[1]Kulik L and El-Serag HB. Epidemiology and Management of Hepatocellular Carcinoma. Gastroenterology 2019; 156: 477-491 e471.
[2]Hartke J, Johnson M and Ghabril M. The diagnosis and treatment of hepatocellular carcinoma. Semin Diagn Pathol 2017; 34: 153-159.
[3]Greten TF, Lai CW, Li G and Staveley-O'Carroll KF. Targeted and Immune-Based Therapies for Hepatocellular Carcinoma. Gastroenterology 2019; 156: 510-524.
[4]Ruiz de Galarreta M and Lujambio A. Hepatocellular carcinoma: killing one bird with two stones. Gut 2019; 68: 1543-1544.
[5]Monga SP. beta-Catenin Signaling and Roles in Liver Homeostasis, Injury, and Tumorigenesis. Gastroenterology 2015; 148: 1294-1310.
[6]Li R, Wang Y, Zhang X, Feng M, Ma J, Li J, Yang X, Fang F, Xia Q, Zhang Z, Shang M and Jiang S. Exosome-mediated secretion of LOXL4 promotes hepatocellular carcinoma cell invasion and metastasis. Mol Cancer 2019; 18: 18.
[7]Halder G and Johnson RL. Hippo signaling: growth control and beyond. Development 2011; 138: 9-22.
[8]Hong AW, Meng Z and Guan KL. The Hippo pathway in intestinal regeneration and disease. Nat Rev Gastroenterol Hepatol 2016; 13: 324-337.
[9]Plouffe SW, Hong AW and Guan KL. Disease implications of the Hippo/YAP pathway. Trends Mol Med 2015; 21: 212-222.
[10]Mo JS, Park HW and Guan KL. The Hippo signaling pathway in stem cell biology and cancer. EMBO Rep 2014; 15: 642-656.
[11]Calses PC, Crawford JJ, Lill JR and Dey A. Hippo Pathway in Cancer: Aberrant Regulation and Therapeutic Opportunities. Trends Cancer 2019; 5: 297-307.
[12]Johnson R and Halder G. The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment. Nat Rev Drug Discov 2014; 13: 63-79.
[13]Meng Z, Moroishi T and Guan KL. Mechanisms of Hippo pathway regulation. Genes Dev 2016; 30: 1-17.
[14]Fu V, Plouffe SW and Guan KL. The Hippo pathway in organ development, homeostasis, and regeneration. Curr Opin Cell Biol 2017; 49: 99-107.
[15]Murphy AC and Young PW. The actinin family of actin cross-linking proteins - a genetic perspective. Cell Biosci 2015; 5: 49.
[16]Fujiwara K, Porter ME and Pollard TD. Alpha-actinin localization in the cleavage furrow during cytokinesis. J Cell Biol 1978; 79: 268-275.
[17]Foley KS and Young PW. The non-muscle functions of actinins: an update. Biochem J 2014; 459: 1-13.
[18]Honda K, Yamada T, Endo R, Ino Y, Gotoh M, Tsuda H, Yamada Y, Chiba H and Hirohashi S. Actinin-4, a novel actin-bundling protein associated with cell motility and cancer invasion. J Cell Biol 1998; 140: 1383-1393.
[19]Sen S, Dong M and Kumar S. Isoform-specific contributions of alpha-actinin to glioma cell mechanobiology. PLoS One 2009; 4: e8427.
[20]Hirooka S, Akashi T, Ando N, Suzuki Y, Ishida N, Kurata M, Takizawa T, Kayamori K, Sakamoto K, Fujiwara N, Kojima M and Eishi Y. Localization of the invadopodia-related proteins actinin-1 and cortactin to matrix-contact-side cytoplasm of cancer cells in surgically resected lung adenocarcinomas. Pathobiology 2011; 78: 10-23.
[21]Agarwal SK, Simonds WF and Marx SJ. The parafibromin tumor suppressor protein interacts with actin-binding proteins actinin-2 and actinin-3. Mol Cancer 2008; 7: 65.
[22]Honda K, Yamada T, Hayashida Y, Idogawa M, Sato S, Hasegawa F, Ino Y, Ono M and Hirohashi S. Actinin-4 increases cell motility and promotes lymph node metastasis of colorectal cancer. Gastroenterology 2005; 128: 51-62.
[23]Tentler D, Lomert E, Novitskaya K and Barlev NA. Role of ACTN4 in Tumorigenesis, Metastasis, and EMT. Cells 2019; 8:
[24]Jung J, Kim S, An HT and Ko J. alpha-Actinin-4 regulates cancer stem cell properties and chemoresistance in cervical cancer. Carcinogenesis 2020; 41: 940-949.
[25]Jennings RT and Knaus UG. Rho family and Rap GTPase activation assays. Methods Mol Biol 2014; 1124: 79-88.
[26]Xie GF, Zhao LD, Chen Q, Tang DX, Chen QY, Lu HF, Cai JR and Chen Z. High ACTN1 Is Associated with Poor Prognosis, and ACTN1 Silencing Suppresses Cell Proliferation and Metastasis in Oral Squamous Cell Carcinoma. Drug Des Devel Ther 2020; 14: 1717-1727.
[27]Yang X, Pang Y, Zhang J, Shi J, Zhang X, Zhang G, Yang S, Wang J, Hu K, Wang J, Jing H, Ke X and Fu L. High Expression Levels of ACTN1 and ACTN3 Indicate Unfavorable Prognosis in Acute Myeloid Leukemia. J Cancer 2019; 10: 4286-4292.
[28]Kovac B, Makela TP and Vallenius T. Increased alpha-actinin-1 destabilizes E-cadherin-based adhesions and associates with poor prognosis in basal-like breast cancer. PLoS One 2018; 13: e0196986.
[29]Cao Y, Cao W, Qiu Y, Zhou Y, Guo Q, Gao Y and Lu N. Oroxylin A suppresses ACTN1 expression to inactivate cancer-associated fibroblasts and restrain breast cancer metastasis. Pharmacol Res 2020; 159: 104981.
[30]Harvey KF, Zhang X and Thomas DM. The Hippo pathway and human cancer. Nat Rev Cancer 2013; 13: 246-257.
[31]Yu FX, Zhao B and Guan KL. Hippo Pathway in Organ Size Control, Tissue Homeostasis, and Cancer. Cell 2015; 163: 811-828.
[32]Lachenmayer A, Hoshida Y and Llovet JM. Hippo tumor supressor pathway: novel implications for the treatment of hepatocellular carcinoma. Gastroenterology 2010; 139: 692-694.
[33]Sohn BH, Shim JJ, Kim SB, Jang KY, Kim SM, Kim JH, Hwang JE, Jang HJ, Lee HS, Kim SC, Jeong W, Kim SS, Park ES, Heo J, Kim YJ, Kim DG, Leem SH, Kaseb A, Hassan MM, Cha M, Chu IS, Johnson RL, Park YY and Lee JS. Inactivation of Hippo Pathway Is Significantly Associated with Poor Prognosis in Hepatocellular Carcinoma. Clin Cancer Res 2016; 22: 1256-1264.
[34]Kim W, Khan SK, Liu Y, Xu R, Park O, He Y, Cha B, Gao B and Yang Y. Hepatic Hippo signaling inhibits protumoural microenvironment to suppress hepatocellular carcinoma. Gut 2018; 67: 1692-1703.
[35]Moon H, Cho K, Shin S, Kim DY, Han KH and Ro SW. High Risk of Hepatocellular Carcinoma Development in Fibrotic Liver: Role of the Hippo-YAP/TAZ Signaling Pathway. Int J Mol Sci 2019; 20:
[36]Zanconato F, Battilana G, Cordenonsi M and Piccolo S. YAP/TAZ as therapeutic targets in cancer. Curr Opin Pharmacol 2016; 29: 26-33.
[37]Nguyen CDK and Yi C. YAP/TAZ Signaling and Resistance to Cancer Therapy. Trends Cancer 2019; 5: 283-296.
[38]Craig DH, Haimovich B and Basson MD. Alpha-actinin-1 phosphorylation modulates pressure-induced colon cancer cell adhesion through regulation of focal adhesion kinase-Src interaction. Am J Physiol Cell Physiol 2007; 293: C1862-1874.
[39]Milanini J, Fayad R, Partisani M, Lecine P, Borg JP, Franco M and Luton F. EFA6 proteins regulate lumen formation through alpha-actinin 1. J Cell Sci 2018; 131:
[40]Quick Q and Skalli O. Alpha-actinin 1 and alpha-actinin 4: contrasting roles in the survival, motility, and RhoA signaling of astrocytoma cells. Exp Cell Res 2010; 316: 1137-1147.