[1] You Q S, Xu L, Wang Y X, et al. Prevalence of retinitis pigmentosa in North China: the Beijing Eye Public Health Care Project. Acta Ophthalmologica. 2013; 91(6): e499-e500.
[2] Russell S, Bennett J, Wellman JA, et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet. 2017; 390(10097): 849-860.
[3] Daiger SP, Sullivan LS, Bowne SJ. Genes and mutations causing retinitis pigmentosa. Clin Genet. 2013; 84(2): 132-141.
[4] Fisher JW. Erythropoietin: physiology and pharmacology update. Exp Biol Med (Maywood). 2003; 228(1): 1-14.
[5] Hardee ME, Arcasoy MO, Blackwell KL, et al. Erythropoietin biology in cancer. Clin Cancer Res. 2006; 12(2): 332-9.
[6] S B, M M, Corsini E GC, B V. Erythropoietin: a novel neuroprotective cytokine. Neurotoxicology. 2005; 26(5): 923-8.
[7] Gawad AE, Schlichting L, Strauss O, et al. Antiapoptotic properties of erythropoietin: novel strategies for protection of retinal pigment epithelial cells. Eye (Lond). 2009; 23(12): 2245-50..
[8] Feng Q. Beyond erythropoiesis: the anti-inflammatory effects of erythropoietin. Cardiovasc Res. 2006; 71(4): 615-7.
[9] Munro K, Rees S, O'Dowd R, et al. Developmental profile of erythropoietin and its receptor in guinea-pig retina. Cell Tissue Res. 2009; 336(1): 21-9.
[10] Abri Aghdam K, Soltan Sanjari M, Ghasemi Falavarjani K. Erythropoietin in ophthalmology: A literature review. Journal of Current Ophthalmology. 2016; 28(1): 5-11.
[11] Tao Y, Wang Y, Ma Z, et al. Subretinal delivery of erythropoietin alleviates the N-methyl-N-nitrosourea-induced photoreceptor degeneration and visual functional impairments: an in vivo and ex vivo study. Drug Delivery. 2017; 24(1): 1273-1283.
[12] Cheng YH, Hung KH, Tsai TH, et al. Sustained delivery of latanoprost by thermosensitive chitosan-gelatin-based hydrogel for controlling ocular hypertension. Acta Biomater. 2014; 10(10): 4360-4366.
[13] Song Y, Nagai N, Saijo S, et al. In situ formation of injectable chitosan-gelatin hydrogels through double crosslinking for sustained intraocular drug delivery. Materials Science & Engineering C Materials for Biological Applications. 2018; 88:1.
[14] Gao Y, Sun Y, Ren F, et al. PLGA–PEG–PLGA hydrogel for ocular drug delivery of dexamethasone acetate. Drug Development & Industrial Pharmacy. 2010; 36(10): 1131-1138.
[15] Natesan S, Pandian S K , Ponnusamy C , et al. Co-encapsulated resveratrol and quercetin in chitosan and peg modified chitosan nanoparticles: for efficient intra ocular pressure reduction. International Journal of Biological Macromolecules. 2017; 104: 1837-1845.
[16] Petersen-Jones S M. Animal models of human retinal dystrophies. Eye. 1998; 12 (Pt 3b)(3b): 566.
[17] Strettoi E, Pignatelli V. Modifications of retinal neurons in a mouse model of retinitis pigmentosa. Proceedings of the National Academy of Sciences. 2000; 97(20): 11020-11025.
[18] Mclaughlin M E, Sandberg M A , Berson E L , et al. Recessive mutations in the gene encoding the β–subunit of rod phosphodiesterase in patients with retinitis pigmentosa. Nature Genetics. 1993; 4(2): 130-134.
[19] Duan X, Li G, Wang J. Investigation of the early morphological changes of photoreceptor segment in animal model of hereditary retinal degeneration. Ophthalmol CHN. 2003; 12(4): 237-240.
[20] Nussenblatt RB, Liu B, Wei L, Sen HN. Int Rev Immunol. The Immunological Basis of Degenerative Diseases of the Eye. 2013; 32(1): 97-112.
[21] Madeira MH, Boia R, Santos PF, et al. Contribution of Microglia-Mediated Neuroinflammation to Retinal Degenerative Diseases. Mediators Inflamm. 2015; 2015: 673090.
[22] Battu R, Mohan A, Khanna A, et al. Retinal oxygen saturation in retinitis pigmentosa and macular dystrophies in asian-Indian eyes. Invest Ophthalmol Vis Sci. 2015; 56(5): 2798-2802.
[23] Luo W, Hu L, Wang F. The Protective Effect of Erythropoietin on the Retina. Ophthalmic Research. 2015; 53(2): 74-81.
[24] Nekoui A, Blaise G. Erythropoietin and Nonhematopoietic Effects[J]. American Journal of the Medical Sciences. 2017; 353(1): 76-81.
[25] Hernández C, Simó R. Erythropoietin produced by the retina: its role in physiology and diabetic retinopathy. Endocrine. 2012; 41(2): 220-226.
[26] Si W, Wang J, Li M, et al. Erythropoietin protects neurons from apoptosis via activating PI3K/AKT and inhibiting Erk1/2 signaling pathway. 3 Biotech. 2019; 9(4): 131.
[27] Zou YR, Zhang J, Wang J, et al. Erythropoietin receptor activation protects the kidney from ischemia/reperfusion-induced apoptosis by activating ERK/p53 signal pathway. Transplant Proc. 2016; 48(1): 217–21.
[28] Grimm C, Wenzel A, Acar N, et al. Hypoxic preconditioning and erythropoietin protect retinal neurons from degeneration. Adv Exp Med Biol. 2006; 588: 119-31.
[29] Gui D, Li Y, Chen X, et al. HIF 1 signaling pathway involving iNOS, COX 2 and caspase 9 mediates the neuroprotection provided by erythropoietin in the retina of chronic ocular hypertension rats. Molecular Medicine Reports. 2015; 11(2): 1490.
[30] Lee M, Wang C, Jin S W, et al. Expression of human inducible nitric oxide synthase in response to cytokines is regulated by hypoxia-inducible factor-1. Free Radic. Biol. Med. 2019; 130: 278-287.
[31] Patel S, Rowe MJ, Winters SA, et al. Elevated Erythropoietin mRNA and Protein Concentrations in the Developing Human Eye. Pediatr Res. 2008; 63(4): 394-7.
[32] Stahl A, Buchwald A, Martin G, et al. Vitreal levels of erythropoietin are increased in patients with retinal vein occlusion and correlate with vitreal VEGF and the extent of macular edema.Retina (Philadelphia, Pa.). 2010; 30: 1524-9.
[33] Staels W, Heremans Y, Heimberg H, et al. VEGF-A and blood vessels: a beta cell perspective. Diabetologia. 2019.
[34] Rong X, Mo X, Ren T, et al. Neuroprotective effect of erythropoietin-loaded composite microspheres on retinal ganglion cells in rats. Eur J Pharm Sci. 2011; 43(4): 334-42.