[1] G. Armstrong, P. Kotler, M. Harker, R. Brennan, Marketing : an introduction, 2018. https://books.google.com/books?id=XAGcDwAAQBAJ&source=ttb (accessed August 28, 2019).
[2] K. King, Using artificial intelligence in marketing : how to harness AI and maintain the competitive edge, 2019. https://books.google.com/books?id=0zyEDwAAQBAJ&dq=marketing+intelligence+artificial+intelligence&hl=en&sa=X&ved=0ahUKEwjOqL72o6XkAhUxMuwKHWzgCusQ6AEILjAB (accessed August 28, 2019).
[3] M. Johnsen, The Future of Artificial Intelligence in Digital Marketing: The next big technological break, CreateSpace Independent Publishing Platform, 2017. https://www.amazon.com/Future-Artificial-Intelligence-Digital-Marketing/dp/1976001064/ref=sr_1_1?keywords=The+Future+of+Artificial+Intelligence+in+Digital+Marketing%3A+The+next+big+..&qid=1566985603&s=gateway&sr=8-1 (accessed August 28, 2019).
[4] S. Hollensen, O. Oliver, Marketing: A Relationship Perspective, 2019. https://books.google.com/books?id=UbySDwAAQBAJ&printsec=frontcover#v=onepage&q&f=false (accessed August 28, 2019).
[5] C. Linnhoff-Popien, R. Schneider, M. Zaddach, Digital marketplaces unleashed, 2017.
[6] Al. Chernev, Strategic Marketing Management - Theory and Practice, Cerebellum Press , 2019. https://www.amazon.com/Strategic-Marketing-Management-Theory-Practice/dp/1936572583/ref=sr_1_1?keywords=Strategic+Marketing+Management%3A+Theory+and+Practice+by+Alexander+Chernev&qid=1566986151&s=gateway&sr=8-1 (accessed August 28, 2019).
[7] C.S. Fleisher, Using open source data in developing competitive and marketing intelligence, Eur. J. Mark. 42 (2008) 852–866. https://doi.org/10.1108/03090560810877196.
[8] European Comission, Creating Value through Open data, 2015. https://doi.org/10.2759/328101.
[9] T.H. Davenport, From analytics to artificial intelligence, J. Bus. Anal. 1 (2018) 73–80. https://doi.org/10.1080/2573234X.2018.1543535.
[10] T. Davenport, R. Ronanik, Artificial intelligence for the real world, Harvard Bus. Rev. . 1 (2018) 108–116. https://www.kungfu.ai/wp-content/uploads/2019/01/R1801H-PDF-ENG.pdf (accessed September 10, 2019).
[11] M. Ghasemaghaei, S. Ebrahimi, K. Hassanein, Data analytics competency for improving firm decision making performance, J. Strateg. Inf. Syst. 27 (2018) 101–113. https://doi.org/10.1016/J.JSIS.2017.10.001.
[12] M. Huster, Marketing intelligence: a first mover advantage, Compet. Intell. Mag. 13 (2005) 453–465. https://doi.org/10.1108/03090560610657787.
[13] Z. Sun, L. Sun, K. Strang, Big Data Analytics Services for Enhancing Business Intelligence, J. Comput. Inf. Syst. 58 (2018) 162–169. https://doi.org/10.1080/08874417.2016.1220239.
[14] J. Prescott, C. Fleisher, SCIP: Who we are, what we do, Compet. Intell. Rev. 2 (1991) 22–26. https://doi.org/10.1002/cir.3880020112.
[15] R. Hirt, N. Kühl, G. Satzger, Cognitive computing for customer profiling: meta classification for gender prediction, Electron. Mark. 29 (2019) 93–106. https://doi.org/10.1007/s12525-019-00336-z.
[16] R.E. Sieber, P.A. Johnson, Civic open data at a crossroads: Dominant models and current challenges, Gov. Inf. Q. 32 (2015) 308–315. https://doi.org/10.1016/J.GIQ.2015.05.003.
[17] A. Immonen, E. Ovaska, T. Paaso, Towards certified open data in digital service ecosystems, Softw. Qual. J. 26 (2018) 1257–1297. https://doi.org/10.1007/s11219-017-9378-2.
[18] G.P. Huber, A Theory of the Effects of Advanced Information Technologies on Organizational Design, Intelligence, and Decision Making, Acad. Manag. Rev. 15 (1990) 47–71. https://doi.org/10.5465/amr.1990.4308227.
[19] K. Lee, J. Yoo, M. Choi, H. Zo, A.P. Ciganek, Does External Knowledge Sourcing Enhance Market Performance? Evidence from the Korean Manufacturing Industry, PLoS One. 11 (2016) e0168676. https://doi.org/10.1371/journal.pone.0168676.
[20] A. Ramaj, E. Bazini, Database Marketing Use as a Tool of Knowledge Management within Firms in Albania, Mediterr. J. Soc. Sci. (2013). https://doi.org/10.5901/mjss.2013.v4n11p584.
[21] S. Ransbotham, D. Kirdon, Using Analytics to Improve Customer Engagement, MIT Sloan Manag. Rev. . (2018). https://sloanreview.mit.edu/projects/using-analytics-to-improve-customer-engagement/ (accessed September 21, 2019).
[22] M. Riikkinen, H. Saarijärvi, P. Sarlin, I. Lähteenmäki, Using artificial intelligence to create value in insurance, Int. J. Bank Mark. 36 (2018) 1145–1168. https://doi.org/10.1108/IJBM-01-2017-0015.
[23] S. Madakam, R. M. Holmukhe, D. Kumar Jaiswal, S. Madakam, R.M. Holmukhe, D.K. Jaiswal, The Future Digital Work Force: Robotic Process Automation (RPA), J. Inf. Syst. Technol. Manag. 16 (2019). https://doi.org/10.4301/S1807-1775201916001.
[24] M. Aminah binti Wan Nordin, D. Vedenyapin, M.F. Alghifari, T.S. Gunawan, The disruptometer: an artificial intelligence algorithm for market insights, Bull. Electr. Eng. Informatics. 8 (2019) 727–734. https://doi.org/10.11591/eei.v8i2.1494.
[25] S. Kumar Deb, R. Jain, V. Deb, Artificial Intelligence ―Creating Automated Insights for Customer Relationship Management, in: 2018 8th Int. Conf. Cloud Comput. Data Sci. Eng., IEEE, 2018: pp. 758–764. https://doi.org/10.1109/CONFLUENCE.2018.8442900.
[26] H. Hexmoor, J. Lammens, G. Caicedo, S.C. Shapiro, Behaviour Based AI, Cognitive Processes,And Emergent Behaviors In AutonomousAgents, WIT Trans. Inf. Commun. Technol. 1 (1970). https://doi.org/10.2495/AIENG930311.
[27] S. Chen, S. Saiki, M. Nakamura, Evaluating Feasibility of Image-Based Cognitive APIs for Home Context Sensing, in: 2018 Int. Conf. Signal Process. Inf. Secur., IEEE, 2018: pp. 1–4. https://doi.org/10.1109/CSPIS.2018.8642772.
[28] H. Gacanin, M. Wagner, Artificial Intelligence Paradigm for Customer Experience Management in Next-Generation Networks: Challenges and Perspectives, IEEE Netw. 33 (2019) 188–194. https://doi.org/10.1109/MNET.2019.1800015.
[29] R.T. Kreutzer, M. Sirrenberg, Fields of Application of Artificial Intelligence—Customer Service, Marketing and Sales, in: Springer, Cham, 2020: pp. 105–154. https://doi.org/10.1007/978-3-030-25271-7_4.
[30] D.A. Hernández-Fernández, E. Mora, M.I. Vizcaíno Hernández, When a new technological product launching fails: A multi-method approach of facial recognition and E-WOM sentiment analysis, Physiol. Behav. 200 (2019) 130–138. https://doi.org/10.1016/J.PHYSBEH.2018.04.023.
[31] M.A. Espinoza Mina, D.D.P. Gallegos Barzola, Neuromarketing and Facial Recognition: A Systematic Literature Review, in: Springer, Cham, 2018: pp. 214–228. https://doi.org/10.1007/978-3-030-00940-3_16.
[32] S. Cremer, C. Loebbecke, Artificial Intelligence Imagery Analysis Fostering Big Data Analytics, Futur. Internet. 11 (2019) 178. https://doi.org/10.3390/fi11080178.
[33] T.H. Davenport, J.G. Harris, D.W. De Long, A.L. Jacobson, Data to Knowledge to Results: Building an Analytic Capability, Calif. Manage. Rev. 43 (2001) 117–138. https://doi.org/10.2307/41166078.
[34] B. Nayak, S. Sekhar Bhattacharyya, Integrating Digital Wisdom and Human Capital CASE STUDY, J. Qual. Particip. 41 (2019) 20–23. https://search.proquest.com/openview/169333fb8916b629f6332ff127149749/1?pq-origsite=gscholar&cbl=37083 (accessed October 11, 2019).
[35] M.H. Jarrahi, Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision making, Bus. Horiz. 61 (2018) 577–586. https://doi.org/10.1016/j.bushor.2018.03.007.
[36] J. Shyr, J. Chu, M. Woods, Cognitive Data Analysis for Big Data, in: Springer, Cham, 2018: pp. 23–47. https://doi.org/10.1007/978-3-319-18284-1_2.
[37] L. Arthur, Big data marketing: engage your customers more effectively and drive value, 2013. https://books.google.com/books?hl=en&lr=&id=FU_dAAAAQBAJ&oi=fnd&pg=PR9&dq=Data-driven+marketing+is+the+core+of+the+marketing+strategy+to+engage+consumers+in+an+effective+way.&ots=WHNiVWJxEN&sig=WXA_rw_oI5L4ctw-dB3S3Ne7jdY (accessed October 10, 2019).
[38] A.S. Atalay, S. El Kihal, F. Ellsäßer, A Natural Language Processing Approach to Predicting the Persuasiveness of Marketing Communications, SSRN Electron. J. (2019). https://doi.org/10.2139/ssrn.3410351.
[39] R. bean, How Big Data and AI Are Driving Business Innovation in 2018, MIT Sloan Manag. Rev. (2018). https://sloanreview.mit.edu/article/how-big-data-and-ai-are-driving-business-innovation-in-2018/ (accessed October 11, 2019).
[40] R. Bean, Why Fear of Disruption Is Driving Investment in AI, MIT Sloan Manag. Rev. (2019). https://sloanreview.mit.edu/article/why-fear-of-disruption-is-driving-investment-in-ai/ (accessed October 11, 2019).
[41] C. Olson, J. Levy, Transforming marketing with artificial intelligence, Appl. Mark. Anal. (2018). https://www.ingentaconnect.com/content/hsp/ama/2018/00000003/00000004/art00003.
[42] Y. Chen, J.D. Elenee Argentinis, G. Weber, IBM Watson: How Cognitive Computing Can Be Applied to Big Data Challenges in Life Sciences Research, Clin. Ther. 38 (2016) 688–701. https://doi.org/10.1016/J.CLINTHERA.2015.12.001.
[43] R. Kitchin, The data revolution: Big data, open data, data infrastructures and their consequences, 2014. https://books.google.com/books?hl=en&lr=&id=GfOICwAAQBAJ&oi=fnd&pg=PP1&ots=pdwkL_UiWZ&sig=G20pzebh_njA-QTR_n4L2Zz85yg (accessed September 20, 2019).
[44] U. Matos, J. Corbett, Creating Knowledge for Value Creation in Open Government Data Ecosystems, AMCIS 2019 Proc. (2019). https://aisel.aisnet.org/amcis2019/digital_government/digital_government/8 (accessed September 20, 2019).
[45] M. Ghasemaghaei, Does data analytics use improve firm decision making quality? The role of knowledge sharing and data analytics competency, Decis. Support Syst. 120 (2019) 14–24. https://doi.org/10.1016/J.DSS.2019.03.004.
[46] G.C. Moore, I. Benbasat, Development of an Instrument to Measure the Perceptions of Adopting an Information Technology Innovation, Inf. Syst. Res. 2 (1991) 192–222. https://doi.org/10.1287/isre.2.3.192.
[47] N.F. Richter, G. Cepeda, J.L. Roldán, C.M. Ringle, European management research using partial least squares structural equation modeling (PLS-SEM), Eur. Manag. J. 34 (2016) 589–597. https://doi.org/10.1016/j.emj.2016.08.001.
[48] J. Hair, G.T. Hult, C. Ringle, M. Sarstedt, A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), 2014 Fac. Bookshelf. (2014). https://digitalcommons.kennesaw.edu/facbooks2014/39 (accessed January 15, 2020).
[49] R.P. Bagozzi, Y. Yi, On the evaluation of structural equation models, J. Acad. Mark. Sci. 16 (1988) 74–94. https://doi.org/10.1007/BF02723327.
[50] J. Henseler, C.M. Ringle, M. Sarstedt, A new criterion for assessing discriminant validity in variance-based structural equation modeling, J. Acad. Mark. Sci. 43 (2014) 115–135. https://doi.org/10.1007/s11747-014-0403-8.
[51] A. Diamantopoulos, J.A. Siguaw, Formative Versus Reflective Indicators in Organizational Measure Development: A Comparison and Empirical Illustration, Br. J. Manag. 17 (2006) 263–282. https://doi.org/10.1111/j.1467-8551.2006.00500.x.
[52] T.A. Carte, C.J. Russell, In pursuit of moderation: Nine common errors and their solutions, MIS Q. Manag. Inf. Syst. 27 (2003) 479–501. https://doi.org/10.2307/30036541.
[53] J. Cohen, J. Cohen, P. Cohen, S.G. West, L.S. Aiken, Applied multiple regression/correlation analysis for the behavioral sciences /, 2003.
[54] M. Janssen, Y. Charalabidis, A. Zuiderwijk, Benefits, Adoption Barriers and Myths of Open Data and Open Government, Inf. Syst. Manag. 29 (2012) 258–268. https://doi.org/10.1080/10580530.2012.716740.
[55] D.C. Gkikas, P.K. Theodoridis, Artificial Intelligence (AI) Impact on Digital Marketing Research, in: Springer, Cham, 2019: pp. 1251–1259. https://doi.org/10.1007/978-3-030-12453-3_143.