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Abstract 

Since radiation sensitivity prediction can be used in various field, we investigate the feasibility of an 

in vitro radiation sensitivity prediction model using a deep neural network. A microarray of the 

National Cancer Institute-60 tumor cell lines and clonogenic surviving fraction at an absorbed dose of 

2 Gy values are used to predict radiation sensitivity. The prediction model is based on convolutional 

neural network and 6-fold cross-validation approach is applied to validate the model. Of the 174 

samples, 170 (97.7%) samples show less than 10% and 4 (2.30%) show more than 10% of relative 

error, respectively. Through an additional validation, model accurately predict 172 out of 174 samples, 

representing a prediction accuracy of 98.85% under the criteria of absolute error < 0.01 or the relative 

error < 10%. This results demonstrate that in vitro radiation sensitivity prediction from gene 

expression can be carried out with the deep learning technology. 

  



Introduction 

Quantification for response prediction of normal tissue and tumor to radiation has been considered to 

be necessary in radiation risk assessment, radiation protection, or even radiotherapy. In radiation 

protection, it is basically assumed that members of the population subject to protection are equally 

sensitive to adverse health effects related to radiation exposure, which is the limitation of existing 

radiological protection practices. However, in order to improve this weakness under consideration of 

the various radiation sensitivity differences among members in a protection group, an accurate and 

robust method to evaluate the radiation sensitivity of individuals or subgroups is needed 1. Likewise, 

in radiotherapy, accurate prediction of radiation sensitivity is critical for determining patient-specific 

treatment methods, doses, fractionation schedules, corresponding clinical outcomes, and reducing 

possible side effects of radiotherapy 2, 3. 

From this perspective, several researchers have investigated that the sensitivity of cancer cells to 

radiation damage depends on the type, characteristics, and the gene expression level of the cancer 

cells 4. Simultaneously, advances in gene expression profiling technology have allowed the analysis of 

a growing variety of genetic factors that influence gene expression in cancer cells 5. Based on this, 

several recent studies have shown that in vitro radiation sensitivity can be quantitatively analyzed 

based on gene expression profiling data and have suggested models that can predict radiation 

sensitivity from gene expression data 3, 4, 6, 7, 8, 9. These studies have improved our understanding of the 

relationship between gene expression and radiation sensitivity. However, further discussion and 

research are still needed to establish a robust paradigm for predicting radiation sensitivity 4, 10. 

Meanwhile, as a novel prediction and decision-making methodology, deep learning has recently 

emerged as a major tool for decision-making, classification, and prediction. The deep learning model 

updates itself using the hidden relationships between numerous data, which clearly exists but hard to 

represent numerically. With this characteristics, it seems reasonable to expect that deep learning can 

improve the performance of the prediction models when applied to in vitro radiation sensitivity 

prediction.  

Therefore, in this study, we aimed to investigate the feasibility of a prediction model that predicts in 



vitro radiation sensitivity from gene expression profiling data, based on several previously established 

deep learning modalities. Moreover, by comparing the performance of the resulting model with that of 

models from previous studies, we demonstrate the applicability and potential power of using deep 

learning algorithms to predict radiation sensitivity from gene expression data. 



Results 

Development of a deep learning-based radiation sensitivity prediction model 

Fig. 1 shows the overall flowchart of the radiation sensitivity prediction model. A total of 174 samples 

from 59 NCI-60 cell lines and corresponding SF2 values were split into test and training sets by a 6-

fold cross-validation. For each round of cross-validation, the training sets were fed to the model, and 

the parameters were trained based on a gradient descent algorithm. After training, the test data were 

fed to the model, and the SF2 value of the test data was predicted. Evaluation metrics including 

absolute error, relative error, and prediction accuracy were calculated for the entire test set. If a 

sample failed to be classified as “correct prediction”, such samples were subjected to additional 

prediction validation. If the error was still larger than the criteria after the prediction validation, these 

samples were classified as “prediction hard” cases. These processes were performed over the entire 

cross-validation test set, and the performance of the model was measured through prediction accuracy 

for the entire dataset obtained through this process. 

 

Performance of model and validation of prediction 

Table 1 shows the average of the predicted radiation sensitivity in five rounds of the 6-fold cross-

validation experiment. As shown in fig.2, of the 174 triplicated samples, 142 (81.61%), 28 (16.09%), 

and 4 (2.30%) samples were included in groups with relative errors of less than 2%, 2 to 10%, and 

10% or more, respectively. The model correctly predicted 171 of the 174 samples, indicating that the 

initial prediction accuracy of the model was 98.28%. Three samples (red points in the Fig. 3; one each 

from the cell lines MOLT-4, MDA-MB-435, and HL-60) with abnormally larger error (527.59%, 

129.11%, and 72.88% of relative error, respectively) were subjected to prediction validation and the 

predicted SF2s were 0.302, 0.362, and 0.301 (relative error of 504.27%, 102.34%, and 4.54%), 

respectively. Therefore, one sample (from HL-60) was changed to “correct prediction”, and only two 

samples (one each from MOLT-4 and MDA-MB-435) that produced a relative error larger than 10% 

were classified as final “prediction-hard” cases. Overall average, standard deviation, absolute and 

relative error, and the other detailed information can be found in table S1. 



As shown in Fig. 3, the SF2 value predicted by our model and the true (measured) SF2 value had a 

distinct linear correlation, indicating that the model successfully predicted the radiation sensitivity of 

the cell lines from their gene expression data (95% CI: 0.9834 to 0.9909, Pearson’s r = 0.9877). 

The average relative error and absolute error of the “correct prediction” samples were 1.351 ± 1.875% 

and 0.00596 ± 0.00638, respectively (n=172). In contrast, the relative errors of the “prediction-hard” 

cases were 102.34% (MDA-MB-435) and 504.27% (MOLT-4), and the absolute errors were 0.1832 

and 0.2521, respectively. The overall prediction accuracy after the validation of prediction was 

98.85% (172 out of 174 were correct), and the RMSD was 0.0252 with prediction-hard cases and 

0.00867 without prediction-hard cases.  



Discussion 

Deep learning is a recently emerging research field that has gained prominence as hardware has 

advanced. It is widely used for decision-making, prediction, and classification. With this perspective, 

we proposed the feasibility of deep learning as a novel methodology by developing a deep learning-

based in vitro radiation sensitivity prediction model from gene expression with an accuracy of 

98.85%. This is the first study to attempt to use deep learning in in vitro radiation sensitivity 

prediction. 

In their analyses of model accuracy, Torres-Roca et al. and Zhang et al. who similarly tried to predict 

the radiation sensitivity of the NCI-60 cancer cell lines both set the criteria of the “correct prediction” 

when the predicted SF2s were within 10% of the true (measured) values 4, 9. With these criteria, they 

proposed models with an accuracy of 62% (22 out of 35) and 91% (54 out of 59), respectively. 

Comparably, in our study, 172 samples out of 174 samples were correctly classified using the similar 

but more reasonable criteria described in material section, representing a 98.85% accuracy. Moreover, 

the RMSD of our deep learning model was 0.0251 with the prediction-hard cases and 0.00867 without 

the prediction-hard cases, compared to 0.2 described by Torres-Roca et al., or 0.011 of Zhang et al. 4, 

9. These results indicate that biological nonlinear complex interactions that influence the radiation 

sensitivity of a cell are likely to be well represented by a deep learning model. 

In case of the three samples with large errors in our study, one each from the cell lines MOLT-4, 

MDA-MB-435, and HL-60, these were subjected to prediction validation because it might not be due 

to merely variance and bias over trials. This was supported by the fact that the fluctuation, represented 

by the standard deviation of the prediction of each round of the experiment of these data, was not 

significantly different compared to the other samples, and the other samples in the same cell line 

showed a relatively low error and the prediction. 

As a result of this prediction validation, the sample from HL-60 cell line showed a significantly 

improved prediction error. Hence, it can be inferred that the large error of the HL-60 sample from the 

initial prediction appears to be due to a lack of training data in the training fold of initial prediction. 

For the remaining “prediction-hard” cases, MOLT-4 and MDA-MB-435, we were unable to determine 



whether there was an insufficient amount of data to predict their SF2s correctly or if there were other 

possible problems that could not be investigated in this study, such as mislabeling issues. From this 

perspective, further research is needed to investigate these problems. What is noteworthy, even if 

these “prediction-hard” cases are due to a lack of training samples, the model still predicted these 

samples as radiosensitive. It could be considered that the model has a resistance to these “prediction-

hard” cases, such that the model is still able to predict whether the cell is radiosensitive or not, which 

is fundamentally important. 

There are two major limitations of this study. First, it should be noted that in general, deep learning 

algorithms are fed enormous amounts of data to train the model and thereby enable the model to 

provide general decision making as AlphaGo does 11. However, in this study, the limited number of 

cell lines sample with survival data available for training may not have fully demonstrated the overall 

potential of deep learning. Thus, it seems necessary to further boost the performance of this deep 

learning-based radiation sensitivity prediction model by additional training using a large amount of 

radiation sensitivity datasets from not only NCI-60 cell lines but also from other types of cancer cell 

lines. Second, it may be considered as a limitation of using classical microarray analysis rather than 

the latest gene expression profiling methodology, RNA sequencing. Though microarray is a little 

outdated method and is constantly being replaced to the RNA sequencing, we used microarray data to 

demonstrate the feasibility of deep learning aided radiation sensitivity prediction through comparison 

with previous studies. In this perspective, further research is needed regarding the prediction model 

using RNA sequencing data. 

Despite these limitations, several improvements in radiation sensitivity prediction analyses are 

expected from our study. First, since deep learning aims to “let the data speak” without any additional 

step to extract the feature that represents the characteristics of the input data (as is the case in existing 

statistical methods), we can expect the model to learn to represent a direct and transparent relationship 

between the input genes since data with large dimensions are fed as an input variable 12. Second, the 

deep learning model can further learn (trained) from additional data presented after training, which 

enables deep learning to self-correct and absorb huge amount of data to make itself more robust 13. 



Third, a characteristic of the literally “deep” model enables high-level feature learning, especially 

effective when it comes to handling complexly combined data such as genetic information. Therefore, 

the deep learning based methodology can provide better model performance compared to the 

conventional statistical shallow machine learning-based model, which leads more valid and accurate 

prediction result. 

In deep learning, causes and results are the only information provided. One of their characteristics is 

that they maintain “black boxes” with respect to their internal processes even though they provide 

good results. Deep learning used in this study is also very useful for its ability to predict radiation 

sensitivity with high accuracy, but it cannot provide any scientific explanation for how such 

predictions are made. Therefore, further research is needed to reduce the non-explainability of deep 

learning. With advanced research that attempts to understand and explain the inner world of deep 

learning, it will help to identify the biological and medical mechanisms of how organisms react to 

radiation exposure. 

In conclusion, this study successfully demonstrated the feasibility of a deep learning-based in vitro 

radiation sensitivity prediction model using gene expression profiling data. We established a CNN-

based feature extractor and residual block-added prediction part of the model with previously 

established deep learning methodologies. With additional research and external validation, this model 

and its methodology can be expanded to in vivo radiation sensitivity prediction. 



Methods 

Radiation response 

Since the clonogenic surviving fraction of cells at an absorbed dose of 2 Gy (SF2) is widely used as a 

measurement of in vitro radiation sensitivity, we also selected SF2 as an indicator of radiation 

sensitivity in this study. The true (measured) SF2 values used in this study were obtained from 

previous publications 9, 14. 

 

National Cancer Institute-60 (NCI-60) cell lines 

The NCI-60 panel contains 60 cell lines representing nine types of tumors. It was established by the 

US National Cancer Institute in the 1980s for in vitro drug screening 6. This NCI-60 panel is now a 

valuable research resource, considering the continuous use of this panel for investigations of radiation 

response analysis 9, 15, 16, 17. With this perspective, this panel was used as a platform representing 

multiple cancer cell lines to evaluate the performance of the radiation sensitivity prediction model of 

this study. 

 

Gene expression profiling data 

Gene expression profiling data of NCI-60 cancer cell lines were obtained from the Gene Expression 

Omnibus (GEO; available at https://www.ncbi.nlm.nih.gov/sites/GDSbrowser; series accession 

number GSE32474 18) database, generated from microarray analysis performed with Affymetrix 

Human Genome U133 Plus 2.0 chips (54,675 probe sets). The entire transcript/gene set from the 

Affymetrix array was used to predict radiation sensitivity. Excluding the melanoma cell line MDA-N, 

which was shown to be “not available” from the NCI-60, duplicated or triplicated 174 samples of 

remaining 59 tumor cell lines were used as inputs in the radiation sensitivity prediction model.  

 

Radiation sensitivity prediction modeling 

The deep learning-based radiation sensitivity prediction model is based on the architecture of 

convolutional neural network (CNN). It comprises two distinct components: a feature vector extractor 



based on a convolutional layer and a fully connected (FC) layer. 

First, a feature extractor based on a convolutional layer was designed 19. A convolutional layer is a 

type of layer consisting neural network that only connects nodes within a certain range, which leads to 

two distinct advantages: inherently prevent overfitting and can be trained with a relatively small 

amount of data. In this study, high-level feature vectors were extracted from the input gene expression 

vector using a one-dimensional convolutional layer with pooling and no padding. 

After convolutional layers, radiation sensitivity is predicted via the FC layer with residual skip-

connection 20. This FC layer utilizes a skip connection designed to make calculated gradients 

propagate over several hidden layers along the gradient descent algorithm, allowing the deep learning 

model to be constructed more deeply 20, 21. The residual block is applied by skipping each layer one by 

one. The overall structure of the prediction model is presented in Table 2. 

For both the convolutional layer-based feature extractor and the residual block-added FC layer, a 

leaky rectified linear unit activation was applied 22. L2 regularization and dropout while training were 

also used at the end of every convolution and FC layer while training to prevent overfitting to specific 

data or feature parts and to let the model learn from all interactions within the entire dataset 19, 23, 24, 25. 

 

Training and testing of the prediction model 

To train and test the developed model, five rounds of 6-fold cross-validation were applied. The 6-fold 

cross-validation method divides the entire dataset into six sub-datasets and uses each dataset in turn as 

a test set with the remaining five datasets used as a training set to test the model. To prevent 

overfitting to data of a certain tumor cell line, a 6-fold cross-validation was designed such that the 

data of a particular cell line were not included in the same fold. The final predicted SF2 was 

determined as the average of five rounds of independent cross-validations to increase the stability and 

reduce the deviation of the predicted value. 

 

Measurement of model performance 

The performance of the radiation sensitivity prediction model was evaluated based on calculation of 



the root mean squared deviation (RMSD). RMSD is defined as 

 RMSD = √∑ (𝑌̂𝑡−𝑌𝑡)2𝑇𝑖=1 𝑇 , (1) 

where 𝑌̂𝑡 represents the true (measured) SF2 of sample t, 𝑌𝑡 represents the SF2 value predicted by 

the model, and T represents the number of samples. 

The absolute error and the relative error of the SF2 prediction were defined as the absolute deviation 

between the true and predicted SF2 and the absolute error divided by the true SF2, respectively. 

In order to evaluate the performance of this prediction model, the “correct prediction” criteria were 

defined. In previous studies, the correct prediction was defined using only relative error, following the 

known variability of the clonogenic cell survival assay 
4. However, it tended to be overly strict in 

cases with a low value of true SF2. Therefore, we classified a “correct prediction” if either the 

absolute error of the sample is less than 0.01 (1% in terms of survival fraction, not considered to be 

clinically significant) or the relative error between the measured and predicted SF2 is less than 10%. 

The model was evaluated and trained with the NVIDIA TITAN RTX and the TensorFlow 1.14.0 

framework based on Python version 3.6.8. 

 

Validation of the prediction 

If a particular sample cannot be classified as correctly predicted, it is necessary to determine whether 

the error was caused by insufficient training set data used for sample prediction due to the folded 

cross-validation, or whether the total data used in the study could not provide sufficient explanation to 

predict that sample correctly. Therefore, additional experiments were conducted to identify such 

“prediction-failed” samples, using them as an independent test set and all the other samples as a 

broader training set. 

If the prediction was successful in this additional experiment, it could then be determined that the 

corresponding fold was not able to provide sufficient evidence to predict the data correctly. 

Conversely, if the prediction failed again, the data could be classified as “prediction-hard” cases. 

 



Statistical analysis 

Statistical analysis was utilized to evaluate the predictive performance of the model. Two-tailed 

Pearson correlation analysis with a 95% confidence interval was used to investigate the correlation 

between true (measured) SF2 and predicted SF2. Statistical analysis was performed using GraphPad 

Prism version 7.03 (GraphPad Software, San Diego, CA, USA). 

 

Data availability 

The datasets analysed during the current study are available in the gene expression omnibus (GEO; 

series accession number GSE 32474) repository, https://www.ncbi.nlm.nih.gov/sites/GDSbrowser. All 

data generated during this study are included in this published article (and its Supplementary 

Information files). 
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Figures 

 

 

Figure 1. Overall flowchart of the radiation sensitivity prediction model. 

  



 

Figure 2. Plotted absolute error of all predicted triplicated samples of NCI-60 cell lines. Dark circles 

are representing three samples (HL-60, MOLT-4, and MDAMB-435) who were subjected to 

prediction validation. Vertical dotted line is a threshold for correct prediction of absolute error. The 

order and classification of the samples were based on NCI-60 panel. Abbreviation: NSCLC = Non-



Small Cell Lung Cancer; CNS = Central Nervous System 

  



 

Figure 3. Linear correlation between true (measured) and predicted survival fraction at 2 Gy. Dark 

circles are representing the predicted SF2s of every triplicated samples. 

  



Main Tables 

Table 1. Predicted survival fraction at 2 Gy (SF2) value by the model 

Cell 

lines 

True 

SF2 

Predicte

d SF2 

Cell 

lines 

True 

SF2 

Predicte

d SF2 

Cell 

lines 

True 

SF2 

Predicte

d SF2 

Cell 

lines 

True 

SF2 

Predicted 

SF2 

CCRF-
CEM 

0.185 

0.183 COLO 
205 

0.69 

0.686 MALM
E-3M 

0.8 

0.8 

786-O 0.66 

0.647 

0.182 0.693 0.789 0.661 

0.181 0.683 0.792 0.655 

HL-60 0.315 

0.312 HCC-
2998 

0.44 

0.442 

M14 0.42 

0.44 

A498 0.61 

0.605 

0.313 0.439 0.427 0.62 

0.085 0.433 0.432 0.607 

K-562 0.05 

0.049 HCT-
116 

0.38 

0.38 MDA-
MB-435 

0.179 

0.186 

ACHN 0.72 

0.696 

0.06 0.385 0.173 0.715 

0.052 0.383 0.41 0.667 

MOLT-4 0.05 

0.051 

HCT-15 0.4 

0.405 SK-
MEL-2 

0.66 

0.663 CAKI-1 0.37 
0.365 

0.05 0.398 0.667 0.371 

0.314 0.41 0.647 RXF 
393 

0.67 

0.674 

RPMI-
8266 

0.1 

0.097 

HT29 0.79 

0.79 SK-
MEL-28 

0.74 
0.736 0.67 

0.099 0.784 0.723 0.667 

0.101 0.797 SK-
MEL-5 

0.72 

0.729 

SN12C 0.62 

0.625 

SR 0.07 

0.069 

KM12 0.42 

0.428 0.711 0.624 

0.07 0.421 0.723 0.616 

0.071 0.425 UACC-
257 

0.48 

0.487 

TK-10 0.52 

0.52 

A549 0.61 

0.617 

SW-620 0.62 

0.616 0.478 0.525 

0.606 0.611 0.476 0.522 

0.619 0.607 UACC-
62 

0.52 

0.515 

UO-31 0.62 

0.624 

EKVX 0.7 

0.695 

SF-268 0.45 

0.451 0.521 0.621 

0.697 0.446 0.528 0.625 

0.692 0.447 IGR-
OV1 

0.39 

0.391 

PC-3 0.484 

0.474 

HOP-62 0.164 

0.17 

SF-295 0.73 

0.717 0.385 0.49 

0.163 0.728 0.405 0.487 

0.178 0.734 OVCAR
-3 

0.55 

0.549 

DU-145 0.52 

0.52 

HOP-92 0.43 

0.435 

SF-539 0.82 

0.811 0.546 0.517 

0.421 0.812 0.542 0.517 

0.427 0.823 OVCAR
-4 

0.29 

0.296 

MCF7 0.576 

0.566 

NCI-
H226 

0.63 
0.627 

SNB-19 0.43 

0.439 0.305 0.565 

0.644 0.427 0.29 0.574 

NCI-
H23 

0.086 

0.085 0.437 OVCAR
-5 

0.408 

0.407 MDA-
MB-231 

0.63 

0.635 

0.086 

SNB-75 0.55 

0.553 0.406 0.637 

0.085 0.548 0.405 0.626 

NCI-
H322M 

0.65 

0.65 0.554 OVCAR
-8 

0.6 

0.599 HS 
578T 

0.79 

0.791 

0.641 

U251 0.57 

0.568 0.597 0.787 

0.624 0.571 0.599 0.8 

NCI-
H460 

0.84 

0.838 0.573 NCI/AD
R-RES 

0.56 

0.588 

BT-549 0.63 

0.627 

0.821 LOX 
IMVI 0.68 

0.687 0.571 0.635 

0.847 0.68 0.58 0.619 

NCI-
H522 

0.43 

0.428 0.681 SK-OV-
3 

0.9 

0.881 

T-47D 0.52 

0.524 

0.436 - 0.887 0.523 

0.436 0.877 0.528 

Abbreviations: NSCLC, Non-Small Cell Lung Cancer; CNS, Central Nervous System 

 

  



Table 2. Summary of the radiation sensitivity prediction model structure 

Category Layers Output Size Activation 

Convolutional 

Feature Extractor 

Input 1 × 54765 × 1 None 

Convolution Layer 1 1 × 23242 × 10 Leaky ReLU 

Pooling Layer 1 1 × 11621 × 10 None 

Convolution Layer 2 1 × 4788 × 20 Leaky ReLU 

Pooling Layer 2 1 × 2394 × 20 None 

Convolution Layer 3 1 × 942 × 40 Leaky ReLU 

Pooling Layer 3 1 × 471 × 40 None 

Convolution Layer 4 1 × 172 × 80 Leaky ReLU 

Pooling Layer 4 1 × 86 × 80 None 

Convolution Layer 5 1 × 28 × 160 Leaky ReLU 

Pooling Layer 5 1 × 14 × 160 None 

Fully Connected 

Predictor 

Flattening Layer 1 × 2240 None 

Fully-connected Layer 1 1 × 800 Leaky ReLU 

Fully-connected Layer 2 1 × 256 Leaky ReLU 

Fully-connected Layer 3 1 × 100 Leaky ReLU 

Fully-connected Layer 4 1 × 32 Leaky ReLU 

Output 1 × 1 Absolute value 

Abbreviation: ReLU, Rectified Linear Unit 
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