1.Musso, G., et al., Dietary habits and their relations to insulin resistance and postprandial lipemia in nonalcoholic steatohepatitis. Hepatology, 2003. 37(4): p. 909–16.
2.Erlich, A. T., et al., Function of specialized regulatory proteins and signaling pathways in exercise-induced muscle mitochondrial biogenesis. Integrative medicine research, 2016. 5(3): p. 187–197.
3.Begriche, K., et al., Mitochondrial dysfunction in NASH: causes, consequences and possible means to prevent it. Mitochondrion, 2006. 6(1): p. 1–28.
4.Perfield, J. W., 2nd, et al., Altered hepatic lipid metabolism contributes to nonalcoholic fatty liver disease in leptin-deficient Ob/Ob mice. J Obes, 2013. 2013: p. 296537.
5.Molero, J. C., et al., Casitas b-lineage lymphoma–deficient mice are protected against high-fat diet–induced obesity and insulin resistance. Diabetes, 2006. 55(3): p. 708–715.
6.Rani, V., et al., Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies. Life Sci, 2016. 148: p. 183–93.
7.Georgoulis, M., et al., Blood redox status is associated with the likelihood of nonalcoholic fatty liver disease irrespectively of diet’s total antioxidant capacity. Nutr Res, 2015. 35(1): p. 41–8.
8.Halliwell, B. and J. M. Gutteridge, Free radicals in biology and medicine. 2015: Oxford University Press, USA.
9.Gonçalves, I. O., et al., Exercise as a therapeutic tool to prevent mitochondrial degeneration in nonalcoholic steatohepatitis. European journal of clinical investigation, 2013. 43(11): p. 1184–1194.
10.Magkos, F., Exercise and fat accumulation in the human liver. Curr Opin Lipidol, 2010. 21(6): p. 507–17.
11.Loomba, R. and H. Cortez-Pinto, Exercise and improvement of NAFLD: Practical recommendations. J Hepatol, 2015. 63(1): p. 10–2.
12.Rinella, M. E. and A. J. Sanyal, Management of NAFLD: a stage-based approach. Nat Rev Gastroenterol Hepatol, 2016. 13(4): p. 196–205.
13.Sen, C. K., Oxidants and antioxidants in exercise. J Appl Physiol (1985), 1995. 79(3): p. 675–86.
14.Sen, C. K., M. Atalay, and O. Hanninen, Exercise-induced oxidative stress: glutathione supplementation and deficiency. J Appl Physiol (1985), 1994. 77(5): p. 2177–87.
15.Linden, M. A., et al., Treating NAFLD in OLETF rats with vigorous-intensity interval exercise training. Med Sci Sports Exerc, 2015. 47(3): p. 556–67.
16.Rayyan, Y. M. and R. F. Tayyem, Non-alcoholic fatty liver disease and associated dietary and lifestyle risk factors. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 2018. 12(4): p. 569–575.
17.Mantena, S. K., et al., Mitochondrial dysfunction and oxidative stress in the pathogenesis of alcohol- and obesity-induced fatty liver diseases. Free Radic Biol Med, 2008. 44(7): p. 1259–72.
18.Koves, T. R., et al., Peroxisome proliferator-activated receptor-gamma co-activator 1alpha-mediated metabolic remodeling of skeletal myocytes mimics exercise training and reverses lipid-induced mitochondrial inefficiency. J Biol Chem, 2005. 280(39): p. 33588–98.
19.Grattagliano, I., et al., Oxidative stress-induced risk factors associated with the metabolic syndrome: a unifying hypothesis. J Nutr Biochem, 2008. 19(8): p. 491–504.
20.Ferreira, J. C., et al., Maximal lactate steady state in running mice: effect of exercise training. Clin Exp Pharmacol Physiol, 2007. 34(8): p. 760–5.
21.Evangelista, F. S., et al., Physical training improves body weight and energy balance but does not protect against hepatic steatosis in obese mice. Int J Clin Exp Med, 2015. 8(7): p. 10911–9.
22.Rao, X., et al., An improvement of the 2^(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat Bioinforma Biomath, 2013. 3(3): p. 71–85.
23.Liang, W., et al., Establishment of a general NAFLD scoring system for rodent models and comparison to human liver pathology. PLoS One, 2014. 9(12): p. e115922.
24.Alp, P. R., E. A. Newsholme, and V. A. Zammit, Activities of citrate synthase and NAD+-linked and NADP+-linked isocitrate dehydrogenase in muscle from vertebrates and invertebrates. Biochem J, 1976. 154(3): p. 689–700.
25.Ito, M., et al., High levels of fatty acids increase contractile function of neonatal rabbit hearts during reperfusion following ischemia. Am J Physiol Heart Circ Physiol, 2010. 298(5): p. H1426–37.
26.Buege, J. A. and S. D. Aust, Microsomal lipid peroxidation. Methods Enzymol, 1978. 52: p. 302–10.
27.Nascimento, L., et al., The effect of maternal low-protein diet on the heart of adult offspring: role of mitochondria and oxidative stress. Appl Physiol Nutr Metab, 2014. 39(8): p. 880–7.
28.Reznick, A. Z. and L. Packer, Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol, 1994. 233: p. 357–63.
29.Misra, H. P. and I. Fridovich, The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem, 1972. 247(10): p. 3170–5.
30.Aebi, H., Catalase in vitro. Methods Enzymol, 1984. 105: p. 121–6.
31.Habig, W. H., M. J. Pabst, and W. B. Jakoby, Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem, 1974. 249(22): p. 7130–9.
32.Hissin, P. J. and R. Hilf, A fluorometric method for determination of oxidized and reduced glutathione in tissues. Analytical biochemistry, 1976. 74(1): p. 214–226.
33.Ellman, G. L., Tissue sulfhydryl groups. Arch Biochem Biophys, 1959. 82(1): p. 70–7.
34.Jeppesen, J. and B. Kiens, Regulation and limitations to fatty acid oxidation during exercise. J Physiol, 2012. 590(5): p. 1059–68.
35.Milagro, F. I., et al., Dietary factors, epigenetic modifications and obesity outcomes: progresses and perspectives. Mol Aspects Med, 2013. 34(4): p. 782–812.
36.Serviddio, G., et al., Mitochondrial involvement in non-alcoholic steatohepatitis. Mol Aspects Med, 2008. 29(1–2): p. 22–35.
37.Thyfault, J. P., et al., Rats selectively bred for low aerobic capacity have reduced hepatic mitochondrial oxidative capacity and susceptibility to hepatic steatosis and injury. J Physiol, 2009. 587(Pt 8): p. 1805–16.
38.Rui, L., Energy metabolism in the liver. Compr Physiol 4: 177–197. 2014.
39.Sun, L., et al., Endurance exercise causes mitochondrial and oxidative stress in rat liver: effects of a combination of mitochondrial targeting nutrients. Life sciences, 2010. 86(1–2): p. 39–44.
40.Morris, E. M., et al., Mitochondria and redox signaling in steatohepatitis. Antioxid Redox Signal, 2011. 15(2): p. 485–504.
41.Linden, M. A., et al., Treating NAFLD in OLETF rats with vigorous-intensity interval exercise training. Medicine and science in sports and exercise, 2015. 47(3): p. 556.
42.Shin, S.-K., et al., Catalase and nonalcoholic fatty liver disease. Pflügers Archiv-European Journal of Physiology, 2018. 470(12): p. 1721–1737.