1. NCD NCDRFC. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants (vol 387, pg 1513, 2016). Lancet. 2017;389(10068):E2-E. doi: 10.1016/s0140-6736(16)32060-8. PubMed PMID: WOS:000393283400001.
2. Khatami M. Cancer; an induced disease of twentieth century! Induction of tolerance, increased entropy and 'Dark Energy': loss of biorhythms (Anabolism v. Catabolism). Clinical and Translational Medicine. 2018;7. doi: 10.1186/s40169-018-0193-6. PubMed PMID: WOS:000437116100001.
3. Broskey NT, Marlatt KL, Most J, Erickson ML, Irving BA, Redman LM. The Panacea of Human Aging: Calorie Restriction Versus Exercise. Exercise and Sport Sciences Reviews. 2019;47(3):169-75. doi: 10.1249/jes.0000000000000193. PubMed PMID: WOS:000471661100006.
4. Sabounchi NS, Rahmandad H, Ammerman A. Best-fitting prediction equations for basal metabolic rate: informing obesity interventions in diverse populations. International Journal of Obesity. 2013;37(10):1364-70. doi: 10.1038/ijo.2012.218. PubMed PMID: WOS:000325542200011.
5. Melvin RG, Van Voorhies WA, Ballard JWO. Working harder to stay alive: Metabolic rate increases with age in Drosophila simulans but does not correlate with life span. Journal of Insect Physiology. 2007;53(12):1300-6. doi: 10.1016/j.jinsphys.2007.07.006. PubMed PMID: WOS:000251333200011.
6. Kelesidis T, Schmid I. Assessment of Telomere Length, Phenotype, and DNA Content. Current protocols in cytometry. 2017;79:7.26.1-7..3. doi: 10.1002/cpcy.12. PubMed PMID: MEDLINE:28055113.
7. Mockett RJ, Sohal RS. Temperature-dependent trade-offs between longevity and fertility in the Drosophila mutant, methuselah. Experimental Gerontology. 2006;41(6):566-73. doi: 10.1016/j.exger.2006.03.015. PubMed PMID: WOS:000238899600005.
8. Boyce AJ, Mouton JC, Lloyd P, Wolf BO, Martin TE. Metabolic rate is negatively linked to adult survival but does not explain latitudinal differences in songbirds. Ecology Letters. 2020;23(4):642-52. doi: 10.1111/ele.13464. PubMed PMID: WOS:000509608700001.
9. Salvestrini V, Sell C, Lorenzini A. Obesity May Accelerate the Aging Process. Frontiers in Endocrinology. 2019;10. doi: 10.3389/fendo.2019.00266. PubMed PMID: WOS:000467302200001.
10. Bowman K, Atkins JL, Delgado J, Kos K, Kuchel GA, Ble A, et al. Central adiposity and the overweight risk paradox in aging: follow-up of 130,473 UK Biobank participants. American Journal of Clinical Nutrition. 2017;106(1):130-5. doi: 10.3945/ajcn.116.147157. PubMed PMID: WOS:000404593900018.
11. Conway LG, III, Repke MA, Houck SC. Psychological Spacetime: Implications of Relativity Theory for Time Perception. Sage Open. 2016;6(4). doi: 10.1177/2158244016674511. PubMed PMID: WOS:000388301800028.
12. Matthews WJ, Gheorghiu AI. Repetition, expectation, and the perception of time. Current Opinion in Behavioral Sciences. 2016;8:110-6. doi: 10.1016/j.cobeha.2016.02.019. PubMed PMID: WOS:000395323100018.
13. Haywood CJ, Prendergast LA, Lim R, Lappas M, Lim WK, Proietto J. Obesity in older adults: Effect of degree of weight loss on cardiovascular markers and medications. Clinical Obesity. 2019;9(4). doi: 10.1111/cob.12316. PubMed PMID: WOS:000474933400009.
14. Mueller MJ, Geisler C. From the past to future: from energy expenditure to energy intake to energy expenditure. European Journal of Clinical Nutrition. 2017;71(3):358-64. doi: 10.1038/ejcn.2016.231. PubMed PMID: WOS:000395697900012.
15. Most J, Redman LM. Impact of calorie restriction on energy metabolism in humans. Experimental Gerontology. 2020;133. doi: 10.1016/j.exger.2020.110875. PubMed PMID: WOS:000518215600012.
16. Cvetkovic B, Gjoreski M, Sorn J, Maslov P, Lustrek M. Monitoring Physical Activity and Mental Stress Using Wrist-Worn Device and a Smartphone. Machine Learning and Knowledge Discovery in Databases, Ecml Pkdd 2017, Pt Iii. 2017;10536:414-8. doi: 10.1007/978-3-319-71273-4_42. PubMed PMID: WOS:000443111100042.
17. Camps SG, Wang NX, Tan WSK, Henry CJ. Estimation of basal metabolic rate in Chinese: are the current prediction equations applicable? Nutrition Journal. 2016;15. doi: 10.1186/s12937-016-0197-2. PubMed PMID: WOS:000383424700001.
18. Piers LS, Shetty PS. BASAL METABOLIC RATES OF INDIAN WOMEN. European Journal of Clinical Nutrition. 1993;47(8):586-91. PubMed PMID: WOS:A1993LT40800007.
19. Jesus P, Achamrah N, Grigioni S, Charles J, Rimbert A, Folope V, et al. Validity of predictive equations for resting energy expenditure according to the body mass index in a population of 1726 patients followed in a Nutrition Unit. Clinical Nutrition. 2015;34(3):529-35. doi: 10.1016/j.clnu.2014.06.009. PubMed PMID: WOS:000355034900028.
20. Piaggi P, Thearle MS, Krakoff J, Votruba SB. Higher Daily Energy Expenditure and Respiratory Quotient, Rather Than Fat-Free Mass, Independently Determine Greater ad Libitum Overeating. Journal of Clinical Endocrinology & Metabolism. 2015;100(8):3011-20. doi: 10.1210/jc.2015-2164. PubMed PMID: WOS:000364855900044.
21. de Jonge L, DeLany JP, Nguyen T, Howard J, Hadley EC, Redman LM, et al. Validation study of energy expenditure and intake during calorie restriction using doubly labeled water and changes in body composition. American Journal of Clinical Nutrition. 2007;85(1):73-9. PubMed PMID: WOS:000243419400012.
22. Lemay V, Drapeau V, Tremblay A, Mathieu ME. Exercise and negative energy balance in males who perform mental work. Pediatric Obesity. 2014;9(4):300-9. doi: 10.1111/j.2047-6310.2013.00158.x. PubMed PMID: WOS:000340673800007.
23. Mitchell SE, Tang Z, Kerbois C, Delville C, Derous D, Green CL, et al. The effects of graded levels of calorie restriction: VIII. Impact of short term calorie and protein restriction on basal metabolic rate in the C57BL/6 mouse. Oncotarget. 2017;8(11):17453-74. doi: 10.18632/oncotarget.15294. PubMed PMID: WOS:000396877500007.
24. Bajotto G, Shimomura Y. Determinants of disuse-induced skeletal muscle atrophy: Exercise and nutrition countermeasures to prevent protein loss. Journal of Nutritional Science and Vitaminology. 2006;52(4):233-47. doi: 10.3177/jnsv.52.233. PubMed PMID: WOS:000240265900001.
25. Gurzadyan VG, Margaryan AT. The light speed versus the observer: the Kennedy-Thorndike test from GRAAL-ESRF. European Physical Journal C. 2018;78(8). doi: 10.1140/epjc/s10052-018-6080-x. PubMed PMID: WOS:000440438400001.
26. Uggerhoj UI, Mikkelsen RE, Faye J. The young centre of the Earth. European Journal of Physics. 2016;37(3). doi: 10.1088/0143-0807/37/3/035602. PubMed PMID: WOS:000375568300009.
27. Carr CE, Newman DJ. Space suit bioenergetics: Framework and analysis of unsuited and suited activity. Aviation Space and Environmental Medicine. 2007;78(11):1013-22. doi: 10.3357/asem.1952.2007. PubMed PMID: WOS:000250711300001.
28. Blanc S, Geloen A, Normand S, Gharib C, Somody L. Simulated weightlessness alters the nycthemeral distribution of energy expenditure in rats. Journal of Experimental Biology. 2001;204(23):4107-13. PubMed PMID: WOS:000172748700011.
29. Wittmann M, Lehnhoff S. Age effects in perception of time. Psychological Reports. 2005;97(3):921-35. doi: 10.2466/pr0.97.3.921-935. PubMed PMID: WOS:000235108300034.
30. Healy K, McNally L, Ruxton GD, Cooper N, Jackson AL. Metabolic rate and body size are linked with perception of temporal information. Animal Behaviour. 2013;86(4):685-96. doi: 10.1016/j.anbehav.2013.06.018. PubMed PMID: WOS:000324871800007.
31. Zhang Y, Wu J, Hong P, Mao D, Zhuo Q, Chen X, et al. Basal metabolic rate of overweight and obese adults in Beijing. Wei sheng yan jiu = Journal of hygiene research. 2016;45(5):739-48. PubMed PMID: MEDLINE:29903123.
32. Welle S, Forbes GB, Statt M, Barnard RR, Amatruda JM. ENERGY-EXPENDITURE UNDER FREE-LIVING CONDITIONS IN NORMAL-WEIGHT AND OVERWEIGHT WOMEN. American Journal of Clinical Nutrition. 1992;55(1):14-21. PubMed PMID: WOS:A1992GY41400004.
33. Hancock PA. The effect of age and sex on the perception of time in life. American Journal of Psychology. 2010;123(1):1-13. doi: 10.5406/amerjpsyc.123.1.0001. PubMed PMID: WOS:000275974600001.
34. Barbi E, Lagona F, Marsili M, Vaupel JW, Wachter KW. The plateau of human mortality: Demography of longevity pioneers. Science. 2018;360(6396):1459-61. doi: 10.1126/science.aat3119. PubMed PMID: WOS:000436598000076.
35. Harms JK. Time-lapsed reality visual metabolic rate and quantum time and space. Kybernetes. 2003;32(7-8):1113-28. doi: 10.1108/03684920310483216. PubMed PMID: WOS:000185433500014.
36. Westerterp KR, Goran MI. Relationship between physical activity related energy expenditure and body composition: A gender difference. International Journal of Obesity. 1997;21(3):184-8. doi: 10.1038/sj.ijo.0800385. PubMed PMID: WOS:A1997WM23300003.
37. Tsai SB, Tucci V, Uchiyama J, Fabian NJ, Lin MC, Bayliss PE, et al. Differential effects of genotoxic stress on both concurrent body growth and gradual senescence in the adult zebrafish. Aging Cell. 2007;6(2):209-24. doi: 10.1111/j.1474-9726.2007.00278.x. PubMed PMID: WOS:000244975600009.
38. Polymenis M, Kennedy BK. Unbalanced Growth, Senescence and Aging. Cell Division Machinery and Disease. 2017;1002:189-208. doi: 10.1007/978-3-319-57127-0_8. PubMed PMID: WOS:000454296400009.
39. Hayflick L. THE LIMITED IN VITRO LIFETIME OF HUMAN DIPLOID CELL STRAINS. Experimental cell research. 1965;37:614-36. doi: 10.1016/0014-4827(65)90211-9. PubMed PMID: MEDLINE:14315085.
40. Moss DK, Ivany LC, Judd EJ, Cummings PW, Bearden CE, Kim W-J, et al. Lifespan, growth rate, and body size across latitude in marine Bivalvia, with implications for Phanerozoic evolution. Proceedings of the Royal Society B-Biological Sciences. 2016;283(1836). doi: 10.1098/rspb.2016.1364. PubMed PMID: WOS:000384274700016.
41. Heymsfield SB, Thomas DM, Bosy-Westphal A, Mueller MJ. The anatomy of resting energy expenditure: body composition mechanisms. European Journal of Clinical Nutrition. 2019;73(2):166-71. doi: 10.1038/s41430-018-0319-3. PubMed PMID: WOS:000458134100003.
42. Bordone L, Guarente L. Calorie restriction, SIRT1 and metabolism: Understanding longevity. Nature Reviews Molecular Cell Biology. 2005;6(4):298-305. doi: 10.1038/nrm1616. PubMed PMID: WOS:000228060400011.
43. Hintze LJ, Goldfield G, Seguin R, Damphousse A, Riopel A, Doucet E. The rate of weight loss does not affect resting energy expenditure and appetite sensations differently in women living with overweight and obesity. Physiology & Behavior. 2019;199:314-21. doi: 10.1016/j.physbeh.2018.11.032. PubMed PMID: WOS:000456753900038.
44. Redman LM, Ravussin E. Caloric Restriction in Humans: Impact on Physiological, Psychological, and Behavioral Outcomes. Antioxidants & Redox Signaling. 2011;14(2):275-87. doi: 10.1089/ars.2010.3253. PubMed PMID: WOS:000285390800009.
45. Piaggi P, Thearle MS, Bogardus C, Krakoff J. Fasting Hyperglycemia Predicts Lower Rates of Weight Gain by Increased Energy Expenditure and Fat Oxidation Rate. Journal of Clinical Endocrinology & Metabolism. 2015;100(3):1078-87. doi: 10.1210/jc.2014-3582. PubMed PMID: WOS:000353358900058.
46. Jumpertz R, Hanson RL, Sievers ML, Bennett PH, Nelson RG, Krakoff J. Higher Energy Expenditure in Humans Predicts Natural Mortality. Journal of Clinical Endocrinology & Metabolism. 2011;96(6):E972-E6. doi: 10.1210/jc.2010-2944. PubMed PMID: WOS:000290810200018.
47. Schutz Y, Weinsier RL, Hunter GR. Assessment of free-living physical activity in humans: An overview of currently available and proposed new measures. Obesity Research. 2001;9(6):368-79. doi: 10.1038/oby.2001.48. PubMed PMID: WOS:000169306400006.
48. Ellison PT. Energetics and reproductive effort. American Journal of Human Biology. 2003;15(3):342-51. doi: 10.1002/ajhb.10152. PubMed PMID: WOS:000182329000005.
49. Salomon TB, Benfato MS. Sexual activity affects the redox profile along the aging process in male rats. Biogerontology. 2018;19(1):13-21. doi: 10.1007/s10522-017-9731-7. PubMed PMID: WOS:000419900600002.
50. Jasienska G, Bribiescas RG, Furberg A-S, Helle S, Nunez-de la Mora A. Human reproduction and health: an evolutionary perspective. Lancet. 2017;390(10093):510-20. doi: 10.1016/s0140-6736(17)30573-1. PubMed PMID: WOS:000406463400032.
51. Sztajzel J, Periat M, Marti V, Krall P, Rutishauser W. Effect of sexual activity on cycle ergometer stress test parameters, on plasmatic testosterone levels and on concentration capacity - A study in high-level male athletes performed in the laboratory. Journal of Sports Medicine and Physical Fitness. 2000;40(3):233-9. PubMed PMID: WOS:000165777500007.
52. Morino K, Kondo K, Tanaka S, Nishida Y, Nakae S, Yamada Y, et al. Total energy expenditure is comparable between patients with and without diabetes mellitus: Clinical Evaluation of Energy Requirements in Patients with Diabetes Mellitus (CLEVER-DM) Study. Bmj Open Diabetes Research & Care. 2019;7(1). doi: 10.1136/bmjdrc-2019-000648. PubMed PMID: WOS:000471847200018.
53. Pujia A, Gazzaruso C, Ferro Y, Mazza E, Maurotti S, Russo C, et al. Individuals with Metabolically Healthy Overweight/Obesity Have Higher Fat Utilization than Metabolically Unhealthy Individuals. Nutrients. 2016;8(1). doi: 10.3390/nu8010002. PubMed PMID: WOS:000374589300002.
54. Kowacs PA, Piovesan EJ, Werneck LC, Fameli H, Zani AC, da Silva HP. Critical flicker frequency in migraine. A controlled study in patients without prophylactic therapy. Cephalalgia. 2005;25(5):339-43. doi: 10.1111/j.1468-2982.2004.00861.x. PubMed PMID: WOS:000228397400004.
55. Caron N, Peyrot N, Caderby T, Verkindt C, Dalleau G. Energy Expenditure in People with Diabetes Mellitus: A Review. Frontiers in Nutrition. 2016;3. doi: 10.3389/fnut.2016.00056. PubMed PMID: WOS:000408968900001.
56. Wu J, Mao D, Zhang Y, Chen X, Hong P, Piao J, et al. Basal energy expenditure, resting energy expenditure and one metabolic equivalent (1 MET) values for young Chinese adults with different body weights. Asia Pacific Journal of Clinical Nutrition. 2019;28(1):35-41. doi: 10.6133/apjcn.201903_28(1).0006. PubMed PMID: WOS:000462038600006.
57. Lopes LL, Bressan J, Peluzio MdCG, Hermsdorff HHM. LINE-1 in Obesity and Cardiometabolic Diseases: A Systematic Review. Journal of the American College of Nutrition. 2019;38(5):478-84. doi: 10.1080/07315724.2018.1553116. PubMed PMID: WOS:000472969800012.
58. Carbone S, Canada JM, Billingsley HE, Siddiqui MS, Elagizi A, Lavie CJ. Obesity paradox in cardiovascular disease: where do we stand? Vascular Health and Risk Management. 2019;15:89-100. doi: 10.2147/vhrm.s168946. PubMed PMID: WOS:000467337300001.
59. Chetboun M, Raverdy V, Labreuche J, Simonnet A, Wallet F, Caussy C, et al. BMI and pneumonia outcomes in critically ill covid-19 patients: An international multicenter study. Obesity. 2021;29(9):1477-86. doi: 10.1002/oby.23223. PubMed PMID: WOS:000687845400011.
60. de Menezes MC, Duarte CK, Costa DVD, Lopes MS, de Freitas PP, Campos SF, et al. A systematic review of effects, potentialities, and limitations of nutritional interventions aimed at managing obesity in primary and secondary health care. Nutrition. 2020;75-76. doi: 10.1016/j.nut.2020.110784. PubMed PMID: WOS:000539345000020.
61. Oshakbayev K, Dukenbayeva B, Togizbayeva G, Durmanova A, Gazaliyeva M, Sabir A, et al. Weight loss technology for people with treated type 2 diabetes: a randomized controlled trial. Nutrition & Metabolism. 2017;14. doi: 10.1186/s12986-017-0163-9. PubMed PMID: WOS:000396908600002.
62. Oshakbayev K, Dukenbayeva B, Otarbayev N, Togizbayeva G, Tabynbayev N, Gazaliyeva M, et al. Weight loss therapy for clinical management of patients with some atherosclerotic diseases: a randomized clinical trial. Nutrition Journal. 2015;14. doi: 10.1186/s12937-015-0108-y. PubMed PMID: WOS:000365570700001.
63. Oshakbayev KP, Alibek K, Ponomarev IO, Uderbayev NN, Dukenbayeva BA. Weight change therapy as a potential treatment for end-stage ovarian carcinoma. Am J Case Rep. 2014;15:203-11. doi: 10.12659/AJCR.890229. PubMed PMID: 24847411; PubMed Central PMCID: PMCPMC4025513.
64. Ozkaya I, Gurbuz M. Malnourishment in the overweight and obese elderly. Nutricion Hospitalaria. 2019;36(1):39-42. doi: 10.20960/nh.02062. PubMed PMID: WOS:000459699300009.
65. Santulli G, Ciccarelli M, Trimarco B, Iaccarino G. Physical activity ameliorates cardiovascular health in elderly subjects: the functional role of the beta adrenergic system. Frontiers in Physiology. 2013;4. doi: 10.3389/fphys.2013.00209. PubMed PMID: WOS:000346774000206.
66. Nie C, Li Y, Li R, Yan Y, Zhang D, Li T, et al. Distinct biological ages of organs and systems identified from a multi-omics study. Cell Rep. 2022;38(10):110459. doi: 10.1016/j.celrep.2022.110459. PubMed PMID: 35263580.
67. Li X-D, Rebrin I, Forster MJ, Sohal RS. Effects of age and caloric restriction on mitochondrial protein oxidative damage in mice. Mechanisms of Ageing and Development. 2012;133(1):30-6. doi: 10.1016/j.mad.2011.12.001. PubMed PMID: WOS:000301019700004.
68. Rizza W, Veronese N, Fontana L. What are the roles of calorie restriction and diet quality in promoting healthy longevity? Ageing Research Reviews. 2014;13:38-45. doi: 10.1016/j.arr.2013.11.002. PubMed PMID: WOS:000333000000004.
69. Elia M, Ritz P, Stubbs RJ. Total energy expenditure in the elderly. European Journal of Clinical Nutrition. 2000;54:S92-S103. doi: 10.1038/sj.ejcn.1601030. PubMed PMID: WOS:000088118600013.
70. Goldsmith TC. Modern evolutionary mechanics theories and resolving the programmed/non-programmed aging controversy. Biochemistry-Moscow. 2014;79(10):1049-55. doi: 10.1134/s000629791410006x. PubMed PMID: WOS:000343751900006.
71. Müller MJ, Enderle J, Bosy-Westphal A. Changes in Energy Expenditure with Weight Gain and Weight Loss in Humans. Current Obesity Reports. 2016;5(4):413-23. doi: 10.1007/s13679-016-0237-4.
72. Liu J, Wang Y, Lin L. Small molecules for fat combustion: targeting obesity. Acta Pharmaceutica Sinica B. 2019;9(2):220-36. doi: 10.1016/j.apsb.2018.09.007. PubMed PMID: WOS:000461052500002.
73. Soeters M, Soeters P, Schooneman M, Houten S, Romijn J. Adaptive reciprocity of lipid and glucose metabolism in human short-term starvation. American Journal of Physiology-Endocrinology and Metabolism. 2012;303(12):E1397-E407. doi: 10.1152/ajpendo.00397.2012. PubMed PMID: WOS:000312586100001.
74. Kahleova H, Lloren JI, Mashchak A, Hill M, Fraser GE. Meal Frequency and Timing Are Associated with Changes in Body Mass Index in Adventist Health Study 2. Journal of Nutrition. 2017;147(9):1722-8. doi: 10.3945/jn.116.244749. PubMed PMID: WOS:000411807800017.
75. Ulmer HV. Concept of an extracellular regulation of muscular metabolic rate during heavy exercise in humans by psychophysiological feedback. Experientia. 1996;52(5):416-20. doi: 10.1007/bf01919309. PubMed PMID: WOS:A1996UN12600005.
76. Misanin JR, Wilson HA, Schwarz PR, Tuschak JB, Hinderliter CF. Low body temperature affects associative processes in long-trace conditioned flavor aversion. Physiology & Behavior. 1998;65(3):581-90. doi: 10.1016/s0031-9384(98)00212-1. PubMed PMID: WOS:000077659900024.
77. Block RA, Zakay D, Hancock PA. Developmental changes in human duration judgments: A meta-analytic review. Developmental Review. 1999;19(1):183-211. doi: 10.1006/drev.1998.0475. PubMed PMID: WOS:000078759900006.
78. Negasheva M, Lapshina N, Okushko R, Godina E. Biological age and tempos of aging in women over 60 in connection with their morphofunctional characteristics. Journal of Physiological Anthropology. 2014;33:7. doi: 10.1186/1880-6805-33-12. PubMed PMID: WOS:000338671100001.
79. Keil G, Cummings E, de Magalhaes JP. Being cool: how body temperature influences ageing and longevity. Biogerontology. 2015;16(4):383-97. doi: 10.1007/s10522-015-9571-2. PubMed PMID: WOS:000357114600001.
80. Ravussin E, Redman LM, Rochon J, Das SK, Fontana L, Kraus WE, et al. A 2-Year Randomized Controlled Trial of Human Caloric Restriction: Feasibility and Effects on Predictors of Health Span and Longevity. Journals of Gerontology Series a-Biological Sciences and Medical Sciences. 2015;70(9):1097-104. doi: 10.1093/gerona/glv057. PubMed PMID: WOS:000363482300007.
81. Geisler C, Braun W, Pourhassan M, Schweitzer L, Glueer C-C, Bosy-Westphal A, et al. Gender-Specific Associations in Age-Related Changes in Resting Energy Expenditure (REE) and MRI Measured Body Composition in Healthy Caucasians. Journals of Gerontology Series a-Biological Sciences and Medical Sciences. 2016;71(7):941-6. doi: 10.1093/gerona/glv211. PubMed PMID: WOS:000381209900014.
82. Munro D, Pamenter ME. Comparative studies of mitochondrial reactive oxygen species in animal longevity: Technical pitfalls and possibilities. Aging Cell. 2019;18(5). doi: 10.1111/acel.13009. PubMed PMID: WOS:000483691100015.
83. Zampino M, Semba RD, Adelnia F, Spencer RG, Fishbein KW, Schrack JA, et al. Greater skeletal muscle oxidative capacity is associated with higher resting metabolic rate: results from the Baltimore Longitudinal Study of Aging. The journals of gerontology Series A, Biological sciences and medical sciences. 2020. doi: 10.1093/gerona/glaa071. PubMed PMID: MEDLINE:32201887.
84. Protsiv M, Ley C, Lankester J, Hastie T, Parsonnet J. Decreasing human body temperature in the United States since the industrial revolution. Elife. 2020;9. doi: 10.7554/eLife.49555. PubMed PMID: WOS:000506310000001.
85. Kelemen EP, Cao N, Cao T, Davidowitz G, Dornhaus A. Metabolic rate predicts the lifespan of workers in the bumble bee Bombus impatiens. Apidologie. 2019;50(2):195-203. doi: 10.1007/s13592-018-0630-y. PubMed PMID: WOS:000467208900007.