka). During evolutionary processes, the genes are typically exposed to various types of selection pressure, such as purifying selection (Ka/Ks<1), positive selection (Ka/Ks>1), and neutral selection (Ka/Ks=1) [28]. Among 47 VvPOD members, we selected 22 pairs (i.e., 10 pair dispersed, 1 pair proximal, 7 pair tandem, and 4 pair segmental or WGD) as presented in Table 1. Results showed that most of the gene pairs having less than 1.00 Ka/Ks ratio suggested purifying selection, thus revealed limited divergence after gene duplications. Though, 7 pairs were observed with higher than 1.00 values, implicating positive selection.
2.4 Gene Ontology Enrichment (GO), Kyoto Encyclopedia of Genes Genomics (KEGG) and Cis-Regulatory Elements Analysis in Grapevine
The GO enrichment analysis for POD genes was performed to understand their functional regulatory mechanism by using the orthologous pairs of Arabidopsis thaliana. The three common subgroups were observed such as molecular functions (MF), cellular component (CC), and biological process (BP). In the MF processes, “oxidoreductase and catalytic activity” (GO:0016491 and GO:0003824), are highly enriched GO terms. Similarly, for CC processes and BP most of the GO terms are responsive to “cell wall, plasmodesma, symplast, cell-cell junction, plant-type cell wall” (GO:0005618, GO:0009506, GO:0055044, GO:0005911, and GO:0009505), and “response to toxic substance, cellular response to stimulus, oxidation-reduction process, metabolic and cellular process” (GO:0009636, GO:0051716, GO:0055114, GO:0008152, and GO:0009987), and are briefly summarized in Supplementary Table S2. As results, the GO terms for MF, CC, and BP, suggested the crucial role of PODs in various activities of grapevine.
Additionally, the KEGG enrichment analysis indicated the three major pathways among PODs in grapevine such as “Biosynthesis of other secondary metabolites, phenylpropanoid biosynthesis, and metabolism (Supplementary Table S3).
Moreover, the cis-acting elements in the promoter region of POD members were performed by using the PlantCARE database. In brief, most of the genes were largely participating in light regulation with key regulatory elements (GT1-motif, G-Box, GATA-motif, and AE-Box), followed by hormones (CGTCA-motif, TGACG-motif, ABRE, and GARE-motif), stress and other regulatory factors (LTR, ARE, CCAAT-Box, CAT-BOX, o2-site,), and circadian, respectively. Thus, we observed the diversified role of POD members and their indirect involvement in several biotic-abiotic/hormone signaling processes (Supplementary Table S4).
2.5 Expression Profiling of POD Genes in Different Organs and Developmental Stages in Grapevine
The expression profiling of PODs in grapevine was based on 19 various tissue and organs during their developmental stages, the RNA-seq data were retrieved from NCBI (GSE36128) according to the previously reported study [29]. To represent the spatio-temporal expression, a heatmap was generated on FPKM-based (Log2) values of 47 VvPOD genes (Figure 4) and Supplementary Table S5. Results revealed that 9 genes (VvPOD1, VvPOD2, VvPOD6, VvPOD10, VvPOD12, VvPOD27, VvPOD32, VvPOD37, and VvPOD46) displayed a striking expression among all tissues and organs, implicating their major participation in tissue-specific response and development. About more than 15 genes, were highly expressed in root, suggesting their important role in tissue-specific. Moreover, the rest of the genes showed either moderate or weak expression abundance in all the selected tissues and organs, speculating their limited response in grapevine.
2.6 qRT-PCR Analysis of POD Genes in Response to (NaCl, drought, and ABA)
To investigate the role of VvPOD genes under diverse abiotic stress conditions, we performed qRT-PCR analysis of randomly selected 30 candidate genes and that were subjected to NaCl, drought, and ABA stress treatment. The results directed that all the genes responded variably and showed higher, moderate or low expression level compared to the controls. In response to salt stress, approximately 52% of the total genes showed higher expression level, whereas the rest of the genes showed either moderate or low expression. Interestingly, in the case of ABA and drought stress, about 78% and 72% genes were observed to be down-regulated (Figure 5a). Most of the genes decreased their expression at the early stress periods (1h and 12 h), but they tended to increase their expression afterwards (24h). The expression of seven genes (VvPOD8, VvPOD12, VvPOD19, VvPOD24, VvPOD29, VvPOD38, VvPOD39, and VvPOD40) was increased 24 hours after the treatment under all the stress conditions at; whereas only the transcripts of VvPOD4034 and VvPOD37 were decreased. Moreover, the correlation analysis based on Pearson’s Correlation Coefficient (PCC) of the relative expression indicated largely a highly positive correlation and some of them were found with inverse correlation (Figure 5b). Taken together, these results of POD genes based on expression level respond to multiple stresses and might play an important role in the maintenance of plant growth.