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Abstract  23 

The losses and damage caused by landslides are countless in the world every year. 24 

However, the existing approaches of landslide susceptibility mapping cannot fully meet 25 

the requirement of landslide prevention, and further excavation and innovation are also 26 

needed. Therefore, the main aim of this study is to develop a novel deep learning model 27 

namely landslide net (LSNet) to assess the landslide susceptibility in Hanyin County, 28 

China, meanwhile, support vector machine model (SVM) and kernel logistic regression 29 

model (KLR) were employed as reference model. The inventory map was generated 30 

based on 259 landslides, the training dataset and validation dataset were respectively 31 

prepared using 70% landslides and the remaining 30% landslides. The variance 32 

inflation factor (VIF) was applied to optimize each landslide predisposing factor. Three 33 

benchmark indices were used to evaluate the result of susceptibility mapping and area 34 

under receiver operating characteristics curve (AUROC) was used to compare the 35 

models. Result demonstrated that although the processing speed of LSNet model is the 36 

slowest, it still significantly outperformed its corresponding benchmark models with 37 

validation dataset, and has the highest accuracy (0.950), precision (0.951), F1 (0.951) 38 

and AUROC (0.941), which reflected excellent predictive ability in some degree. The 39 

achievements obtained in this study can improve the rapid response capability of 40 

landslide prevention for Hanyin County. 41 

Keywords: Landslide susceptibility; Deep learning; Kernel logistic regression; Support 42 

vector machine; Evaluation  43 
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1. Instruction 45 

Landslide is defined as the special geological phenomenon that is threatening to 46 

mankind triggering by human activities or natural factors. Under the dual background 47 

of human activities and natural transmutations, the occurrence rate of landslides in the 48 

world increased rapidly(Sun et al., 2020). In addition, the landslides seriously threaten 49 

the safety of human life and property. In the face of increasingly serious landslide 50 

threats, the development of disaster prevention and mitigation work can effectively 51 

reduce the threat posed by landslides. In order to plan and construct the city safely and 52 

effectively, and to carry out the work of disaster prevention and mitigation successfully, 53 

it is necessary to quantitatively assess the landslide susceptibility on the regional scale. 54 

 The first step of regional landslide susceptibility assessment (LSA) is to collect the 55 

development characteristics and spatial distribution features of historical and hidden 56 

danger landslides(Pradhan and Lee, 2010). Then the predisposing factors of landslide 57 

occurrence are selected from the geological and environment background. 58 

Subsequently, the linear or non-linear mapping relationship between predisposing 59 

factors and the degree of landslide susceptibility is analyzed by using qualitative or 60 

quantitative method, and the contribution rate of each landslide predisposing factor is 61 

determined. In the end, some techniques of analysis and comparison are used to choose 62 

the suitable model for the study area(Carrara et al., 1995). 63 

 With the development of geographic information system (GIS) and satellite remote 64 

sensing technology within each subject area, GIS-based statistical method was 65 

introduced in the field of LSA. On the whole, these basic statistical methods of LSA 66 



can be summarized into two categories: linear regression analysis and non-linear 67 

regression analysis. For example, certainty index model(Fan et al., 2017), statistical 68 

index model(Razavizadeh et al., 2017), logistic regression model(Aditian et al., 2018; 69 

Pourghasemi et al., 2013) and probability theory method belong to the linear regression 70 

analysis method. Neural network model(Polykretis and Chalkias, 2018; SOMA et al., 71 

2019), support vector machine model (SVM)(Bui et al., 2016; Pandey and Pourghasemi, 72 

2020), limit learning model and composite exponential model belong to the non-linear 73 

regression analysis method. Although researchers have done a lot of studies using these 74 

basic statistical methods, the results of LSA are not all satisfactory(Bui et al., 2018). 75 

Due to data quality, factor selection, model parameter adjustment and other factors, 76 

some low accuracy, over fitting, and owe fitting problems often appear. In order to solve 77 

these problems, hybrid model was developed in recent years, such as reduced error 78 

pruning trees (REPT)(Pham et al., 2019b), kernel logistic regression model integrated 79 

with fractal dimension (KLRbox-counting)(Zhang et al., 2019), support vector regression 80 

model integrated with gray wolf optimization algorithm (SVR-GWO)(Balogun et al., 81 

2021), adaptive neuro-fuzzy inference system model integrated with satin bowerbird 82 

optimizer algorithms (ANFIS-SBO)(Chen et al., 2021). Although several models listed 83 

above have been previously applied in assessment field of landslide susceptibility and 84 

performed well, applying these models to forecast landslide occurrence and explore 85 

how to raise prediction accuracy are still the focus of current researches. 86 

 Recently, deep learning (DL) technique, a part of machine learning, is gradually 87 

applied in various fields. For example, Panahi (2020) used convolutional neural 88 



networks and recurrent neural networks to predict the probability of flash flood(Panahi 89 

et al., 2020); Kumar (2020) used deep learning model to complete the prediction of 90 

ground water depth(Kumar et al., 2020); Benzekri (2020) employed the deep learning 91 

model to construct an early forest fire detection system(Benzekri et al., 2020). In 92 

general, DL model performed a satisfactory ability of classification and regression. The 93 

main reason is that DL is completely a data-driven feature learning method, and has 94 

multi-level non-linear operations, which can abstractly represent classification features 95 

from a large amount of data, and combines gradient transfer method to optimize its end-96 

to-end network structure(Zhu et al., 2020). However, it is seldom used in the study of 97 

LSA.  98 

 Therefore, this study proposed a novel deep learning network named LSNet that 99 

composed of multiple convolutional layer to predict the landslide susceptibility in 100 

Hanyin County, Shaanxi Province, China. The patches of landslide predisposing factor 101 

maps were used as the input data to train the LSNet, meanwhile the LSI was regarded 102 

as the output to predict the landslide susceptibility. In addition, the support vector 103 

machine model (SVM) and kernel logistic regression model (KLR) were employed to 104 

compare with LSNet. The primary difference here between this study and the literature 105 

mentioned is that approaches existed in this paper are seldom used and compared in 106 

landslide susceptibility assessment, especially LSNet and KLR. Another point is that 107 

three models were first applied in Hanyin County and the proposed deep learning 108 

network aims to improve the accuracy of LSA in the study area. Finally, all the results 109 

may help the government to make efficient decisions about landslide prevention and 110 



provide prevention references for landslide risk. 111 

2. Sample description of study area  112 

Hanyin County belongs to the hilly area in southern Shaanxi Province, the geographical 113 

coordinates are 32°68＇-33°09＇north latitude and 108°11＇-108°44＇east longitude 114 

(Figure 1). The study area is about 51 Km wide from east to west, 58 Km long from 115 

north to south, and covers an area of about 1347 Km2. The climate type of study area is 116 

continental tropical monsoon climate and the temperature varies greatly. According to 117 

the local meteorological statistics, the mean annual precipitation in the past 50 years is 118 

about 920mm, and the rainfall in the northern region is significantly less than that in 119 

the southern region. The water resources in the study area are very abundant, and there 120 

are 4 rivers in total, all of which belong to Yangtze River system. There are three types 121 

of groundwater in the study area, including loose rock pore water, carbonate fissure 122 

water, and bedrock fissure water.  123 

 124 

Fig. 1 The location and landslide inventory map of study area 125 



 The geomorphology of study area is dominated by low and middle mountains, with 126 

valleys, hills and basins, and the area of mountains accounts for 87%. The exposed 127 

strata and main lithology in the study area are shown in the Table 1. Since the 128 

geotectonic location of the study area is located in the core zone of the Qinling 129 

microplate, there are many faults and folds in this area. In fact, there are a total of 5 130 

faults that have been proven. Besides, according to the historical records, there have 131 

been 16 earthquakes in the study area, with an average magnitude of 4, but these 132 

earthquakes did not cause major damage. 133 

Table 1 The main lithology information of the study area 134 

Geological Age Symbol Main lithology 

Quaternary Q Sandy clay, Clay rock 

Tertiary E Clay rock, Siltstone, Glutenite 

Middle Devonian D2 Limestone, Calcium schist 

Lower Devonian D1 Calcium schist, Calcium sandstone, Granite 

Silurian S Phyllite and siliceous roc, Sandstone 

Ordovician O Argillaceous limestone, Carbonaceous schist, Quartzite  

Cambrian Є Limestone, Slate, Phyllite 

Senian Z Limestone, Quartzite, Schist 

3. Data preparation  135 

3.1 Landslide inventory  136 

Before carrying out the LSA, it is critical to verify about the information of landslides 137 

in the study area. Landslide inventory is to integration of landslide boundaries, locations, 138 



types and so on, which is the subsequent basis of data analysis and model construction. 139 

Based on the historical landslide data(PRC, 2020; SBGMR, 1989), remote sensing 140 

image(Cloud, 2020), literatures(Liu and Huang, 2006) and field survey, a total of 267 141 

landslide were identified and mapped to generate the landslide inventory map of study 142 

area (Figure 1). 143 

3.2 Data preparation  144 

In order to prepare the input dataset for model construction, 267 landslide samples were 145 

separated into two parts according to the ratio of 7/3(Zhao and Chen, 2020). Among 146 

them, 187 landslide samples were used as the training dataset to train the model, and 147 

the remaining 80 landslide samples were applied as the validation dataset to finish the 148 

validation purpose.  149 

3.3 Analysis and quantification of landslide predisposing factors 150 

In this study, we purposed altitude, slope angle, slope aspect, normalized difference 151 

vegetation index (NDVI), distance to rivers, distance to roads, distance to faults, mean 152 

annual precipitation (MAP) and lithology as the landslide predisposing factors. Since 153 

the original attribute data of each predisposing factor is very different, the frequency 154 

ratio (FR) is introduced to unify the dimension of each predisposing factor. The 155 

calculation process of FR value is shown in the Equation (1).  156 

FR=
Samij

Areij
⁄                                (1) 157 

 Where Samij stands for the percentage of landslides in each landslide predisposing 158 

factor class, and Areij is the area percentage of each landslide predisposing factor 159 

class(Siahkamari et al., 2017). 160 



Additionally, in order to calculate the FR value, it is necessary to classify the 161 

predisposing factors, and the data sources, resolution and classification result of each 162 

predisposing factor map are listed in Table 2.  163 

Table 2 The information of landslide predisposing factors 164 

Landslide predisposing factors Original format Resolution Classification method 

Altitude (m) grid 30m×30m natural break (Jenks) 

Slope angle (°) grid 30m×30m natural break (Jenks) 

Slope aspect grid 30m×30m natural break (Jenks) 

NDVI grid 30m×30m natural break (Jenks) 

Distance to rivers (m) vector 30m×30m Equal interval 

Distance to roads (m) vector 30m×30m Equal interval 

Distance to faults (m) vector 30m×30m Equal interval 

MAP (mm/year) vector 30m×30m Equal interval 

Lithology vector 30m×30m Custom interval 

4. Methodologies 165 

The main research contents include 4 parts: (1) Using the data that already available to 166 

complete the landslide inventory; (2) Using FR value to quantify the landslide 167 

predisposing factor maps, and partitioning dataset; (3) Using the factor maps that 168 

already quantified by FR to train the SVM model and KLR model, moreover using the 169 

original factor maps to train the LSNet model; (4) Producing LSM corresponding to 170 

each model, assessing the result accuracy, and comparing the prediction performance 171 

of each model. The flowchart of this study is shown in the Figure 2. The techniques 172 



used in this study is described as follows. 173 

 174 

Fig. 2 The flowchart of the study 175 

4.1 Factor optimization method 176 

Since the assumption of machine learning modeling is that the variables are 177 

independent of each other, it needs to detect whether there is strong correlation between 178 

the factors. This strong correlation relationship is called multicollinearity which may 179 

cause the over fitting or under fitting problems(Hong et al., 2018). In this study, the 180 

variance inflation factor (VIF) and tolerances (TOL) were applied to reflect the 181 

multicollinearity problem, which can be calculated by constructing a linear regression 182 

model based on the training dataset. When VIF>10 and TOL<0.1, it indicates that the 183 

predisposing factor has a multicollinearity problem and needs to be eliminated, vice 184 

versa(Pham et al., 2019a). 185 

4.2 Support vector machine model (SVM) 186 

The basic principle of SVM is to search the optimal separating hyperplane that can 187 

maximize the interval between positive and negative samples in training dataset(Wang 188 



and Brenning, 2021). Initially, SVM model was used as the supervised learning 189 

algorithm to solve binary classification problem, while the non-linear classification 190 

problem can be solved after introducing the kernel function. Therefore, the SVM model 191 

was applied in many researches about landside susceptibility assessment. In addition, 192 

there are three parameters namely penalty factor (C0), non-sensitive loss function (𝜀), 193 

and kernel function parameter (𝛾) that need to be adjusted appropriately in the process 194 

of constructing the SVM model(Xie et al., 2021). The main steps of SVM model 195 

construction can be described as below. 196 

 At first, the landslide predisposing factors are defined as the dataset of instance 197 

label pairs (si, ti, i=1, 2, …, n), where si stands for the input data, ti is the output classes 198 

(landslide and non-landslide), and n is the number of training samples(Kumar et al., 199 

2017). The training samples are mapped in to a n-dimensional hyperplane by using the 200 

RBF kernel function which can be defined as: 201 𝐾(𝑠𝑖, 𝑠𝑗) = (−𝛾(𝑠𝑖 − 𝑠𝑗)) ,       𝛾 > 0                   (2) 202 

Then mathematical expression of the n-dimensional hyperplane L needs to satisfy 203 

the following condition: 204 𝑡𝑗(𝑤 ∙ 𝑠𝑗 + 𝑏) + 𝜀 ≥ 1                           (3) 205 

Where w denotes for the norm of normal hyperplane, and b is the constant. The 206 

maximum interval between vector and hyperplane can be derived by applying the 207 

Lagrangian multiplier(Abedini et al., 2019), and cost function can be expressed as: 208 𝐿 = 1/2‖𝑤‖2 − 𝐶0 ∑ 𝜀𝑛𝑖=1                          (4) 209 

4.3 Kernel logistic regression model (KLR) 210 



In statistical learning, when there are phenomena such as non-linear estimation, non-211 

normal estimation, and uneven variance, it may cause invalid estimation by using the 212 

ordinary regression method(Chen et al., 2018). These problems were overcome after 213 

the introduction of logistic regression, and logistic regression is widely used to solve 214 

binary classification problem. However, the structure of original logistic regression 215 

model is relatively simple, the flexibility is relatively low, and it still has defects in 216 

dealing with non-linear classification problems(Chen et al., 2019). While the kernel 217 

function can help to solve these problems effectively in constructing logistic regression 218 

model. Therefore, the hybrid model namely kernel logistic regression is created. In 219 

order to be consistent with the SVM model above, the RBF kernel function is 220 

determined to build KLR model. The expression of KLR model is as follows: 221 𝑝𝑖(𝑡 = 1|𝑘𝑖) = 11+𝑒−(𝑘𝑖+𝛼)                          (5) 222 

 Where pi is the probability of landslide occurrence, ki stands for the i th row of K(si, 223 

sj), and 𝛼 is a constant for the intercept(Thai and Indra, 2018). 224 

4.4 Landslide net model (LSNet) 225 

The deep learning has been widely used in the field of remote sensing image processing, 226 

including change detection, land use classification, image registration and so on. The 227 

deep belief networks, convolutional neural network (CNN), and auto coder are the three 228 

most commonly used network models in deep learning. The operating principle of these 229 

networks is to stack multiple layers within the model, and use the output of the previous 230 

item as the input of the next item, so that the features of each layer in the network can 231 

be converted into higher-dimensional features(Bui et al., 2020). Among them, the CNN 232 



has robust feature extraction capabilities and has been successfully applied in the field 233 

of image processing.  234 

 235 

Fig. 3 The structure schematic diagram of landslide net (LSNet) 236 

LSNet is a multi-layer feedforward neural network, the advantage of which is that 237 

it can process large-scale data in the form of multiple arrays from the local and global 238 

input data. The structure of LSNet is consist of multiple layers, which are related to 239 

each other through a set of learnable weights and biases. The local and global scale 240 

features can be captured by these convolutional blocks using scanning of the entire 241 

image. Meanwhile, the pooling layer and rectified linear unit (ReLU) layer are used for 242 

generalization to improve the non-linear fitting ability of the network(Li et al., 2021). 243 

Additionally, each convolutional layer contains feature maps obtained by multiple 244 

convolution kernels, and these feature maps share the node weights of the convolution 245 

kernels, so features can be extracted from different parts. Specifically, the main 246 

operation performing in CNN can be generalized as follows: 247 𝑂𝑙 = 𝑝𝑜𝑜𝑙𝑝(𝜎(𝑂𝑙−1 ∗ 𝑊𝑙 + 𝑏𝑙))                       (6) 248 



 Where Ol-1denotes for the input feature map in lth layer, Wl and bl respectively 249 

represent the weight and deviation of input feature layer convoluting by linear 250 

convolution, and 𝜎 is a non-linear function outside the convolution layer. 251 

4.5 Assessment and comparison method 252 

4.5.1 Result assessment method 253 

In order to assess the accuracy of classification result and compare the performance of 254 

each model, statistical indexes are purposed to finish this work. A matrix (Table 3) is 255 

constructed by true positive (TP), false positive (FP), true negative (TN), and false 256 

negative (FN) calculating from training dataset(Pham et al., 2021). The accuracy and 257 

precision are calculated according to the Equation (7) and (8) for accuracy assessment, 258 

meanwhile, the consistency of the results is verified with F1. The calculation process is 259 

as follows. 260 

Table 3 Discriminant matrix of statistical indexes 261 

Samples Landslide Non-landslide 

Landslide True positive (TP) True negative (TN) 

Non-landslide False positive (FP) False negative (FN) 

 262 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃+𝑇𝑁𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁                          (7) 263 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃𝑇𝑃+𝐹𝑃                              (8) 264 

𝐹1 = 2∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗ 𝑇𝑃𝑇𝑃+𝐹𝑁𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑇𝑃𝑇𝑃+𝐹𝑁                             (9) 265 

4.5.2 Model comparison method 266 

In this study, the work of model comparison is purposed to carry out from three 267 



indicators including the running speed of the model, the classification ability for 268 

landslide and non-landslide, and the generalized performance of the model. Among 269 

them, based on the validation dataset, the running speed of the model is quantitative 270 

expressed by time, and the sensitivity and specificity are respectively used to reflect the 271 

classification ability for landslide and non-landslide (Equation (9) and (10))(Yanar et 272 

al., 2020). Additionally, the receiver operating characteristics curve (ROC) is used for 273 

assessing the generalized performance, and in general, the larger the area under ROC 274 

curve (AUROC), the stronger the generalization ability of the model(Dang et al., 2020). 275 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑡𝑖𝑦 = 𝑇𝑃𝑇𝑃+𝐹𝑁                             (10) 276 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁𝑇𝑁+𝐹𝑃                             (11) 277 

5. Results 278 

5.1 The quantification results of FR for landslide predisposing factors 279 

In this study, the FR value was employed to quantify each landslide predisposing factor 280 

according to the classification result. It can be observed from the Table 4 that the 281 

interval of Tertiary from the lithology factor has the highest FR value (FR=2.32), 282 

followed by the range of < 100 from the distance to roads factor (FR=1.85), and the 283 

range of 278-548 from the altitude factor (FR=1.81). On the contrary, the lowest FR 284 

value appears in both the 1432-2107 interval of the altitude factor (FR=0.00) and the 285 

flat interval of the slope factor (FR=0.00). 286 

Table 4 The FR calculation result for each class of landslide predisposing factors 287 

Landslide predisposing 

factors 

Classes 

Area of 

classes 

Areij (%) 

Number of 

landslides 

Samij (%) FR 



Altitude (m) 

278-548 435.17 32.00 149 57.98 1.81 

548-781 422.41 31.06 72 28.02 0.90 

781-1075 240.51 17.68 30 11.67 0.66 

1075-1432 167.63 12.33 6 2.33 0.19 

1432-2107 94.31 6.93 0 0.00 0.00 

Slope angle (°) 

0.0000-9.6093 267.66 19.68 78 30.35 1.54 

9.6093-17.3502 370.50 27.24 82 31.91 1.17 

17.3502-24.8241 362.37 26.64 62 24.12 0.91 

24.8241-33.6327 257.66 18.95 27 10.51 0.55 

33.6327-67.7992 101.80 7.49 8 3.11 0.42 

Slope aspect 

flat 0.83 0.06 0 0.00 0.00 

north 145.63 10.71 21 8.17 0.76 

northeast 160.56 11.81 29 11.28 0.96 

east 208.34 15.32 51 19.84 1.30 

southeast 174.33 12.82 33 12.84 1.00 

south 149.79 11.01 36 14.01 1.27 

southwest 155.41 11.43 20 7.78 0.68 

west 195.47 14.37 42 16.34 1.14 

northwest 169.55 12.47 25 9.73 0.78 

NDVI 

-0.0983-0.1717 98.75 7.26 14 5.45 0.75 

0.1717-0.2410 271.37 19.94 31 12.06 0.60 

0.2410-0.3030 392.64 28.86 80 31.13 1.08 



0.3030-0.3698 392.02 28.81 90 35.02 1.22 

0.3698-0.5308 205.88 15.13 42 16.34 1.08 

Distance to rivers (m) 

<100 97.84 7.19 22 8.56 1.19 

100-200 74.62 5.48 16 6.23 1.14 

200-300 70.25 5.16 19 7.39 1.43 

300-400 67.24 4.94 20 7.78 1.57 

>400 1050.86 77.22 180 70.04 0.91 

Distance to roads (m) 

<100 85.67 6.30 30 11.67 1.85 

100-200 73.42 5.39 21 8.17 1.51 

200-300 65.54 4.82 20 7.78 1.62 

300-400 61.18 4.50 16 6.23 1.38 

>400 1075.02 79.00 170 66.15 0.84 

Distance to faults (m) 

<1000 157.90 11.60 50 19.46 1.68 

1000-2000 147.95 10.87 33 12.84 1.18 

2000-3000 132.95 9.77 30 11.67 1.19 

3000-4000 120.84 8.88 25 9.73 1.10 

>4000 801.18 58.87 119 46.30 0.79 

Lithology 

Quaternary 246.08 18.02 73 28.40 1.58 

Tertiary 50.43 3.69 22 8.56 2.32 

Middle Devonian 129.17 9.46 5 1.95 0.21 

Lower Devonian 32.82 2.40 5 1.95 0.81 

Silurian 61.36 4.49 5 1.95 0.43 



Ordovician 32.54 2.38 3 1.17 0.49 

Cambrian 348.70 25.54 37 14.40 0.56 

Senian 464.15 33.99 93 36.19 1.06 

MAP (mm/year) 

<800 163.68 12.03 19 7.39 0.61 

800-850 304.75 22.39 51 19.84 0.89 

850-900 421.94 31.01 102 39.69 1.28 

900-950 201.64 14.82 26 10.12 0.68 

950-1000 45.80 3.37 13 5.06 1.50 

>1000 223.00 16.39 46 17.90 1.09 

5.2 The optimization result of landslide predisposing factors 288 

The VIF and TOL values of each landslide predisposing factor were calculated based 289 

on the quantified landslide predisposing factors, and the calculation results were shown 290 

in the Table 5. As can be seen from the results, the largest VIF value and the smallest 291 

TOL value appear in NDVI (VIF=1.433, TOL=0.698), followed by the altitude 292 

(VIF=1.293, TOL=0.773) and the aspect (VIF=1.268, TOL=0.789). By contrast, the 293 

distance to roads has the smallest VIF value and the largest TOL value (VIF=1.019, 294 

TOL=0.981). Since the VIF and TOL values of all landslide predisposing factors are 295 

not inside the critical range (VIF>10 and TOL<0.1), all factors are retained and used to 296 

prepare the dataset. 297 

Table 5 The VIF and TOL values of each landslide predisposing factor 298 

Landslide predisposing factors VIF Tolerances (TOL) 

Altitude 1.293 0.773 



Slope angle  1.032 0.969 

Aspect 1.268 0.789 

MAP 1.044 0.958 

Lithology 1.103 0.907 

Distance to rivers 1.148 0.871 

Distance to faults 1.078 0.928 

Distance to roads 1.019 0.981 

NDVI 1.433 0.698 

 Based on the optimized landslide predisposing factors, the training and validation 299 

datasets were prepared according to aforementioned partition principle. Subsequently, 300 

the training dataset was used as the input data to implement the following three models. 301 

5.3 Implementation of SVM model 302 

In this study, the training dataset was used to construct the SVM model. Since the 303 

parameters of RBF kernel function are significant for model construction, the 10-fold 304 

cross validation method was used to search the most suitable parameter set (C0, 𝛾). The 305 

optimized parameter set is (241, 0.02). Then run the trained SVM model in the python 306 

platform, and adjust the output range of the model to 0.000-1.000 which also represents 307 

the LSI. In the end, the natural break (Jenks) method was used to divide the LSI into 308 

five ranges which respectively represent the very low susceptibility area (0.0899-309 

0.2084), low susceptibility area (0.2085-0.4646), moderate susceptibility area (0.4647-310 

0.6228), high susceptibility area (0.6229-0.7893) and very high susceptibility area 311 

(0.7894-0.9224), furthermore the LSM was generated by converting these areas to 312 



image in ArcGIS software (Figure 4).  313 

 314 

Fig. 4 Landslide susceptibility map of study area derived by SVM model 315 

5.4 Implementation of KLR model 316 

The construction progress of KLR model is similar with the SVM model. For the 317 

purpose of comparison, the parameter set (C0, 𝛾) was consistent with that of the SVM 318 

model. Subsequently, the training dataset was used as the input data for KLR model 319 

construction in the python platform, and adjust the output range of the LSI to 0.000-320 

1.000. Finally, the LSI was divided into five ranges by using the natural break (Jenks) 321 

method. These five ranges respectively represent the very low susceptibility area 322 

(0.0145-0.2459), low susceptibility area (0.2460-0.3695), moderate susceptibility area 323 

(0.3696-0.5161), high susceptibility area (0.5162-0.6974) and very high susceptibility 324 

area (0.6975-0.9983), moreover the LSM corresponding to KLR model was generated 325 

in ArcGIS software (Figure 5). 326 



 327 

Fig. 5 Landslide susceptibility map of study area derived by KLR model 328 

5.5 Implementation of LSNet model 329 

The LSNet was coded using tensorflow 2.0 under the python environment, and running 330 

on a personal computer with Intel(R) Core(TM) i7-7700k CPU, RTX 3080Ti GPU, 32 331 

GB RAM, and the Windows 10 operating system. The LSNet had multi-layer structure, 332 

the size of input window was designed as 224×224. AlexNet can implement more than 333 

1000 categories of classification, in contrast, the landslide susceptibility mapping is a 334 

binary classification problem, which does not require deep network design. For this 335 

reason, in this study, the size of input layer in convolution kernel of LSNet was set to 336 

5×5, the size of the convolution kernel for the other layers was set to 3×3, the number 337 

of feature maps for each layer was set to 64, 128, 128, 256, 256, respectively. At the 338 

same time, a pooling layer, non-linear activation function ReLU and batch normalized 339 

BN were set after each convolutional layer. Based on computer graphics vision, all other 340 



parameters of the LSNet were empirically optimized, for instance, the learning rete and 341 

epoch are set as 0.0001 and 600 to learn the depth features through back propagation. 342 

Subsequently, the number of neurons in the fully connected layers was set to 1024, 256, 343 

128, 2, respectively, and then softmax was used to estimate the probability of landslide 344 

occurrence to output confidence, namely LSI.  345 

 Similarly, the output range of LSI for LSNet was adjusted to 0.000-1.000, and 346 

respectively represents the very low susceptibility area (0.0045-0.2021), low 347 

susceptibility area (0.2022-0.3458), moderate susceptibility area (0.3459-0.4814), high 348 

susceptibility area (0.4815-0.8033) and very high susceptibility area (0.8034-0.9972) 349 

(Figure 6).  350 

 351 

Fig. 6 Landslide susceptibility map of study area derived by LSNet model 352 

5.6 Assessment of the results 353 

5.6.1 The result of accuracy assessment 354 



After mapping the LSMs of these three models, it is necessary to assess the quality of 355 

results. In this study, the matrix has been organized based on the validation dataset, then 356 

the accuracy, precision, and F1 values for each LSM were calculated (Table 6). As 357 

shown in Table 6, the LSNet model gets the highest accuracy value and precision value 358 

(accuracy=0.950, precision=0.951), by contrast, the SVM model gets the lowest 359 

accuracy value and precision value (accuracy=0.825, precision=0.850), while the 360 

performance of the KLR model is moderate. From the value of F1, the LSNet also gets 361 

the highest value (F1=0.951), followed by the KLR model and SVM model, which is 362 

also consistent with the ordering of accuracy and precision values.  363 

Table 6 Calculation results of statistical indexes for landslide susceptibility mapping 364 

Parameters SVM KLR LSNet 

TP 34  36  39  

TN 32  36  37  

FP 6  6  2  

FN 8  2  2  

Accuracy 0.825  0.900  0.950  

Precision 0.850  0.857  0.951  

F1 0.829  0.900  0.951  

Sensitivity 0.810  0.947  0.951  

Specificity 0.842  0.857  0.949  

5.6.2 The result of model comparison 365 

In order to compare the running speed, classification and generalization performance, 366 



the run time, sensitivity, specificity and AUROC values were introduced to finish this 367 

work. As the results shown in Table 6, the largest sensitivity and specificity values 368 

belong to the LSNet model, indicating that the LSNet model has the best landslide and 369 

non-landslide classification abilities among these three models. On the contrary, the 370 

smallest sensitivity and specificity values belong to the SVM model, indicating that the 371 

landslide and non-landslide classification abilities of SVM model are the weakest 372 

among these three models.  373 

 For AUROC values (Figure 7), the LSNet model also obtains the largest AUROC 374 

value (AUROC=0.941), followed by the KLR model (AUROC=0.899) and SVM 375 

model (AUROC=0.835), and the results show that the LSNet model has the best 376 

generalization ability. 377 

 378 

Fig. 7 The ROC curves of each landslide susceptibility model based on validation 379 

dataset 380 

 Lastly, we measured the running speed of each model, the results show that the 381 

running speed of the SVM model (32s) and the KLR model (27s) are relatively close, 382 



while the running speed of the LSNet model (107s) is significantly slower than the first 383 

models.  384 

6. Discussion 385 

In this paper, we show the progress and results of landslide susceptibility mapping 386 

based on SVM model, KLR model, and LSNet model in Hanyin County, Shaanxi 387 

Province, China. In terms of the model performance, although the classification 388 

accuracy of the three models is higher, the accuracy of LSNet and other statistical 389 

indexes are higher than that of SVM and KLR, which fully shows that the LSNet 390 

performs best in the study area.  391 

 Since both SVM and KLR are developed based on statistical theory, the quality of 392 

input data and the adjustment of model parameters in the process of model construction 393 

may affect the final result. Before preparation of input datasets, three classification 394 

methods i.e. natural break (Jenks), equal interval, and custom interval were all used to 395 

grade FR-quantified landslide predisposing factors. However, the classification 396 

methods and results of landslide predisposing factors are inevitably affected by human 397 

factors, which may lead to over-fitting or under-fitting(Yacine and Pourghasemi, 2019). 398 

For this reason, it is necessary to deeply analyze the impact of classification methods 399 

on data quality. Besides, this study only used two machine learning models for 400 

comparison, therefore, more models should be added for reference in subsequent 401 

research, so that the advantages and disadvantages of deep learning and machine 402 

learning in landslide susceptibility mapping can be more comprehensively compared. 403 

 In contrast, as a deep learning model, the input data of LSNet is a complete remote 404 



sensing image containing all the information. In order to distinguish landslide and non-405 

landslide from image data, not only the objects in the image patch need to be 406 

characterized as landslides, but also need to accurately and reliably represent the 407 

contextual information of the landslide space background. The advantage of LSNet is 408 

to derive the category of the object at the image block level, and learn the spatial 409 

distribution through the CNN network with hierarchical representation, and finally 410 

obtain the probability of each object’s category through multiple fully connected layers 411 

and softmax. It is different from machine learning in principle, and its specific 412 

advantages include: (1) LSNet can classify based on object blocks in a deep learning 413 

network of convolutional structure, and output the category probability; (2) LSNet uses 414 

the CNN model to learn the internal and overall spatial information of the object block 415 

to represent the contextual spatial semantic information of the category; LSNet 416 

represents the probability of the category at the object block level, which can avoid 417 

pixel-level misfits and improve the accuracy of classification(Dimililer et al., 2021). 418 

Interestingly, the running time of LSNet is significantly longer than that of SVM and 419 

KLR, which may be limited by the hardware performance of the computer, resulting in 420 

slower calculations. Nevertheless, this does not mean that the LSNet is not a state of art 421 

model and other studies have reached similar conclusions in their researches. 422 

 On the other hand, as a black box model, DL cannot intuitively reflect the spatial 423 

distribution features of landslides in the study area during data preparation. On the 424 

contrary, in machine learning modeling, because FR is used to quantify the graded 425 

landslide predisposing factors, the spatial distribution of the landslide under the 426 



conditions of each predisposing factor can be intuitively reflected from the quantified 427 

results(Zhang et al., 2020). For instance, from the view of distance to rivers and roads, 428 

as the distance from roads and rivers increase, the FR value decreases, indicating that 429 

the closer to the river and the road, the more landslides are distributed. This is because 430 

the exposed rock and soil in study area have low mechanical strength, the surface is 431 

easily weathered and eroded, and the joints and fissures are very developed. Moreover, 432 

due to the scouring action from the river and excavation of the slope toe during road 433 

construction, the original stress structure of the slope was destroyed, which resulted in 434 

the instability of the slope and generated a large number of potential landslides. This 435 

consistent with the phenomenon we observed in the field, and is similar to the results 436 

of geological hazard studies in similar areas of the study area(Liu et al., 2020; Wang et 437 

al., 2016). 438 

7. Conclusion 439 

Landslide susceptibility mapping is a key step for landslide prevention work. This study 440 

used Hanyin County, Shaanxi Province, China as the study area to finish the work of 441 

landslide susceptibility mapping by building the LSNet model, SVM model, and KLR 442 

model, and generated the LSM. Then various of statistical indexes was applied for the 443 

accuracy assessment, and the ROC curves was employed to compare the performance 444 

and classification ability of the models. In summary, the main conclusions are as 445 

follows: (1) In the process of dataset preparation and parameter adjustment, the machine 446 

learning model will inevitably be affected by human factors, resulting in unstable 447 

classification results. However, LSNet can overcome human interference and generate 448 



objective classification results. (2) LSNet can avoid the problems of over-fitting and 449 

under-fitting. The classification accuracy in the study area is high, moreover the 450 

generalization is stronger than the SVM model and the KLR model. The LSNet can be 451 

promoted and used in the study area. 452 

 In addition, this study introduced the construction method of LSNet model in detail, 453 

and compared the performance of LSNet model (deep learning), SVM model (machine 454 

learning), and KLR model (hybrid model), which can provide reference for the 455 

application of deep learning model in landslide prevention in the future. Furthermore, 456 

the results of this study can improve the efficiency of landslide prevention for 457 

government decision-making in similar study areas, which is conducive to rapid 458 

response of landslide warning. 459 
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