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Abstract
Soil salinity and alkalinity seriously threaten crop production, soil productivity and sustainable agriculture, especially in arid and semi-arid
areas, leading to land degradation, therefore, spatial distribution of these parameters are really important for successful management of
such areas. The surface soil salinity and sodium adsorption ratio (SAR) have been modeled in this article. Auxiliary data were terrain
attributes derived from digital elevation model (DEM), remote sensing spectral bands, and indices of vegetation and salinity derived from
Landsat 8 OLI satellite. In total, 118 soil samples were collected from depth of 0-15 cm in homogenous units at Doviraj plain in the southern
part of Ilam province, western Iran. Saturated electrical conductivity (ECe), SAR and other soil properties were analyzed and calculated. To
model ECe and SAR parameters with the auxiliary data, stepwise multi linear regression (SMLR) and random forest (RF) regression were
applied. The highest accuracy were obtained through RF model with validation coe�cient of determination (R2val) =0.82 and 0.83 and
validation root mean square error (RMSEval)=7.40 dS/m and 11.20 for ECe and SAR respectively. Furthermore, results indicated that
strongest in�uence on the prediction of soil salinity followed by Band10, principal component analysis (PC3), Vertical Distance to Channel
Network (VDCN) and Analytical Hill Shading (AH). Also, Band10, Band11, Flow Accumulation (FA) and Topographic Wetness Index (TWI)
were the important covariate in alkalinity prediction through RF model. Finally, it is suggested that similar techniques can be used to map
and monitor soil salinity and alkalinity in other parts of arid regions.

1. Introduction
Soil salinity and alkalinity are serious environmental concern in the world, which have negative impact on our limited soil resources and lead
to ecological health degradation [1]. Soil salinity also contributes to deserti�cation, land degradation, and a signi�cant decrease in soil
productivity, crop yield, and plant resistance to various stresses [2, 3].

Salt-affected lands are estimated to be about one billion hectares of land, while around 20 percent of the 300 million hectares of irrigated
farmland have been found to be impacted by soil salinity on a global scale. In addition, salinity has affected approximately 21% of Iran's
land area, which equates to 30 million hectares [4]. Traditional soil salinity measurement techniques are limited in time and space, and can
only prepare point-wise data for continuous monitoring of saline soils. Satellite methods generate cost-effective, quick, qualitative and
quantitative spatial data on saline soils [5]. Multispectral and microwave remote sensing (RS) spatiotemporal resolutions data on different
(e.g., Landsat, Spot, Ikonos, Aster, Modis, IRS, and Radar, etc.) have been used in recent years to track, evaluate and map soil properties with
reasonable accuracy as a cost-effective approach, particularly for large scale applications [6, 7].

RS technology can directly provide information about the presence of salt on barren soils, and indirectly on vegetated areas depending on
vegetation characteristics.

Different indices of salinity and vegetation were created by combining spectral bands to identify salt-affected regions and they have been
assessed with different results, as salinity level and extent of the vegetation cover differs for each case study, choosing and using a similar
index may not attain the best outcome in all situations [8]. In most cases, multiple bands have been combined into one index, which is more
sensitive to soil salinity than a single band [9, 10]. The spectral absorption characteristics are related to the amount of salinization. Even so,
the presence of vegetation and soil crust changed the roughness of the soil's surface, producing a strong re�ective effect in visible and near
infrared electromagnetic waves and greater re�ection than non-saline or moderately saline soil [11].Visual interpretation of false color
composite (FCC) can identify various levels of alkalinity and salinity in soils [12]. The analysis and interpretation are based on human
experience, which makes the results incomparable in different seasons. For identi�cation of soil salinity and alkalinity utilizing multi-spectral
imagery, digital image processing approaches are also applied. Six TM bands were used by Metternicht and Zinck [13] to categorize types of
salt and sodium-affected soils. Bannari et al. [14], determined that short-wave infrared (SWIR) has advantages in soil salinity and alkalinity
detection. Mapping of soil salinity at different scales is critical for assessing the status and trends of agricultural soil salinity as well as
management of land degradation [15]. The rapid spread of soil salinization is mainly affected by altitude, because topography controls the
speed of salt transport through different soil layers [16]. Several studies have highlighted the effect of micro-topography on the spatial soil
salinity distribution in the dry and rainy seasons [17]. The Terrian environment plays an important role in the distribution and redistribution
of salt. Although high and steep terrain is conducive to salt migration, low-lying terrain is lead to salt accumulation [10]. In Digital Soil
Mapping (DSM), collecting auxiliary variables to predict soil salinity parameters is a prerequisite for improving the prediction accuracy of
spatial distribution modeling, which is composed of RS data, DEM and their derivatives (e.g. slope, topographic wetness index, curvatures,
etc.), for spatial analysis modeling of soil characteristics [18].

The general idea of selecting stepwise multiple linear regression (SMLR) and random forest (RF) analysis in this research is that SMLR
method improves regression models from easily acquired variables to predict data more di�cult to obtain, in which statistical tests
determine the addition or reduction of predictive variables to the model and produce a �nal equation. Various researchers have applied a
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variety of methods, including SMLR to evaluate large data sets of continuous and categorical variables [19]. RF is another method, which
has been increasingly applied for predictions [20]. The main bene�ts of RF consist of non-parametric nature and high classifying precision,
which can be achieved by the use of numerical and categorical variables, and the ability to measure the signi�cance of factors [21].
However, unlike SMLR, this method does not generate the �nal equation of the model. Therefore, it is often referred to as a form of black box
[22]. At the same time, some studies have shown that compared with other methods, this method is reliable and provides better outcomes in
both spatial and non-spatial predictions. [23].

In recent years, much progress has been made in RS-based land cover mapping, including the use of machine learning classi�ers such as
arti�cial neural networks (ANN) and RF to extract saline land [24, 25]. Few studies have focused on using topographical factors and RS data
to map the spatial distribution of soil salinity and alkalinity. Doviraj plain is severely affected by salinity, which poses a great threat to
agriculture in this area. Hence, the objectives of this research in modeling and mapping of soil salinity and alkalinity were to i) de�ne the
most important covariates among terrain and RS data also, vegetation and salinity spectral indices derived from Landsat 8 OLI image ii)
evaluate the performance of RF and SMLR model in this regard.

2. Materials And Methods

2.1. Study area
The �eld of study is situated on Doviraj plain in the southern part of Ilam province, western Iran. It is located between 47°, 25' − 47°, 35' East
longitudes and 32°, 24' − 32°, 28' N latitude with an area of 2600 ha (Fig. 1).The climate of the study area is arid with mean annual
precipitation, mean annual temperature and annual potential evaporation of 274.8 mm, 26.4°C, and 2054 mm, respectively. The soil
moisture and temperature regimes are aridic and hyperthermic, respectively. The elevation ranges from 87 to 127 m, with a rising gradient
from the south to the north. There are different types of land use including irrigated land, dry land, pasture, and the most common land use
of the region is bare land. Furthermore, Doviraj plain has different types of physiography such as �ood plain, piedmont alluvial plain,
plateau, river alluvial plain, river terrace and valley bottom. Dominant soil texture within the area is Loam. The soils in the study area have
been classi�ed into Aridisols order and �ve subgreat groups including Typic Haplocalcids, Typic Haplocambids, Typic Calcigypsids, Typic
Haplogypsids and Gypsic Haplosalids [26].

2.2. Data collection and soil sample analysis
In March 2018, by considering to elevation, slope, aspect, soil cover, land use, physiographic units and interpreting satellite images,
homogenous unit map prepared and 118 soil samples were taken (Fig. 1).

The samples were air-dried at room temperature then crushed to pass through a 2-mm sieve prior to the analysis.Sodium adsorption ratio
(SAR) is an indicator of sodic or non-sodic characteristics and soil salinity is measured by saturated electrical conductivity (ECe).

ECe, pH, soluble calcium, magnesium and sodium (in meq/l for calculation of SAR) [27] and particle size distribution [28] were measured.
Also, sodium absorption ratio (SAR) was calculated according to the Eq. 1 [29].

2.3. Terrain attributes
Sheng et al.[30] used exclusively terrain attributes to track changes in soil salinity in China.

Topographic wetness index (TWI) can represent water content of soil stationary and can display the areas with potential of salic horizons
[31]. However, terrain attributes such as Multi-resolution index of Valley Bottom Flatness (MrVBF) is an important index for �at areas and
used to explain relief in �at areas also, identi�cation for the of �at valley bottoms and thus suggested possible sediment transport zones
[32]. Analytical hill-shading (AH) technique is de�ned as topographical images, which produced from digital elevation model (DEM) and can
be lit from a speci�c direction, this helps in shaded-relief images [33] and could recognize lineaments or defects that are di�cult to see by
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the normal airphoto interpretation methods [34]. 17 terrain maps from a DEM (30m) were determined using the open source System for
Automated Geoscienti�c Analyses (SAGA) software, which are listed in Table 1.

 
Table 1

terrain attributes used to predict soil EC
Covariate Description Reference/source

Elevation (DEM) Height above sea level (m) [35]

Analytical Hill
Shading (AH)

shaded-relief images [33]

Aspect (AS) The direction the plane faces of slope is the aspect Aspect is expressed in positive degrees
from 0 to 360, measured clockwise from the north

[36]

Catchment Area
(CA)

The catchment area of a cell indicates the area upslope that cell whose �ow will eventually
reach it

SAGA

Channel
Network Base
Level (CNBL)

For cells outside the channel network a cell elevation can be interpolated using the elevation
values of channel cells. Doing this, a grid with channel network base level elevations can be
calculated

SAGA

Closed
Depressions
(CD)

Closed depression may be complex, comprising �at areas and other smaller nested depressions [37]

Convergence
Index (CI)

Convergence index is used to determine whether water �ow from neighboring cells diverges or
converges

[38]

Cross-Sectional
Curvature (CSC)

Cross-sectional curvature measures the curvature perpendicular to the down slope direction SAGA

Flow
Accumulation
(FA)

Flow accumulation is directly proportional to the total amount of water which would pass
through a cell as it �owed downhill from higher elevations

SAGA

LS Factor (LS) Another erosion related parameter is the LS factor. the original equation for the LS factor which
used slope and slope length as main parameters

SAGA

Relative Slope
Position (RSP)

represents slope position of cell and its relative position between valley �oor and ridgetop [36]

Slope (S) Slope measures the rate of change of elevation at a surface location. Slope may be expressed
as percent slope or degree slope

SAGA

Topographic
Wetness Index
(TWI)

A measure of water accumulation or soil saturation [38]

Valley Depth
(VD)

The vertical height below summit accumulation [38]

Vertical
Distance to
Channel
Network (VDCN)

The vertical height above the channel network. Also known as Altitude Above Channel Network [38]

Multi-resolution
Ridge-Top
Flatness Index
(MrRTF)

Measure of �atness and lowness [39]

Multi-resolution
Valley Bottom
Flatness Index
(MrVBF)

Measure of �atness and upness [39]

2.4. Remote sensing data
Landsat 8 OLI image obtained on March 17th, 2018 from USGS (https://glovis.usgs.gov) and utilized in this research. The resolution of
spectral bands in the coastal, visible, near infrared, two short waves infrared and Cirrus was 30 meters, for panchromatic band was 15 meter
and resolution of two thermal infrared bands was 100 meters. The atmospheric correction was carried out in order to take away or diminish
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the atmospheric effect. To lessen the whole number of information layers and enhance the discrimination between saline and non-saline
soil, principal component analysis (PCA) was performed. Since most of the study area was bare (Fig. 1), Landsat spectral data

would clearly detect the presence of salts on the surface and one of the important variables in this �eld is Bare Soil Index (BSI). Normalized
Difference Vegetation Index (NDVI) is a critical factor for de�ning vegetation cover, higher values of NDVI suggest greater vegetation
coverage [40]. Therefore, in this paper NDVI and other vegetation spectral indices such as Enhanced Vegetation Index(EVI), Ratio Vegetation
Index (RVI), Generalized Difference Vegetation Index (GDVI) and Canopy Response Salinity Index (CRSI) was used to illustrate the effect of
vegetation coverage on salinity prediction accuracy. In addition, salinity and vegetation spectral indices were applied as auxiliary variables
at the study area, as described in Table 2.
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Table 2
Remote sensing data, vegetation spectral indices and salinity spectral indices (derived from Landsat 8 OLI satellite) used to predict soil EC
Auxiliary
data

Covariate Abbreviated Formulations References

Remote
sensing
data

Band1(Coastal / Aerosol) B1 0.43–0.45 µm  

Band2(Visible blue) B2 0.45–0.51 µm  

Band3(Visible green) B3 0.53–0.59 µm  

Band4(Visible red) B4 0.64–0.67 µm  

Band5(Near-infrared) B5 0.85–0.88 µm  

Band6(Short wavelength
infrared)

B6 1.57–1.65 µm  

Band7(Short wavelength
infrared)

B7 2.11–2.29 µm  

Band8(Panchromatic) B8 0.50–0.68 µm  

Band9(Cirrus) B9 1.36–1.38 µm  

Band10 (Thermal infrared) B10 10.60–11.19 µm  

Band11(Thermal infrared) B11 11.50–12.51 µm  

Principal component analysis PC1,
PC2,PC3

   

Brightness index BI [41]

Bare soil index BSI [42]

Clay index CI [43]

Vegetation
spectral

Indices

Normalized difference
vegetation index

NDVI [43]

Enhanced vegetation index EVI [44]

Ratio Vegetation Index RVI [45]

Generalized difference
vegetation index

GDVI [46]

Canopy response salinity
index

CRSI [47]

Soil-adjusted vegetation
index

SAVI [48]

Salinity
spectral
indices

Salinity index SI [41]

Salinity index 1 SI1 [49]

Salinity index 2 SI2 [49]

[(B42) + (B52)]
0.5

[(B6 + B4) − (B5 + B2)] / [(B6 + B4) + (B5 + B2)]

B6/B8

(B5 − B4) / (B5 + B4)

g* (B5 − B4) / (B5 + C1*B4 − C2*B2 + L)

B5/B4

(B52 − B42)/ (B52 + B42)

{[(B5*B4) − (B3*B2)] / [(B5*B4) + (B3*B2)]}
0.5

[(B5 − B4) * (1 + L)] / (B5 + B4 + L)

(B4*B2)
0.5

(B4*B3)
0.5

[(B52) + (B42)* (B32)]
0.5
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Auxiliary
data

Covariate Abbreviated Formulations References

Salinity index 3 SI3 [49]

Salinity index I S1 [50]

Salinity index II S2 [50]

Salinity index III S3 [50]

Salinity index IV S4 [50]

Salinity index V S5 [50]

Salinity index VI S6 [14]

Salinity index VII S7 [14]

Salinity index VIII S8 [49]

Salinity index IX S9 [49]

Note: the aerosol and soil correcting parameters for EVI: g, C1, C2 and L are set to 2.5, 6, − 7.5 and 1, respectively and soil brightness
correction factor (L) for SAVI de�ned as 0.5 to accommodate most land cover types.

2.5 Analysis of data and modeling
The average, maximum and minimum values, standard deviation and skewness coe�cient were calculated for the laboratory-measured
data (Table 3). Also, to model and map the soil salinity and alkalinity, two strategies including SMLR and RF have been explored.

  
Table 3

Descriptive statistics of soil salinity and alkalinity measurements
Depth/Parameter Min Max Average Std.deviation Skewness

ECe (dS/m) 0.49 74 9.30 15.1 0.834

SAR 0.47 100.39 7.13 19.9 0.910

2.5.1 Random forest regression
RF is generated by a set of growing decision trees, it relies on the accumulation of random variables, and starts from a few bootstrap
samples, which can be randomly extracted from the main training data set [20]. A key procedure in RF is to use Bagging (Bootstrap
Aggregating) in conjunction with random feature selection, as Bagging can signi�cantly decrease the variance of unstable procedures such
as increasing tree and improve predicting accuracy [20]. RF were calculated and mapped with R software (version 3.1.2). In this model the
number of trees (ntree) was set to 800 and both the size of the variables subset (mtry) and the minimum number of nodes (nodesize) were
set to 5. All information was randomly and automatically divided to calibration data (80% of the total data) to �t the model and validation
data sets (20% of the total data). The signi�cance of the variables additionally decided with the aid of this algorithm. So, the most important
variables were used in modeling.

[(B42) + (B32)]
0.5

B2/B4

(B2 − B4) / (B2 + B4)

B3*B4/B2

B2*B4/B3

B4*B5/B3

B6/B7

(B6 − B7) / (B6 + B7)

(B3 + B4) /2

(B3 + B4 + B5) /2
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2.5.2 Stepwise multiple linear regressions
These regressions evaluate the coe�cients of the linear equation using two or more independent variables to predict the dependent variable.
Data the same as subset, which was used for RF, selected to calibrate and validate the model. The stepwise procedure was applied. R2 and
adjusted coe�cient of determination (R2adj) were calculated for assessing of the model performance.

2.6. Accuracy of models
An independent subset of data (not used in the modeling, including 20% of the total data) was used to determine whether the
models'predictions were valid for other observed data. For this purpose, the estimated values for each sample of the independent subset
were determined and the accuracy of the models was evaluated using R2, R2adj, and RMSE. Finally, the models with the highest values of R2

and R2adj also, the lowest RMSE values in relation to observed and estimated data were considered as the best models for predicting soil
salinity.

3. Results And Discussion

3.1. Descriptive statistics of ECe and SAR data
Summary statistics of ECe and SAR were described in Table 3. In general, the average soil salinity and alkalinity values were above 9.30
dS/m and 7.13 respectively (Since ECe is more than 4 dS/m, the average of soils are salty). As shown in the statistical results, the minimum
and maximum ECe and SAR values were 0.49 dS/m, 0.47 and 74 dS/m, 100.39 respectively, which ranged from severely saline (EC > 32
dS/m) to non-saline (0 < EC < 2 dS/m) and from non sodic (SAR < 13) to sodic soils(SAR ≥ 13), FAO [51]. According to skewness values, ECe
and SAR conformed to a normal distribution.

3.2. Remote sensing and terrain data processing
Variance In�ation Factor (VIF) was used to assess collinearity (relationship between at least two predictor variables) for Landsat 8 OLI
spectral bands and derived indices as well as terrain data. Collinearity leads to uncertainty in the regression method. VIF demonstrates the
grade that each independent variable is illustrated by the other independent variable, VIF is used for linear and generalized linear models
[52].

About the multivariate collinearity issue does not need to concern for RF. Since RF method in training sample is not sensitive to noise. So,
the accuracy of models could be greater than the other machine learning and the conventional statistical regressions [53]. Therefore, only
variables in Table 4 were used for SMLR model as input parameters, which were selected by VIF method from all parameters in Table 1 and
Table 2.

3.3 Stepwise multi linear regression
At �rst, the correlation between several RS data and terrain attributes (which were chosen by VIF method) with measured ECe was
investigated by Pearson correlation coe�cients method (Table 4). This table indicated that the covariates which had**, were signi�cantly
correlated with ECe at P < 0.01, covariates that had*, were also signi�cantly related to ECe at P < 0.05 (but this correlation was weaker than
**). According to Table 4 the strongest positive correlation was between B10 and EC, with a correlation coe�cient of 0.514 as well, B11 and
SAR with a correlation coe�cient of 0.299, there were signi�cant at P < 0.01.

Different regression models have been constructed between the measured ECe and SAR values and speci�c RS data as well as terrain
attributes (parameters which were chosen according to their signi�cantly, Table 4). Table 5 shows the results of best equations for ECe, SAR
and auxiliary data. As it can be seen in equations 1 to 6 and Table 5, the most important covariates for ECe were band10, band11, relative
slope position (RSP), Generalized difference vegetation index (GDVI) and Enhanced vegetation index (EVI) with R2val = 0.62, 0.52, 0.54 and
R2

adjval = 0.58, 0.47 and 0.52 respectively. The best equations for SAR were also obtained using of band10, band11, Ratio Vegetation Index

(RVI) and GDVI covariates with R2val = 0.49, 0.46, 0.45 and R2
adjval = 0.46, 0.45, 0.43. The best regressions for auxiliary data EC and SAR

were presented as follows:

1

EC = 80.79 + 2.60 (b10) − 2.31 (b11) − 0.259 (RSP)

EC = 53.94 + 2.78 (b10) − 2.42b11 + 0.5 (GDVI)



Page 9/17

2

3

4

5

 

EC = 102.08 + 2.90 (b10) − 2.60 (b11) + 0.034 (EVI)

SAR = 231.08 + 2.97 (b10) − 2.67 (b11) − 0.043 (PC3)

SAR = 27.64 + 2.81 (b10) − 2.39 (b11) + 0.168 (RVI)

SAR = 27.64 + 2.81 (b10) − 2.39 (b11) + 0.168 (GDVI) (6)
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Table 4
Pearson correlation coe�cients between auxiliary data and

measured ECe and SAR
Covariate EC(dS/m) 0–15 cm Covariate SAR

RSP -0.237** RSP -0.067

S -0.064 S -0.085

TWI 0.070 TWI 0.052

VD 0.093 VD 0.027

CNBL 0.207* CNBL 0.157

VDCN -0.152* VDCN -0.106

AH -0.19 AH 0.101

AS -0.097 AS -0.209*

CA 0.067 CA 0.026

LSF -0.127 CI 0.107

MRRTF 0.204* LSF 0.038

FA 0.105 MRRTF 0.167

S5 0.210* FA 0.059

S7 -0.190* S5 0.005

S9 0.249** S7 -0.202*

SI 0.285** S9 0.088

SI1 0.290** SI 0.141

CRSI 0.093 SI1 0.141

GDVI -0.327** CRSI -0.242*

B2 0.267** GDVI -0.293**

B9 0.107 b2 0.138

B10 0.514** b5 -0.135

B11 0.483** b9 0.059

PC3 0.161 b10 0.297**

EVI 0.330** b11 0.299**

RVI -0.327** PC3 0.280**

NDVI -0.327** EVI -0.145

BSI 0.283** RVI -0.293**

    NDVI -0.256*

    BSI 0.106
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Table 5
Evaluation data of the models generated by stepwise multiple linear

regression
Soil Depth (cm) Equation Calibration Validation

R2cal R2
adjcal R2val R2

adjval

EC (dS/m) 1 0.69 0.66 0.62 0.58

2 0.59 0.55 0.52 0.47

3 0.57 0.54 0.54 0.52

SAR 4 0.51 0.48 0.49 0.46

5 0.48 0.46 0.46 0.45

6 0.46 0.45 0.45 0.43

According to the results, evaluation of SMLR equations shows moderate to weak predictive ability using terrain and RS data as well spectral
indices derived from Landsat 8 OLI data. An et al. [54] used SMLR in a study in combination with soil spectra measured in �eld condition
and satellite-based remote-sensing images, along with laboratory measurements of soil sample salinity. Their best model for the prediction
of soil salinity using the RS data indicated R2 of 0.896, veri�cation R2 of 0.867 and RMSE of 0.264. Rahmati and Hamzehpour [55] reported
that the constructed regression relations could show a robust prediction of the soil salinity with the Radj

2 up to 0.875 and the best equation
was related to the data set with NDVI values above 0.35. In a research was conducted by Hihi et al. [56] results demonstrated that applying
linear regression model with combining the Sentinel_2 SWIR bands and the salinity index could illustrate 48% of the spatial variation of soil
salinity in the study area.

3.4 Random forest regression
RF was used to model the relationship between ECe, SAR and total auxiliary data. Results demonstrated that the RF model could provide a
good relationship between auxiliary data and soil salinity and alkalinity (Table 6). The highest accuracy were obtained with R2val = 0.82 and
RMSEval = 7.35 dS/m for EC and R2val of 0.76 also, RMSEval of 11.20 were achieved for SAR. Figure 2 shows the scatter plots of the
measured versus predicted ECe and SAR for calibration and validation data set. Spatial distribution of soil salinity and alkalinity maps as
well the important parameters in each depth are shown in Fig. 3. Two variable importance (VI) indicators were calculated using the RF
model, included the percent increase of the mean squared error (%IncMSE) and the cumulative increase in node purity (IncNodePurity) [57].

 
Table 6

Evaluation data of the models generated by random forest regression
parameters Calibration Validation

R2cal RMSEcal (dS/m) R2val RMSEval (dS/m)

EC 0.80 7.73 0.82 7.40

SAR 0.88 4.63 0.83 3.37

Results showed that the use of Landsat 8 OLI images and terrain data can lead to an acceptable accuracy in soil salinity and alkalinity
estimation. Evaluation of those maps in this paper based on Fig. 2 showed strong predictive ability of RF model. In addition, band 10 values
(Thermal Infrared Band, 10.60-11.19 µm) were found to be highly correlated with ECe and SAR (Fig. 3).

The temperature of soil surface is affected by internal as well as external factors. Thermal conductivity and heat capacity are considered as
internal factors. The rate at which heat passes through a substance is measured with thermal conductivity. The soil's thermal conductivity
relies on physical characteristics of the soil including soil particles, air, moisture and porosity. The external variables that affect the surface
temperature are meteorological conditions such as, solar radiation, air temperature, relative humidity, wind speed and cloudiness. Thermal
infrared bands specially B10 was broadly utilized in the investigation of soil salinity and soil water [58]. The B10 value describes the surface
temperature and the high value associated with the high surface temperature. Land surface temperature is mainly affected by soil moisture.
The zones with low soil moisture content, where the areas with high salinity in soil surface [59]. The capacity of thermal band Landsat TM
for monitoring of soil salinity was evaluated by Alavipanah and Goossens [60]. The results of this research revealed that the addition of the
thermal band information contained some helpful information that could play an important role in soil salinity and alkalinity studies.
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The �ow accumulation (FA) map includes values of cumulative hydrologic �ow, which show the quantity of information pixels that
contribute any water to outlet. The activity was utilized to understand the drainage pattern of the terrain. According to results of Elmahdy
and Mohamed [61], there is a good relationship between FA, groundwater salinity, topographic features and salt-affected soil under irrigated
agriculture in arid regions. By comparing Fig. 3 with Fig. 4, it can be found that in places with the highest salinity and alkalinity B10 and B11
maps had the maximum value. Furthermore, B10 and PC3 had the lowest values in irrigated agriculture lands (Fig. 1 and Fig. 4). According
to Fig. 3, PC3 was another important parameter that playeda key role in salinity modeling. The PCA is computing based on the eigen vectors
and eigen values. Csillag et al [62] stated that principle component analysis is used to separate saline from non saline soils by the stable
brightness of PC1 and the stable greenness of PC2, while the differential brightness in PC3 and the differential greenness in PC4 are used to
understand the changes that occurring in salinity. According to RS images, large amounts of PC2 were distributed mostly in salt spots. In
addition, farmland or wetland had mainly low PC2 values [63]. Figure 4 shows the spatial distribution of TWI, the small values are generally
associated with plateau, the intermediate values are related to parts of the piedmont alluvial plain, and the larger values of TWI is
corresponded to river alluvial plain and �ood plain, which area showed high potential of accumulation of soluble salts such as sodium,
calcium and magnesium and caused to higher alkalinity in this area. Moore et al. [64] showed strong relationship between soil salinity and
TWI. Also, they have previously been used to classify areas with saline soils by TWI, which displaying landscape degree of wetness and
hydrology. BSI is composed of blue, red, near infrared and short wave infrared spectral bands. In order to evaluate the soil mineral
compound short wave infrared and the red band are utilized, whereas to increase the attendance of vegetation, the blue and the near
infrared spectral bands are used [65]. Some spectral indices including the BSI, Normalized Difference Salinity Index (NDSI), and Salinity
Index (SI) have been suggested in order to recognize and map salt-affected soils [66]. In a research performed by Noroozi et al. [67] on 288
soil samples, result revealed that mid-infrared band (TM Band-7), visible band (TM Band-1), Tasseled cap3, Wetness index and PCA2 had
strong correlation with the observed EC values in soil surface. RS has been shown satisfactory results in predicting soil salinity. Meanwhile,
the spatial distribution of soil salinity seems to be correlated with one more variables based on the properties of region under research
therefore, there is no universal spectral index which can use with the best outputs in any environmental conditions [8].Results showed that
the most important terrain data, which used in RF modeling, wereVDCN, AH, FA, TWI (Fig. 3 and Fig. 4).Since, the most common land use of
study area was bare land, AH covariate was identi�ed as an important terrain data, which could distinguish the land without vegetation
cover. Analytical hill shading images are helpful not only display landforms but also to recognize lineaments, to because the shaded relief
images show bare land surfaces that are not covered by vegetation [68]. Allbed et al. [9] and Taghizadeh-Mehrjardi et al. [31] used Landsat
and terrain data in order to predict the soil surface salinity, they reported R2 values around 0.65 and 0.87 by genetic programming. According
to Pal [69] and Wu et al. [25], both SVM and RF could attain equally well land cover mapping with very high preciseness about 95.7– 96.8%
of local sites despite taking much longer processing time than the maximum likelihood. There are several studies have been carried out on
soil surface, however in this research, RS datawere used along with terrain data for different soil depths in addition to the topsoil, and the
results showed good accuracy in modeling of EC with these covariates up to 60 cm. As can be seen in Fig. 1 and Fig. 3, soils with the
highest salinity and alkalinity were located on the sides of the river in bare land as well as in �ood plain and river alluvial plain according to
the land use and physiographic maps, respectively. However, the soil with the lowest level of salinity and alkalinity can be found in the
irrigated agriculture and piedmont alluvial plain based on the land use and physiographic maps. Since, the mean amount of EC and sodium
adsorption ratio (SAR) of Doviraj river were 4220 µS/cm and 3.8 respectively, therefore, water quality for this river was classi�ed as C4S1,
which indicates very high salinity and slight sodicity [70]. The other reasons of salinity in the study area were the strong evaporation and low
precipitation, which caused di�culty for leaching the salts, the presence of gypsum and carbonate calcium materials in soils, and the water
table which was between two and three meters from the surface of the soil around the river. In addition, the soils in this area have been
classi�ed into four suborders of cambids, calcids, gypsids and salids [26].

4. Conclusions
Accelerating food demand from the rapidly growing population has made the existing land hard to meet the needs of local inhabitants.
Reclamation of soil salinity and alkalinity could be an effective method to handle the con�ict between man and land. Using RS data
and topographic factors to model and map soil salinity and alkalinity also, de�ne the most important covariates in modeling are the
objectives of this research. Soil salinity and alkalinity variations at 0-15 cm were investigated at Doviraj plain in Iran. Different models were
constructed using the measured ECe, SAR and auxiliary data, including RS spectral bands, vegetation and salinity indices as well terrain
data by applying SMLR and RF models. The results of this study con�rmed that the RF model was a reliable approach to create continuous
soil salinity and alkalinity maps. Furthermore, B10, PC3, VDCN, and AH covariates could construct the most robust model for soil salinity
with R2val=0.82 and RMSE val=7.40 dS/m. B10, FA, TWI, B11 covariates caused to develop the most powerful model for soil alkalinity with
R2val=0.83 and RMSE val=3.37. Also, it is found that thermal bands (B10 and B11) are highly correlated with ECe and SAR. It is necessary to
providing proper soil salinity and alkalinity maps with acceptable accuracy in order to achieve sustainable agriculture and economic
development. Owing to the fact that RS information and terrain data revealed acceptable accuracy with potentially quick and inexpensive
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method in modeling and mapping of soil salinity and alkalinity spatial variations using RF regression in this research, it is recommended to
test this technique for the prediction of soil salinity and alkalinity in other regions with different amount of  ECe & SAR, variety in climate,
vegetation and relief conditions.
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Figures

Figure 1

Doviraj Plain study area, including spatial distribution of soil pro�les Super imposed on DEM (a), the physiography (b), and land use (c)
maps
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Figure 2

Scatter plots of measured against predicted ECe and SAR using RF model

Figure 3

Predicted soil salinity and alkalinity maps with selection of the most important covariates by RF model

Figure 4

The auxiliary data maps, which were used in RF modeling for predicting soil salinity and alkalinity


