Dynamic Modeling and Optimal Control of Cystic Echinococcosis
Background: Cystic echinococcosis is one of the most severe helminth zoonosis with a drastic impact on human health and livestock industry. Investigating optimal control strategy and assessing the crucial factors are essential for developing countermeasures to mitigate this disease.
Methods: Two compartment models were formulated to study the dynamics of cystic echinococcosis transmission, to evaluate the effectiveness of various control measures, and to find the optimal control strategy. Sensitive analyses were conducted by obtaining PRCCs and contour plot were used to evaluate the effect of key parameters on the basic reproduction number. Based on forward-backward sweep method, numerical simulations were employed to investigate effects of key factors on the transmission of cystic echinococcosis and to obtain the optimal control strategy.
Results: The food resources of stray dog and invalid sheep vaccination rate, which are always neglected, were significant to the transmission and control of cystic echinococcosis. Numerical simulations suggest that, the implementation of optimal control strategy can significantly reduce the infections. Improving the cost of health education and domestic dog deworming could not decrease human infections.
Conclusions: Our study showed that only a long-term use of the optimal control measures can eliminate the disease. Meanwhile, during the intervention, sheep vaccination and stray dogs disposing should be emphasized ahead of domestic dogs deworming to minimize the control cost. Simultaneously reducing other wild intermediate hosts and strengthening the sheep vaccination as well as disposing the stray dogs would be most effective.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Due to technical limitations, full-text HTML conversion of this manuscript could not be completed. However, the manuscript can be downloaded and accessed as a PDF.
This is a list of supplementary files associated with this preprint. Click to download.
Posted 22 Sep, 2020
On 21 Oct, 2020
Received 16 Oct, 2020
Received 05 Oct, 2020
On 03 Oct, 2020
Invitations sent on 29 Sep, 2020
On 29 Sep, 2020
On 21 Sep, 2020
On 20 Sep, 2020
On 17 Sep, 2020
On 16 Sep, 2020
Dynamic Modeling and Optimal Control of Cystic Echinococcosis
Posted 22 Sep, 2020
On 21 Oct, 2020
Received 16 Oct, 2020
Received 05 Oct, 2020
On 03 Oct, 2020
Invitations sent on 29 Sep, 2020
On 29 Sep, 2020
On 21 Sep, 2020
On 20 Sep, 2020
On 17 Sep, 2020
On 16 Sep, 2020
Background: Cystic echinococcosis is one of the most severe helminth zoonosis with a drastic impact on human health and livestock industry. Investigating optimal control strategy and assessing the crucial factors are essential for developing countermeasures to mitigate this disease.
Methods: Two compartment models were formulated to study the dynamics of cystic echinococcosis transmission, to evaluate the effectiveness of various control measures, and to find the optimal control strategy. Sensitive analyses were conducted by obtaining PRCCs and contour plot were used to evaluate the effect of key parameters on the basic reproduction number. Based on forward-backward sweep method, numerical simulations were employed to investigate effects of key factors on the transmission of cystic echinococcosis and to obtain the optimal control strategy.
Results: The food resources of stray dog and invalid sheep vaccination rate, which are always neglected, were significant to the transmission and control of cystic echinococcosis. Numerical simulations suggest that, the implementation of optimal control strategy can significantly reduce the infections. Improving the cost of health education and domestic dog deworming could not decrease human infections.
Conclusions: Our study showed that only a long-term use of the optimal control measures can eliminate the disease. Meanwhile, during the intervention, sheep vaccination and stray dogs disposing should be emphasized ahead of domestic dogs deworming to minimize the control cost. Simultaneously reducing other wild intermediate hosts and strengthening the sheep vaccination as well as disposing the stray dogs would be most effective.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Due to technical limitations, full-text HTML conversion of this manuscript could not be completed. However, the manuscript can be downloaded and accessed as a PDF.