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Abstract (199/200 words) 

The duration of the necessity of current restrictions and preventive countermeasures against the 

COVID-19 pandemic is of great concern. While several previous epidemiological studies have 

discussed controlling the course of the epidemic with regard to social distancing, vaccination, care 

capacities, and future scenarios, we adopt an alternative approach to provide insights into the time 

scale of epidemic propagation in human populations. We show that the reproduction number modified 

by preventive countermeasures �� implies a threshold ��� to reach the herd immunity level at time ��. While �� varies moderately for large ��, it increases sharply around �� = ���, and �� is infinite 

below �� = ���. The transition region for this increase is minute, demonstrating that prevention of 

infectious diseases must consider the relatively asymptotic nature of their propagation, which varies 

unpredictably between steady transmission and explosive outbreaks. These results suggest the 

continuation of preventive countermeasures to suppress the transmission of COVID-19 for many 

years; if they were discontinued or reduced such that ��  exceeded ��� , the disease would be 

transmitted throughout the considered community, and the required herd immunity level would be 

reached within 250 days if �� > 1.6. However, the implementation of vaccination programs could 

drastically alter this dynamic. 

 

 

Main text (4500/4500) 

Introduction 

At present, the containment of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 

infection that causes coronavirus disease 2019 (COVID-19) is the most urgent issue worldwide [1]. 

To date, the statistics concerning the global pandemic remain unprecedentedly grim as the largest 

global public health crisis in over a century continues. As of July 7, 2021, the US had suffered the 

largest reported damage; the cumulative number of confirmed cases was 33,451,965 (a ratio to the 

total population of 10.2%). In contrast, the size of the epidemic outbreak in Japan has been relatively 

small, with 813,976 confirmed cases (0.64%) [1]. 



 Expectations concerning the course and potential end of the current global pandemic remains unclear, 

and the question of how long the restrictions on private and economic activities will continue remains 

as well. Socially, the question arises of whether to give priority to our activities or to the elimination 

of the pandemic. Four scenarios for the end of local epidemics in specified communities may be 

considered [2], including (1) the eradication of the epidemics by the successful development of 

effective vaccines and vaccination programs that completely end the crisis, (2) the attenuation of the 

infection force of the viruses by interventions including vaccination, leading to remarkable reduction 

in mortality and morbidity, (3) acceptable successes in the development of vaccines and drugs 

alongside preventative measures to reduce the severity of the epidemics such that they remain as a 

relatively small problem, and (4) the acquisition of herd immunity. We may be progressing to scenario 

(1); however, this is an ideal goal, and it is not yet known whether vaccines will be well-distributed 

globally or whether the developed vaccines will retain their effectiveness when facing virus mutations. 

Regarding mutations, the realization of scenario (2) also involves uncertainties. The realization of 

scenario (4) implies that many individuals must acquire immunity, and society must be ready to accept 

many fatalities unless sufficient vaccination programs are implemented. These three scenarios are so 

uncertain that it may be necessary to proceed with scenario (3). In this case, the most immediate 

concern regarding the COVID-19 pandemic is the duration of the necessity of continued preventive 

measures such as social distancing, remote work, shutdown or curtailment of opening hours of public 

facilities, restrictions on social events, and restrictions on travel. 

Regarding this question, the present work investigated the times required to achieve herd immunity 

with tools for mathematical epidemiology and obtained intriguing results. The herd immunity level ℎ� is defined as a level of population immunity such that the spread of the disease will decline and 

cease even after all preventive measures have been relaxed [3]; stated differently, ℎ�  provides a 

threshold on which an epidemic starts to decline under the hypothetical condition of no preventive 

measures being applied. 

According to mathematical epidemiology, the herd immunity level is expressed as ℎ� = 1 − 1/��, 

where �� denotes the basic reproduction number [3,4,5,6]. This number is an important variable for 



the epidemiology of infectious diseases [7,8,9], defined as the average number of secondary infections 

produced when one infected individual is introduced into a host population where all members are 

susceptible. As an epidemic spreads, the number of susceptible individuals �  decreases, and the 

number of infectious individuals � increases. When one infectious individual passes pathogens on to ��  individuals, and �� − � individuals among them are already immune, the effective number of 

infected individuals is �. The fraction of immunized individuals is 1 − �/��. If � is more (less) than 

1, an epidemic grows (declines). Hence, an epidemic threshold can be defined at � = 1. This provides 

the herd immunity level as ℎ� = 1 − 1/��. 

Suppose that the ratio of � to �� equals the ratio of the total number of susceptible individuals � to the 

total population �: �/� = �/��. Then, �/� = 1/�� on the threshold because � = 1. According to 

the conventional compartmental model (see Method), ��/�� = −1 + ��/��, where � and � denote 

contact and recovery rates, respectively. This equation indicates that � takes on a maximum value at � = ��/� such that � increases when � is greater than ��/� and decreases when � is less than this 

value. Therefore, we obtain �� = �/�, which is consistent with the calculation of the herd immunity 

level and leads to ��� = � on the threshold. If all members of the host population are susceptible, � = � , and thus �� = 1 on the threshold; this is in accordance with the definition of the basic 

reproduction number ��. 

Apart from the basic reproduction number ��, the present work considers two other reproduction 

numbers: the effective reproduction number defined as �� = ���(�), and the modified reproduction 

number ��. The former considers the decrease in the number of susceptible individuals �, which 

occurs as an epidemic develops. When an epidemic grows perceptibly and enters into community 

transmission in the host population, the effective reproduction number is given by analysis of case 

reports. The latter includes a modification in the contact rate �  representing the impact of non-

pharmaceutical interventions and preventive measures, such as social distancing and isolation. 

Therefore, we can write �� = ��/� using the modified contact rate ��. 

Given that changes in the number of susceptible individuals is expected to be negligible during a short 

time period, the compartmental model provides for the exponential growth of an epidemic; �(�) =



�(0)���, where � = ��/� − � represents the growth rate. In the early stage of an epidemic, � ≅ �, 

and � = (�� − 1)�. In contrast, in the later stages � = (��� − 1)� = (�� − 1)�. If the contact rate is 

modified, �� is replaced with �� in the growth rate. 

While it may be difficult to incorporate the wide variety of complex, interacting factors that affect 

actual epidemics, the techniques of mathematical epidemiology provide us with a simplified 

perspective from which to analyse the propagation of infectious diseases in various populations 

[3,4,5,6,13,14,15,16,17,18]. To this end, it is important to observe the essential features of epidemics. 

The capability of mathematical epidemiology to produce clear and precise projection based on various 

conjectures is among its key benefits [13-15]. A simple perspective has been provided to model the 

spread of infectious diseases, e.g. age-dependence of vaccination effects on rubella epidemics [3,19], 

biennial epidemics of measles [6,20,21], or influence of heterogeneity in sexual activity on HIV 

epidemics [3]. The present work presents the results of an investigation of mathematical models for 

epidemics focusing on the three reproduction numbers ��, ��, and ��, and especially discusses the 

time scale for disease propagation, as well as the results of a comparison between the actual data on 

the COVID-19 epidemics in Tokyo [10,11] and NYC [12] and the computational results derived 

mathematical models. 

Since the beginning of 2020, numerous studies have been published on COVID-19 and SARS-CoV-2 

in fields ranging from microscopic to macroscopic, including molecular biology, medical and clinical 

studies, epidemiology, and political decision making, with each field applying its characteristic 

methodologies. As examples of reports with similar focus and methodology to this study, research on 

COVID-19 modelling has considered countries or regions such as France [22], Italy [23], the Basque 

country [24], Spain [25], Portugal [26], Hong Kong [27], China [28,29,30], and the UK [31]. These 

studies discussed recurrence and rebound of the epidemics, effects of protection measures and 

lockdown, widespread testing, contact tracing, care capacities, or scenarios of pandemic management. 

In this context, as an alternative approach to model the progression of the COVID-19 pandemic, the 

present work has evaluated the time required to reach the herd immunity level in a given community, 

using the epidemiological compartment model [3,4,5,6]. This approach enabled us to discuss the time 



scale of epidemic propagation through populations and the effects of vaccination. We provide insights 

into factors supporting the spread of infectious diseases and illustrate the implications of vaccination 

mathematically. The implementation of vaccination not only increases the number of immunized 

individuals but also accelerates the achievement of the herd immunity level. This latter effect may be 

rather important for the elimination of epidemics in general, and specifically for the current global 

pandemic. 

 

Results 

Figure 1 shows the results of the numerical calculations of the epidemiological compartmental model 

(see Method). The curves represent solution trajectories, which are traces of ��(�), �(�)+ �(�)� 
derived by solving the associated equations, where �, �, and � denote the numbers of susceptible, 

exposed (not infectious), and infectious individuals at time �, respectively; ��(�), �(�)+ �(�)� and 

the plane consisting of �  and � + �  are referred to as the representative point and �� -�  plane, 

respectively. Namely, Fig.1 shows � + � as a function of � with � implicitly included. The curves 

began at ��(�), �(�)+ �(�)� = (1,0) on the ��-� phase plane and curved along the arrows depicted 

in Fig.1 over time. This represents a small number of infectious individuals introduced into a 

population where everyone is susceptible, causing an epidemic to begin. Therefore, � + � increased 

and � decreased with time. After the epidemic spread for some time, � + � reached the peak of the 

trajectory. This peak represents the herd immunity level, and the number of infectious individuals 

began to decrease at this peak. Subsequently, � + � decreased, and the trajectory descended to the � +� = 0 line, indicating the elimination of the epidemic. 

The ��-� curve in Fig. 1(a) was calculated with �� = ��/� = 2.5 (a value in the range plausible for 

COVID-19 [24,30,32]). When model parameters representing the implementation of preventive 

measures and changes in the contact rate of individuals were modified, the representative point traced 

a different trajectory. Figure 1(b) shows trajectories calculated with the modified reproduction number �� = ��/� due to the reduction in the contact rate from �� to ��. When �� was set to 2.0, the curve 

could intersect the herd immunity level (green solid curve). When �� = 1.6, the curve could still pass 



across the herd immunity level (green broken curve); however, its final value point was very near the 

herd immunity level. When �� = 1.5 or less, the curve could not reach the herd immunity level (red 

curves). 

Next, suppose that preventive countermeasures are cancelled in the middle of an epidemic, and the 

value of the contact rate is restored from ��  to �� . Then, the curves that cannot reach the herd 

immunity level under the preventive countermeasures come to reach that level. Figure 1(c) depicts this 

situation. For example, the blue curve almost converges to the � + � = 0 line around � =0.65, i.e. the 

epidemic was almost eliminated, and the relaxation of preventative measures caused a further increase 

followed by an eventual decrease after the herd immunity level was reached. When the timing of 

countermeasures being rescinded was earlier, the trajectories were closer to the inherent case. 

Figure 1(d) represents the effects of vaccination. With increasing vaccination rate, the location of the 

trajectory was lowered, and the epidemic decreased in size. The vaccination rate � is defined in the 

SEIR compartment model as the rate of decrease in the number of susceptible individuals, which 

equals the rate of increase in the number of individuals considered to possess immunity (see Methods). 

However, the peak position of the trajectories remained at � = 1/�� ; this implies that the herd 

immunity level is unchanged by the implementation of vaccination. 

With the derivation of the trajectories, we have calculated the time �� over which a trajectory reached 

the herd immunity level. Figure 2(a) shows �� as a function of �� (these calculations do not consider 

the suspension of preventive countermeasures). We found that �� increased gradually with decreasing ��; �� was less than 250 days when �� was greater than 1.6 under the condition of  E(0)/N ≥ 10�� 

(see Discussion). However, slightly above �� = 1.5, this increase became sharp, and �� diverged for �� < 1.5. Figure 2(b) shows the effects of vaccination on ��. First, it is found that the implementation 

of vaccination tends to transform the curves into a sigmoid form, distorting and flattening them in the 

region of �� < 1.5. This effect removes the singularity of �� at �� = ���. Second, the height of the 

curves, especially in the flattened part, becomes smaller with increasing vaccination rate. When � was 

larger than 0.02, the curve was not even sigmoid, but rather almost linear. 

To investigate the actual situation of the COVID-19 epidemics, we estimated the effective 



reproduction numbers using public data on Tokyo [10,11] and NYC [12]. Figure 4 displays the 

reported numbers of newly confirmed cases (blue bars), the numbers of individuals who initially 

contracted the infection adjusted by the back-calculation method (orange dots and line), and �� 

numbers (black dots and line) in Tokyo (Fig.4a) and NYC (Fig.4b) as of January 31, 2021. In Tokyo, 

the adjusted epidemic curve (orange dots and line) included a few peaks reflecting the growth of the 

epidemic, with a large one occurring in March and April 2020, and another in January 2021. In contrast, 

the epidemic curve in NYC showed two large peaks in April 2020 and January 2021. The cumulative 

numbers of confirmed cases were approximately 99,800 and 532,500 in Tokyo and NYC, respectively, 

as of January 31, 2021. 

These epidemic curves provide the epidemic growth rates, which allowed us to calculate the �� 

numbers as a function of time (black dots and line). The values at representative times are marked 

with arrows. In Tokyo, there were peaks on February 24 and March 16; the �� values were 5.13 (95% 

CI, 3.86-6.4) and 4.19 (95% CI, 3.63-4.75), respectively (Fig 3a). The values were 1.98 (95% CI, 1.95-

2.02) and 0.82 (95% CI, 0.73-0.90) on March 25 (on which the Tokyo Metropolitan government put 

Tokyo under a stay-at-home rule) and April 7 (on which the state of emergency was declared by the 

Japanese government), respectively. After May, the �� values rose again, forming distinct peaks (e.g. 

May 18 [�� =2.56 (95% CI, 2.19-2.93)] and June 4 [�� =2.38 (95% CI, 1.84-2.91)]); on May 25, the 

day on which the state-of-emergency declaration was lifted, the value was 1.37 (95% CI, 1.19-1.54). 

After June, the �� number fluctuated until a relatively larger peak arose on December 28 [�� =2.32 

(95% CI, 2.15-2.50)], which gave rise to a large increase in the number of infections in January 2021. 

In NYC (Fig 3b), at the beginning of March 2020, the reproduction number was as high as 11.5 (95% 

CI, 10.5-13.3). However, the �� number exhibited no large peak since then and subsequently remained 

at approximately 1.0. On March 7 and 12, on which a state of emergency was declared by NYC and 

New York State, respectively, the �� numbers were 5.60 (95% CI, 5.01-6.17), and 1.68 (95% CI, 1.63-

1.73), respectively. When the number of new infections per day was the largest on April 1, the �� 

number was 0.74 (95% CI, 0.66-0.81). After May, the �� number fluctuated and a large increase in 



the number of infections occurred in December; however, this increase proceeded slowly, and 

therefore, very large �� numbers did not arise.  

The frequency distribution of the �� numbers estimated for the period until January 2021 are shown 

for Tokyo (Fig. 4(c)) and NYC (Fig.4(d)). This estimate did not consider the period after February 

2021 to compare with the mathematical model excluding the mixing effects of reduction in the contact 

rates and vaccination programs. The mean value was 1.07 and 1.00, and the standard deviation was 

0.47 and 0.25 for Tokyo and for NYC, respectively, for the period from April 2020 to January 2021.  

 

Discussion 

These results suggest that if the basic reproduction number was modified by preventive 

countermeasures against epidemics and the modified reproduction number �� was reduced while not 

exceeding ���, it would be necessary to continue the countermeasures to suppress the propagation of 

the disease. The general emergency condition created by the COVID-19 pandemic would thus be 

protracted for many years. In contrast, if preventive countermeasures were relaxed and �� exceeded ���, the epidemics would propagate rapidly, and the herd immunity level would be reached in a short 

period of time (less than 250 days in the present calculations for COVID-19). These results indicate 

the classically explosive nature of infectious disease propagation, in which either low levels of steady 

community transmission or asymptotic acceleration of the rate of transmission tend to prevail. Because 

the transition region for the sharp increase around �� = ��� is very small, it is difficult to realize 

intermediate propagation speeds. It is almost impossible to realize epidemic situations preferable to 

us, in which a moderate degree of deceleration of the propagation of the disease is combined with a 

similar progressive reduction in the degree of preventive countermeasures. Clearly, continuously 

holding �� slightly above ��� may be considered impractically difficult. 

Because the proportion of the cumulative total number of individuals infected with COVID-19 was 

less than 1% and 2% as of January 2021 in Tokyo and NYC, respectively [10,11], the effective 

reproduction number �� can be approximated by ��. Except in the early stages of the epidemics, �� 

fluctuated between 0.0 and 3.0 in Tokyo and between 1.0 and 2.0 in NYC (Fig. 3), i.e. ��  has 



continued to increase and decrease across the value of 1.5, which is the threshold for the divergence 

of �� . This fluctuation reflects the dilemma that periods of rapid epidemic propagation and of 

associated social restrictions have repeatedly alternated since the onset of the pandemic. The 

distributions of ��  (Fig.4) also illustrate the challenge of determining whether to prioritize the 

prevention of disease or the continuance of economic activities, demonstrating the circumstances 

under which both cities have found the COVID-19 pandemic unmanageable. It may be considered 

likely that many countries have been experiencing similar situations. The abovementioned scenario 

(3) would oblige us to continue the general living conditions of the current emergency for many years, 

and it may not be possible to eliminate the pandemic within a few years. This may be a matter of 

concern in countries where vaccination programs are not progressing. 

However, it is probable that the fluctuation of �� around 1.5 in Fig.3 was not intended but rather a 

fortuity because individuals generally do not know that �� ≅ 1.5 is a threshold for ��. This suggests 

that the threshold for �� may be of benefit as a reference value for evaluating the future course of the 

COVID-19 pandemic. Regarding this point, Fig. 3 illustrates that the propagation speed at the early 

stage of an epidemic is small, not depending on ��. Thus, unless we do not know the existence of a 

threshold for ��, we cannot find any singularity with asymptomatic increase in the epidemic growth 

at the early stage, which indicates the threshold. Figure 3 also shows that the spreading velocity 

remained small until half of ��, and then a notable increase occurred. Therefore, the trajectories in 

Fig.1(b) are traced by the representative point in the latter half of ��. 

The mathematical structure of the ��-� plane is described as follows. The compartmental model 

(method) shows that the ��-� plane includes a fixed point (1/��, 0), which plays a role to attract the 

representative point ��(�), �(�)+ �(�)� and impose it to rotate around the fixed point (such a fixed 

point is referred to as a spiral sink). As the representative point moves, �(�)+ �(�) reaches the 

maximum trajectory, and eventually, the representative point descends to and converges with the � +� = 0 line. The maximum point (1/��, (� + �)���) is located just above the fixed point (1/��, 0). 

If the contact rate is modified, �� is replaced with ��, shifting the peak position and landing point 

of the representative point (Fig.1(b)). This shift of the �-� trajectory leads to the sharp increase 



in �� (Fig.2) with the following mathematical explanation. Two factors affect this sharp increase. 

First, when the landing point is shifted to the region of � larger than the herd immunity level (� =1/��), the representative point cannot reach the herd immunity level and �� becomes infinitely large. 

Second, the compartmental model shows that the rate of change of the number of infectious individuals � is proportional to that number itself (see Methods). This is a typical rate equation. Therefore, the rate 

of change of �  was small when �  is small, implying that the motion of the representative point 

decreases as it approached the � + � = 0 line. If �� was lowered due to the reduction in the contact 

rate, the landing point of the representative point shifted to the vicinity of the herd immunity level. 

Then, a remarkable decrease in the rate of change of the representative point occurs in the vicinity of 

the herd immunity level, leading to the sharp increase in ��. 

In Fig. 2(c), we have considered cases in which the intrinsic contact rate �� is restored in the middle 

of an epidemic, the course of which was previously modified with preventive countermeasures. If the 

epidemic had not yet reached the herd immunity level, the representative point moved again to a 

position near the original fixed point (1/��, 0), which is located on the left-hand side of the modified 

fixed point (1/��, 0), and a renewed increase in the number of infectious individuals occurred. This 

accounts for the recurrence of the epidemic. As seen in the trajectories of the representative point, the 

maximum values of � on the herd immunity level were less than the value for the inherent trajectory 

indicating a reduction in the size of the epidemic, indicating that preventive countermeasures did have 

lasting effects despite being ceased in the middle of the epidemic. If the contact rate was restored after 

an epidemic reached the herd immunity level, such a recurrence did not arise. This agrees with the 

definition of the herd immunity level. 

The trajectories displayed in Fig.1(d) have the same value of �  at the peaks irrespective of the 

vaccination rates, demonstrating that the implementation of vaccination did not change the herd 

immunity level [3]. This is because vaccination does not reduce the contact rate (hence, the basic 

reproduction number) but rather the number of susceptible individuals. It is important to understand 

that a reduction in the contact rate �  is different from a reduction in the number of susceptible 

individuals �; however, these two factors decrease the effective reproduction number and the epidemic 



size, as indicated by the effective reproduction �� = ��� = ���/� . The compartmental model 

including the effect of vaccination provides a rate equation for � with ��/�� = −��� − ��, where � 

denotes a vaccination rate. It is noted that, in this equation, the vaccination rate is not included in the 

first term of the right-hand side but rather in the second term. The essential point concerning the effects 

of vaccination is given below. We found in Fig. 3(b) that the vaccination removes the singularity in �� at �� = ���. Therefore, a reduction in �� did not prevent the representative point from reaching 

the herd immunity level; specifically, preventive countermeasures did not prevent the epidemic status 

from reaching the herd immunity level. Here, it is noteworthy that this achievement of the herd 

immunity level proceeds without considerable epidemic spreading and expansion, demonstrating the 

special role of vaccination. This stands in drastic contradistinction to the case without vaccination. 

The mathematical interpretation is that the second term in the equation yielding � plays a role to update 

the state of infectious individuals � to the state indicating recovered or immunized individuals � (see 

Method). Apart from the numerical calculations shown in the present study, the removal of the 

singularity by this vaccination term may be proved by calculus for the equations in the compartmental 

model. 

Recent studies showed that heterogeneity of populations reduces the herd immunity level [32]. By 

introducing age and activity heterogeneities into the population models for SARS-CoV-2, herd 

immunity was achieved in the models at a population-wide infection rate of ∼ 40%, which is 

substantially less than the classical herd immunity level of 60% obtained through homogeneous 

immunization. Although this result is intriguing, such quantitative details of the estimate of the herd 

immunity level may not affect the qualitative feature obtained in the present work because the sharp 

increase in the time required to reach the immunization level occurs in the interrelationship and 

superposition of the fixed point and the landing point of the representative point, as described above; 

accordingly, the detailed location of the herd immunity level does not affect the nature of the sharp 

increase in �� . It is interesting, however, to examine effects of heterogeneities by using more 

complicated mathematical models. 

The experimental results suggest that the classical herd immunity level of 60% would be obtained 



within a finite period of time if homogeneous immunization was implemented: ~500 days with the 

rate � = 0.001, or ~100 days with � = 0.02 (Fig.2b). 

To compare the model calculations with the actual course of the COVID-19 pandemic, this study has 

estimated the effective reproduction numbers using reported cases for Tokyo [10,11] and NYC [12]. 

However, several points must be noted. First, conditions such as age, gender, address, or ethnic groups 

were not recorded in the datasets used. Therefore, if further quantitatively precise comparisons are 

required, cohort studies should be conducted under well-controlled conditions. Second, we can expect 

further improvements for the input parameters incorporated in the calculations. The parameters used 

to represent the COVID-19 pandemic in the present work were based on estimates given by a study 

on the outbreak in Wuhan [33] because it was the earliest epidemic, and thus the estimated parameters 

reflect the intrinsic state of the COVID-19 epidemics, with the caveat that these values might be altered 

in practice by the characteristics of variant strains. 

Today, many viral diseases other than COVID-19 are under control; however, their impacts on the 

economy and human life are smaller than those of COVID-19. For example, influenza characterized 

by frequent viral mutations is controlled by annual vaccination and drugs, and social distancing is 

conducted in accordance with the situation; HIV/AIDS is managed by efforts toward increasing access 

to testing and initiating pharmaceutical therapy at early stages of the disease, and such campaigns are 

an important tool; however, they themselves are not control measures. 

This study has considered the time required to reach the herd immunity level as an index for evaluating 

the time scale of epidemic propagation and has provided several insights to illustrate the processes of 

such propagation. Further studies may yield a clearer understanding regarding this problem by using 

different indices. 

In addition, the results derived herein are applicable to infectious diseases, which may emerge or re-

emerge in the future. Although each infectious disease possesses a distinctive parameter set for the 

compartmental model that determines the herd immunity level, the characteristic that �� increases 

sharply in a narrow range of �� arises irrespective of the parameter set. Therefore, precise values of ��, as a function of ��, can be calculated only by adjusting the parameter set to the target infectious 



disease and solving the compartmental model. 

The results of the present work suggest that ��, which is connected with ��, may be appropriately 

used as a reference for the ascertainment of epidemic status and the timing of related decision-making. 

When vaccination campaigns are conducted, it is important to estimate both �� and the vaccination 

rate and to inspect the status of the epidemic carefully. In addition, the results demonstrated that the 

implementation of vaccination not only increases the number of immunized individuals but accelerates 

the achievement of the herd immunity level. This latter effect may be of considerable importance for 

the elimination of epidemic diseases including the COVID-19 pandemic. 

 

 

 

 

Methods 

SEIR Compartmental model for infectious diseases 

The susceptible-exposed-infectious-recovered (SEIR) compartmental model for infectious diseases 

[3-6] is described as, ��/�� = −��� , ��/�� = ��� − �� , ��/�� = �� − �� , and ��/�� = �� , 

where S, E, I, and R denote the numbers of susceptible, exposed, infectious, and recovered individuals, 

respectively; � represents rates of contact, and 1/� and 1/� denote the mean latent and infectious 

periods, respectively. If the effect of vaccination is included in the SEIR model, the rate equations for � and � are replaced by ��/�� = −��� − �� and ��/�� = �� + ��, respectively, where � denotes a 

vaccination rate [3,6]. 

The SEIR compartmental model has proven useful for the understanding and prediction of infectious 

diseases, e.g. this model was able to provide epidemic curves for measles or rubella, which fit to case 

reports [3,20]. Thereafter, the SEIR model has been applied to other subjects through suitable 

modifications, e.g. incorporating seasonality into the model gave explanation for chaotic epidemic 

patterns of measles [6,21,22]. 

Dataset 



The present work used the daily reports of laboratory-confirmed cases. The reports in Tokyo have 

been published by the Bureau of Social Welfare and Public Health, Tokyo Metropolitan Government 

[10,11] since January 24, on which the first confirmed case in Tokyo was reported. These reports 

include the numbers of confirmed cases, fatalities, severe cases, patient discharges, cases by 

municipality in Tokyo, and continuous tracking of all such data. The daily reports in NYC have been 

published by the City of New York since February 29 [12]. Those reports include the number of cases 

by age groups, sex, boroughs, and the number of fatalities. 

Back calculation 

We used the back-calculation method [34] to estimate the number �(��) of infected individuals at time ��  of occurrence of infection: the reported number of individuals who are newly diagnosed as PCR-

positive is transformed to the number of individuals at the time when infection occurred. Originally, 

the back-calculation method was developed to estimate HIV infections in 1980s and is still used. 

The number �(��) of reported cases is given as �(��) = ∑ ���� − ��������� , where ���� − ��� denotes 

the distribution function for time period �� − ��  from infection at ��  to PCR-testing at �� . For ���� − ���, we did not have appropriate data and functions; therefore, we supplied this deficiency by 

substituting the distribution function that was proposed for the serial interval (the time between 

successive cases in a chain of transmission). The assumption that infections occur at random during 

an infectious period of an infectious individual leads to the conclusion that the average serial interval 

is the sum of the average latent period and half the average infectious period. Accordingly, it seems to 

be relevant to consider that the serial interval is comparative to the period from infection to PCR-

testing. For SARS-CoV-2 infections, this distribution is a Gamma distribution with the mean and 

standard deviations of 7.5 and 3.4 days, respectively [33]. The reported cases were smoothed by 7-

day-average, and the above equation was solved by deconvolution. 

Effective reproduction numbers 

We evaluated effective reproduction numbers from the case reports adjusted by the back-calculation 

and the SEIR model. The SEIR model provides an effective reproduction number Re as �� = (� +�)(� + �)/�� [5]. We set 1/�=5.2 days and 1/�=4.6 days, following previous studies for Wuhan 



[33]. 
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Figure legends 

Figure 1: Trajectories of the representative point ��(�), �(�)+ �(�)� in the ��-� plane calculated 

with the SEIR compartment model, which sets σ = 1/5.2, � = 1/2.3, and �(0)/� = 10��. The 

values represent the proportions scaled by the total population �. The arrows denote the advancing 

direction of the representative point. (a) The trajectory with the basic reproduction number �� = 2.5. 

The herd immunity level is given by the peak location of the trajectory (broken line). (b) Change in 

trajectories when �� is replaced by ��: �� = 2.0 (green solid), 1.6 (green broken), 1.5 (red short-

broken), 1.4 (red long-broken), and 1.2 (red solid). (c) Trajectories when the reproduction number is 

restored in the middle of an epidemic from �� = 1.2 to �� = 2.5 at 300 (red), 400 (green), and 500 

(blue) days after the beginning of the epidemic. (d) Effects of vaccination. The vaccination rate � = 

0.002 (red), 0.003 (green), 0.005 (blue), and 0.01 (orange).  

Figure 2: Time to reach the herd immunity level versus the modified reproduction number. 

Calculations were performed by the SEIR model which sets � = 1/5.2, � = 1/2.3, and �(0)/� =
10��. (a) Calculation with no vaccination. (b) Calculations incorporating vaccination: the vaccination 

rate � = 0.001 (red), 0.003 (green), 0.005 (blue), 0.01 (orange), and 0.02 (violet). The black curve is 

the same as that in (a). 

Figure 3: Velocity of the change in the number of infectious individuals as a function of time. The 

value of reproduction number is set to �� = 2.5 (black), �� = 2.25 (red), 2.00 (green), 1.75 (blue), 

and 1.50 (orange). The curves were calculated until the herd immunity level was reached. 

Figure 4: The reported number of PCR confirmed cases (blue), the number of new cases estimated by 

the back-calculation (orange), and the reproduction numbers (black) in Tokyo (a) and NYC (b). The 

left-hand and right-hand scales are for the cases and the reproduction numbers, respectively. The 

frequency distributions of the reproduction numbers are shown in the bar charts for Tokyo (c) and 

NYC (d). The mean value was 1.07 and 1.00, and the standard deviation was 0.47 and 0.25 for Tokyo 

and for NYC, respectively, for the period from April 2020 to January 2021. 

 



Figures

Figure 1

Trajectories of the representative point (S(t),E(t)+I(t)) in the EI-S plane calculated with the SEIR
compartment model, which sets σ=1/5.2, γ=1/2.3, and E(0)/N=10^(-5). The values represent the
proportions scaled by the total population N. The arrows denote the advancing direction of the
representative point. (a) The trajectory with the basic reproduction number R0=2.5. The herd immunity
level is given by the peak location of the trajectory (broken line). (b) Change in trajectories when R0 is
replaced by Rm: Rm=2.0 (green solid), 1.6 (green broken), 1.5 (red short-broken), 1.4 (red long-broken),
and 1.2 (red solid). (c) Trajectories when the reproduction number is restored in the middle of an epidemic
from Rm=1.2 to R0=2.5 at 300 (red), 400 (green), and 500 (blue) days after the beginning of the epidemic.
(d) Effects of vaccination. The vaccination rate v= 0.002 (red), 0.003 (green), 0.005 (blue), and 0.01
(orange).



Figure 2

Time to reach the herd immunity level versus the modi�ed reproduction number. Calculations were
performed by the SEIR model which sets δ=1/5.2, γ=1/2.3, and E(0)/N=10^(-5). (a) Calculation with no
vaccination. (b) Calculations incorporating vaccination: the vaccination rate v= 0.001 (red), 0.003 (green),
0.005 (blue), 0.01 (orange), and 0.02 (violet). The black curve is the same as that in (a).

Figure 3

Velocity of the change in the number of infectious individuals as a function of time. The value of
reproduction number is set to R0=2.5 (black), Rm=2.25 (red), 2.00 (green), 1.75 (blue), and 1.50 (orange).



The curves were calculated until the herd immunity level was reached.

Figure 4

The reported number of PCR con�rmed cases (blue), the number of new cases estimated by the back-
calculation (orange), and the reproduction numbers (black) in Tokyo (a) and NYC (b). The left-hand and
right-hand scales are for the cases and the reproduction numbers, respectively. The frequency
distributions of the reproduction numbers are shown in the bar charts for Tokyo (c) and NYC (d). The



mean value was 1.07 and 1.00, and the standard deviation was 0.47 and 0.25 for Tokyo and for NYC,
respectively, for the period from April 2020 to January 2021.


