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Abstract
Chimeric antigen receptor (CAR)-T cell therapy has emerged as a promising immunotherapeutic treatment
for hematologic malignancies. By comparing the diversity and composition of the gut microbiome during
different stages of CAR-T therapy, significant changes were detected, not only in patients with
relapsed/refractory multiple myeloma (MM; n = 43), but also in those with acute lymphocytic leukemia
(ALL; n = 23) and non-Hodgkin lymphoma (NHL; n = 12). Analysis of treatment responses revealed
significant temporal differences in diversity and abundance of Bifidobacterium, Prevotella, Sutterella, and
Collinsella between MM patients in complete remission (n = 24) and those in partial remission (n = 11).
Furthermore, we found that patients with severe cytokine release syndrome (CRS) exhibited higher
abundance of Bifidobacterium, Leuconostoc, Stenotrophomonas, and Staphylococcus. This study has
important implications for understanding the biological role of the microbiome in the CAR-T treatment of
patients with hematologic malignancies (ChiCTR1800017404).

Introduction
B-cell-derived hematologic malignancies, including acute lymphoblastic leukemia (B-ALL), non-Hodgkin
lymphoma (B-NHL), and multiple myeloma (MM), carry a high probability of relapse after conventional
chemotherapy 1. With novel therapeutic strategies incorporating monoclonal antibodies, bispecific T-cell
engager (BiTE) antibodies, and hematopoietic stem cell transplantation (HSCT), treatment outcomes
have greatly improved 2, 3, 4. However, some patients progress to relapsed/refractory (r/r) status, with a
poor prognosis 5. The 5-year overall survival (OS) rate generally is < 10% with a median OS of 3–6
months for patients with r/r B-ALL 6, 7. The complete response (CR) rate is 7% with a median OS of 6.2
months for r/r diffuse large B-cell lymphoma (DLBCL) 8. For r/r MM patients, the 1-year OS is about 40%
9. There is an urgent need to explore novel treatment strategies for these malignancies.

Chimeric antigen receptor (CAR) T-cell therapy (approved by the U.S. Food and Drug Administration)
recently emerged as promising for r/r B-ALL, DLBCL, and mantle cell lymphoma (MCL) 10, 11, 12. In
multiple myeloma, investigations targeting the B-cell maturation antigen (BCMA) yielded encouraging
outcomes with reversible toxic effects such as cytokine release syndrome (CRS) and pancytopenia 13, 14,

15, 16, 17. However, the efficacy and toxicity have been inconsistent. No biomarker has been identified that
predicts outcome and associated toxicities after CAR-T in patients.

Several studies have reported that the differences in diversity and composition of the gut microbiome
might influence cancer immunotherapy response 18, 19, 20, 21. After analyzing fecal samples from 43
melanoma patients treated with anti-programmed cell death 1 protein (PD-1) immunotherapy,
significantly higher alpha diversity and abundance of Clostridiales/Ruminococcaceae were found in
responders, whereas Bacteroidales were significantly enriched in non-responders 19. In hematologic
malignancies, intestinal bacteria also modulate the risk of graft-versus-host disease (GVHD) and
infection after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Greater bacterial diversity
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and abundance of the genus Blautia were associated with reduced GVHD-related death and improved OS
22, 23. However, no study has shown a potential role for the intestinal microbiota in the efficacy and
toxicity of CAR-T therapy for B-cell malignancies.

The primary aims of this study were to understand the intestinal microbiome changes in patients with r/r
B–cell-derived hematologic malignancies undergoing CAR-T cell treatment and to investigate
associations of the microbiota with clinical responses and CRS severity. Finally, the potential of the gut
microbiome to predict treatment outcomes and CRS severity was explored.

Results

Patient cohorts
A total of 92 patients with r/r B-cell-derived hematologic malignancies were screened. Ten patients were
not eligible for inclusion. Another four patients were excluded because of lack of sufficient 16S
sequencing depth. Thus, MM (n = 43), B-ALL (n = 23), and B-NHL (n = 12) patients were included (Fig. 1A).

The median age of the MM patients was 59 (range 39–75) years, and 55.8% were male (Table 1). The
median number of prior lines of therapy was 4 (range 2–8), with all receiving proteasome inhibitor
therapy and 95.3% immunomodulatory agents. At enrollment, 39.5% had received autologous stem cell
transplantation, and 55.8% had extramedullary disease(s).
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Table 1
Baseline characteristics of multiple myeloma patients included in final fecal

microbiome analyses cohorts.

  Total

N = 43(%)

Age

Median

Range

59

39–75

Gender

Male

Female

24 (55.8)

19 (44.2)

Number of prior lines of therapy

Median

Range

4

2–8

CAR-T cell dose(×106/kg)

Median

Range

4.4

1.2–6.9

Autologous stem cell transplantation

No

Yes

26 (60.5)

17 (39.5)

Extramedullary disease

No

Yes

19 (44.2)

24 (55.8)

Prior PI therapy

No

Yes

0

43 (100)

Prior IMiD therapy

No

Yes

2 (4.7)

41 (95.3)

PI, Proteasome inhibitors (Bortezomib/Carfilzomib/Ixazomib).

IMiD, immunomodulatory agent (Lenalidomide/Thalidomid/Pomalidomide).
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Three months after infusion of a median dose of 4.4 × 106/kg (range 1.2–6.9 × 106/kg) of BCMA CAR-T
cells, 55.8%, 14%, and 25.5% of patients had a complete remission (CR), very good partial response
(VGPR), or partial response (PR), respectively. All 43 MM patients showed CRS, grade 1 in 8 patients
(18.6%), grade 2 in 16 (37.2%), and grade 3 in 19 (44.2%). No higher grade was observed (Fig. 1D). Two
patients died: one from sepsis caused by Pseudomonas aeruginosa and the other from intracranial
hemorrhage (Fig. 1D). Both the BCMA CAR-T/CD3+ T-cell percentages in peripheral blood (PB) and serum
concentrations of interleukin (IL)-10 and interferon (IFN)-γ increased during CRS and differed significantly
in the CR and PR groups (Fig. 1E). Patients’ temperature and C-reactive protein (CRP), ferritin, and lactic
dehydrogenase (LDH) concentrations were elevated, and IL-6 and IFN-γ concentrations were significantly
different in grade 3 vs grade 1 CRS (Fig. 1F and Supplementary Fig. 1A-C). The serum immunoglobulins
(IgG, IgA) and immunoglobulin κ and λ light chain concentrations decreased dramatically after CAR-T
(Supplementary Fig. 1D-F). Figure 1G shows the differences of positron emission tomography–computed
tomography (PET-CT) scans and plasma cells detected by Wright’s stain of a bone marrow smear (43.5%
vs. 0), as well as flow cytometry (68.9% vs. 0) of bone marrow cells before and after CAR-T infusion for a
representative subject.

Changes in the intestinal microbiome during CAR-T cell
therapy
To detect changes in the gut microbiota during CAR-T, we collected fecal samples from each patient at
five times (FCa, FCb, CRSa, CRSb, and CRSc; Fig. 1C), where FCa denotes the baseline when patients were
first enrolled; FCb after chemotherapy; CRSa after CAR T-cell infusion but before the onset of CRS; and
CRSb and CRSc the peak and during the recovery phase of CRS, respectively.

We first evaluated the diversity of the gut microbiota in all subjects during CAR-T cell therapy. There was
a significant decrease in diversity (measured by the Simpson index) during and after CRS (at CRSb and
CRSc) compared with baseline (Fig. 2A). This decrease was observed in the microbiome of patients
receiving CAR-T therapy for r/r ALL (Supplementary Fig. 4A) or r/r NHL (Supplementary Fig. 4B). Refer to
Supplementary Table 1 for details on the characteristics of r/r B-ALL and B-NHL patients. To further
assess the similarity of composition between different therapy stages, we performed pairwise Spearman
correlation analysis of operational taxonomic unit (OTU) level bacterial abundance (Fig. 2B) and found
that stronger correlations emerged during the early stages with a ρ value of 0.71, 0.73, and 0.68,
respectively, at FCa, FCb, and CRSa. Correlations between late stages (CRSb and CRSc) and early stages
were weaker, suggesting that changes in microbiome composition might be related to CRS.

We next explored community structure and temporal shift of bacterial abundance at multiple taxonomic
levels during CAR-T therapy. In myeloma, bacterial communities were dominated by Firmicutes and
Bacteroidetes at the phylum level (Fig. 2C) and characterized by significant enrichment of Firmicutes and
depletion of Bacteroidetes at the last two timepoints (Fig. 2D, E and Supplementary Fig. 4C). By applying
the longitudinal analysis in the Qiime2 microbiome analysis platform, we detected changes in the gut
microbial communities at taxonomic levels from phylum to genus (Fig. 2F and Supplementary Table 2).
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We further employed a negative binominal (NB) regression model-based time-course analysis to identify
genera with significant temporal changes (Supplementary Table 3). Five genera were detected by both
Qiime2 and maSigPro procedures, which included increases in Enterococcus, Lactobacillus, and
Actinomyces and decreases in Bifidobacterium and Lachnospira (Supplementary Fig. 4D). Most changes
were aggravated during the late stages. Moreover, by checking changes in the five genera in ALL and NHL
patients, we observed consistent shift trends in NHL (four genera; Supplementary Fig. 4E) and ALL (two
genera; Supplementary Fig. 4F), respectively.

Association between microbial communities and clinical
response to CAR-T therapy
We next determined whether microbial compositions or changes were associated with the response to
CAR-T. Because we wanted to identify maximum differences and only six subjects presented in the VGPR
group, we performed comparisons only between the CR and PR groups.

Notable differences in microbial alpha and within-sample diversity were observed in patients with CR and
PR (Fig. 3A, B). Although no differences were detected at baseline, PR patients descended more
dramatically in alpha diversity and had significantly lower Shannon indices than CR patients after CAR-T
infusion (Fig. 3A). As the degree of differences between CR and PR groups changed across therapeutic
stages, we characterized the periods with greater differences by summarizing the amount of CR/PR-
enriched OTU at each timepoint. The most pronounced differences occurred at CRSb (Fig. 3C).

To explore longitudinal differences between CR and PR across all therapeutic stages, we identified OTU
features with differential dynamic profiles by applying negative binominal regression-based time-course
differential analysis with the maSIgPro package. In total, 125 OTUs were found to have differential time-
course patterns between CR and PR patients (Fig. 3D and Supplementary Table 4). The significant OTUs
were further grouped into three clusters according to profiles of their abundance. Most of these OTUs
were in clusters 1 and 2 (Fig. 3E). Cluster 1, characterized by enrichment in the CR group, was comprised
mainly of OTUs, which belong to the phyla Firmicutes and Bacteroidetes and the orders Clostridiales and
Bacteroidales. Cluster 2 was comprised of OTUs from a broader taxonomy, which included the orders
Clostridiales, Bacteroidales, Lactobacillales, and Actinomycetales (Fig. 3F).

We identified 30 genera with differential time-course patterns in patients with CR and PR after CAR-T
(Supplementary Table 5). To explore these differences further, we divided the therapeutic period into
before and after CAR-T infusion and performed genus-level class comparisons using linear discriminant
analysis (LDA) of effect size (LEfSe) 24. We detected 34 genera with differences in abundance in the CR
and PR groups (Fig. 4A). Eighteen genera were detected by both procedures (Supplementary Fig. 5A).
Consistent with the results from OTU-level pattern analysis, most of the significant genera such as
Faecalibacterium, Roseburia, and Ruminococcus were enriched in CR patients after CAR-T. The genera
Bifidobacterium, Prevotella, Sutterella, Oscillospira, Paraprevotella, and Collinsella had a higher
abundance in CR versus PR patients both before and after CAR-T (Fig. 4A and Supplementary Fig. 5B).
We also took patients with VGPR into consideration and analyzed the above-mentioned genera before
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and after CAR-T infusion. The bacterial abundance in VGPR patients fell somewhere between CR and PR
patients, but no statistical significance was evident for most of genera (Fig. 4B and Supplementary
Fig. 5D).

To explore whether early bacterial abundance was indicative of therapeutic response, we used RF feature
selection to identify key discriminatory genera for responses 25. By defining the stages before CAR-T
infusion as early, we applied feature selection procedures individually at both baseline (FCa) and post-
chemotherapy (FCb) and identified gut microbiome signatures comprising 8 and 14 discriminatory
genera separately for baseline and post-chemotherapy (Fig. 4C, D and Supplementary Fig. 5C). The area
under the receiver operating characteristic curve (ROC) of the two RF models using these discriminatory
features was 0.73 and 0.85, respectively (Fig. 4E, F). Prevotella, Collinsella, Bifidobacterium, and Sutterella
were enriched in CR versus PR both before and after CAR-T infusion and were identified by RF analysis as
significant at baseline and post-chemotherapy. This indicates potential associations between these
genera and the response to CAR-T.

We also checked the abundance of these genera in r/r NHL and ALL patients. In NHL, Faecalibacterium,
Bifidobacterium, and Ruminococcus were significantly (or almost significantly) enriched in CR versus PR
and in patients not having a remission (NR), consistent with our results in myeloma (Supplementary
Fig. 5E). However, for ALL, we observed enrichment of Bifidobacterium, Roseburia, and Collinsella in NR
(Supplementary Fig. 5F), which differed from the results for MM and NHL but might be determined by the
small NR sample.

To further demonstrate the association between these taxa and outcome, we assessed progression-free
survival (PFS) following CAR-T therapy. By stratifying patients by tertile of bacterial abundance, we
observed that for Sutterella, patients in the highest-abundance tertile had significantly prolonged PFS
(Fig. 4G). Even after stratification by timepoints, this association remained significant (Supplementary
Fig. 6A). However, for genus Faecalibacterium, which was reported to be significantly associated with
PFS and anti-PD-1 therapy 19, we did not observe an association (Supplementary Fig. 6B, C).

We performed pathway analysis using Phylogenetic Investigation of Communities by Reconstruction of
Unobserved State (PICRUSt) and identified significant changes in amino acid metabolism (Fig. 4H),
important for immune function 26. For example, CR patients had higher lysine biosynthesis, whereas PR
patients had higher lysine degradation. Glutathione metabolism, which can have different effects on
functional immunity 27, was increased in PR patients. Peptidoglycans biosynthesis was increased in CR
versus PR patients. Bacteria-derived peptidoglycans are an important pathogen-associated molecular
pattern (PAMP) that can activate inflammatory signaling pathways and stimulate immune responses 28.

Associations between gut microbiome and CRS
Manifestations of severe CRS, namely high fever and greater amounts of cytokines, typically develop
within several days after CAR-T cell infusion and may cause death if untreated 29. We scaled CRS from
level 1 to 5 30. To analyze associations between bacterial communities associated with CRS, we
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compared patients with severe (level 3) versus mild (level 1) CRS and severe and moderate CRS (level 2).
We found 146 OTUs with different time patterns in the severe and mild groups (Supplementary Fig. 7 and
Supplementary Table 6), and 99 OTUs with different patterns in the severe and moderate CRS groups
(Supplementary Fig. 8 and Supplementary Table 7). The profiles of the OTU clusters for the comparisons
were similar, with OTUs in clusters 1 and 3 having a higher abundance during late therapy in patients with
severe versus mild CRS (Supplementary Fig. 7B and Supplementary Fig. 8B). By analyzing associations
between CRS grade and taxa at the genus level, we identified signatures discriminating severe from mild
CRS, including decreases in amount of Bifidobacterium and Leuconostoc in patients with severe CRS
(Fig. 5A and Supplementary Table 8). Bifidobacterium was increased in patients with worse CRS, not only
during the window of CRS, but also at early stages (Fig. 5A, B). Leuconostoc was significantly enriched
during the window in patients with high CRS grade (Fig. 5A, B). In addition, the abundance of
Stenotrophomonas and Staphylococcus differed severe vs moderate CRS during the window
(Supplementary Fig. 8D and Supplementary Table 9).

Comparisons of KEGG pathways across CRS groups showed that the gut microbiome of patients with
severe CRS had high metabolism or biosynthesis related to inflammatory compounds, including several
pathways associated with amino acid synthesis and metabolism, purine metabolism, lipoic acid
metabolism, and biosynthesis of lipopolysaccharide and peptidoglycan (Supplementary Fig. 9 and
Supplementary Fig. 10).

Primary inflammatory markers of CRS are cytokines, such as IL-6, IL-2, IL-10, interferon gamma (IFN-γ),
and tumor necrosis factor-α (TNF-α). Various cytokines are elevated in the serum of patients experiencing
CRS after CAR-T cell infusion 31. By assessing serum cytokine concentrations and immune cell numbers
during CAR-T, we observed significantly increased amounts of serum inflammatory cytokines (IL-6, CRP,
IFN-γ, D-dimer, ferritin) but low numbers of immune cells (monocytes, lymphocytes, neutrophils,
leukocytes) in severe CRS (Fig. 5C). We also compared serum cytokine concentrations and immune cell
numbers in CR and PR, observing significant differences for many of them (see Supplementary Fig. 11A).

To explore further associations between the gut microbiome and CRS during CAR-T therapy, we
determined whether serum cytokine concentrations and numbers of PB immune cells correlated with the
abundance of gut microorganisms (Fig. 5D). The abundance of the genus Leuconostoc, previously linked
to CRS grade, correlated positively with ferritin and D-dimer concentrations. The abundance
Bifidobacterium correlated significantly negatively with PB monocytes (Fig. 5E). We also found a
correlation between inflammatory markers and bacteria associated with the clinical response and PFS.
For example, Sutterella correlated negatively with serum concentrations of CRP and D-dimer
(Supplementary Fig. 11B). Prevotella correlated negatively with the number of multiple PB immune cells
but positively with the serum D-dimer concentration (Supplementary Fig. 11B). Faecalibacterium
correlated negatively with the serum concentrations of D-dimer and IFN-γ (Supplementary Fig. 11B).

Discussion
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Although several studies have revealed the critical role of the gut microbiome in treatment responses and
survival after administration of another important immunotherapy — immune checkpoint inhibitor (e.g.,
PD-1, PD-L1) therapy 20, no study has reported on the association between the gut microbiome and CAR-T
therapy. In this study, we describe the changes of the gut microbiome during CAR-T therapy and
associations with treatment responses and CRS severity in CAR-T-treated patients with B-cell
malignancies.

Some of the bacterial genera with differences in abundance in CR versus PR patients have been reported
to be involved in the regulation of the immune response, including to immunotherapy. Faecalibacterium,
reported to enhance antitumor immune responses and survival after anti-PD-1 therapy in melanoma 19, 32,
was in this study associated with CR. Multiple species within the genera Bifidobacterium and Collinsella
increased in responders to anti-PD-1 therapy for melanoma 33, resulting in depleted peripherally derived
colonic regulatory T cells, increased Batf3-lineage dendritic cells (DCs), and augmented T-helper 1 cell
(Th1) responses and thus better immune-mediated tumor control 34. Here, we observed an increased
abundance of these two bacteria in CR patients, suggesting a similar response-associated effect of these
taxa on the immune system across cancer types and therapeutic strategies.

Nevertheless, some taxa might have effects that are specific for cancer or therapy types. For example,
high abundance of genus Sutterella was associated with both CR and prolonged survival after CAR-T
therapy. However, previous studies reported higher numbers of Sutterella in non-responders versus
responders in non-small-cell lung cancer (NSCLC) treated with nivolumab 35. Besides, in this study, we
observed contradictory results for the genus Bifidobacterium, Roseburia, and Collinsella in three types of
hematologic malignancy (Supplementary Fig. 2F). This indicates a potentially distinct involvement or
function of some bacteria in different cancer types and treatments. But these findings require
confirmation in studies with larger cohorts.

Gut microbial communities contribute to inter-individual variation in cytokine responses 36. We propose
that gut microbes are related to the intensity of CRS during CAR-T therapy. Bifidobacterium, Leuconostoc,
Stenotrophomonas and Staphylococcus were enriched in myeloma patients with severe CRS. Additional
studies also demonstrated an association between these microbes and cytokine production. Previous
research showed that Bifidobacterium correlated with the production of multiple cytokines (e.g., IFN-γ) in
a stimulus-specific pattern 36. The opportunistic pathogen Stenotrophomonas maltophilia can stimulate
the expression of proinflammatory cytokine and chemokine genes in vitro and in vivo 37, 38. Moreover,
superantigens, a family of potent exotoxins produced by Staphylococcus, were could eliciting T-cell-driven
CRS during treatment with CAR T-cells, T-cell agonistic antibodies, immune check point inhibitors,
haploidentical HSCT, and other therapies 39.

The mechanisms through which gut microbes modulate host immunity are largely unknown. Gut
microbial communities modulate host defenses mainly through the release of intermediary metabolites
rather than by direct interaction between specific microorganisms and immune cells 36. Multiple bioactive
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gastrointestinal metabolites produced by gut microbes, such as amino acids, short-chain fatty acids
(SCFAs; e.g., butyrate), and bile acids, exert immunomodulatory functions through immune cell metabolic
reprogramming or transcriptional and epigenetic modulation of immune-related genes 26.
Lipopolysaccharide (LPS) from some pathogens is a well-known endotoxin that can stimulate the release
of a variety of cytokines/chemokines 40, 41. Peptidoglycans in bacterial cell walls are a conserved PAMP
that trigger innate inflammatory responses throughout the body 42.

In addition to myeloma, CAR-T therapy has been applied other blood cancers and solid tumors. The link
between the gut microbiome and different cancer types needs to be studied systematically. Our research
describes associations between changes in the gut microbiome of CAR-T patients and clinical responses
and survival. This will open an avenue for investigating the interaction of the gut microbiome and CAR-T
cells and lead to novel ways to improve the therapeutic efficacy of CAR-T therapy by targeting the gut
microbiome.

As one of the most prominent treatment strategies for hematologic malignancies, CAR-T cell therapy has
recent received great attention. Here for the first time, we found that the dynamic changes in the gut
microbiome correlated significantly with therapeutic response and CRS during CAR-T treatment of
hematologic malignancies (B-ALL, B-NHL, and MM). These findings will aid the development of novel
biomarkers for predicting treatment outcome and CRS severity, thereby optimizing the management of
these patients while reducing potential toxicities.

Methods
METHODS

Study design and protocol
The study was approved by the Institutional Review Board of the First Affiliated Hospital, School of
Medicine, Zhejiang University and was registered in the Chinese Clinical Trial Registry
(ChiCTR1800017404). All patients provided written informed consent for participation in accordance with
the guidelines of the Declaration of Helsinki and signed agreement for collection and analysis of
microbiome samples.

Patient inclusion criteria were: (1) age < 75 years; (2) relapsed or refractory BCMA–positive MM before
CAR-T cell treatment; and (3) expected survival > 12 weeks and adequate performance status and organ
function to tolerate treatment. Exclusion criteria were: (1) pregnancy or lactation; (2) having received
systemic (except inhaled) steroids in the previous 2 weeks or gene therapies; (3) having medical
conditions such as severe mental illness, clinically significant cardiovascular disease, severe renal or
hepatic dysfunction, or active infection; and (4) any conditions that might increase treatment risks.
Patient information and the methods related to two types of cancer (ALL and NHL) are presented in the
Supplementary Materials.
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Peripheral blood mononuclear cells (PBMCs) were obtained from each patient by leukapheresis for CAR-T
cell preparation. The purified CD3+ T cells were transduced with lentiviral vector to express BCMA CAR
(Fig. 1B). Then the engineered T cells were expanded ex vivo under interleukin-2 stimulation. All patients
received lymphodepletion with fludarabine (30 mg/m2 of body surface area daily on days − 4, -3, and − 2)
and cyclophosphamide (500 mg/m2 daily on days − 3 and − 2) followed by an infusion of BCMA CAR-T
cells on day 0. The primary response outcome, defined by the guidelines from the International Myeloma
Working Group (IMWG) as a complete response (CR), very good partial response (VGPR), or partial
response (PR) in the third month after CAR-T treatment 43, 44. CRS was graded by the Lee criteria 30.

Microbiome sample collection and restoration
Gut microbiome samples were collected at five timepoints (Fig. 1C). All fecal samples were collected with
the GUHE Flora Storage kit (Zhejiang Hangzhou Equipment Preparation 20190682, GUHE Laboratories,
Hangzhou, China), which maintains microbial DNA stability at room temperature for as long as one
month. All samples were frozen at -80℃ prior to DNA extraction. The stages of FCa, FCb, and CRSa were
defined as early stages and CRSb and CRSc as late stages. The CRS grade 1 was defined as Mild, CRS
grade ≤ 2 as Moderate, and CRS grade ≥ 3 as Severe.

Assessment of serum cytokine concentrations
All blood samples were stored at 4°C until centrifugation at 5000 rpm for 6 min. The supernatant liquids
were quantified with the BD Cytometric Bead Array Human Th1/Th2/Th17 Cytokine Kit and its
corresponding software (BD Biosciences) according to the manufacturer's instructions.

Assessment of CAR-T cell expansion and persistence
Serial PB samples were collected in BD Vacutainer K2EDTA tubes (BD Biosciences) before and after CAR-
T cell infusion. The expansion of CAR-T cells in vivo was determined by detecting the CAR-T ratio
continuously in PB as described45, 46. BCMA CAR-T expression was assessed using biotin-SP-conjugated
F(ab')2 fragment goat anti-mouse IgG, F(ab')2 fragment-specific antibody, and the secondary staining
reagent streptavidin-FITC (BioLegend, 405202) or streptavidin-PE (BioLegend,405204).

DNA Extraction
Total bacterial genomic DNA samples were extracted using the MO BIO PowerSoil DNA Isolation Kit (MO
BIO Laboratories, Carlsbad, CA, USA). The quantity and quality of extracted DNA was assessed using
both the NanoDrop ND-1000 Spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA) and
agarose gel electrophoresis.

Bacterial 16S rRNA gene sequencing
The V4 region of the 16S rRNA gene was amplified with bacterial universal primers: 515F (5′-
GTGCCAGCMGCCGCGGTAA-3′) and 806R (5′-GGACTACH VGGGTWTCTAAT-3′). The primers used for
amplification contain adapters for the HiSeq platform and single-end barcodes allowing pooling and
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demultiplexing sequences of PCR products. Amplified sequences were purified with AMPure XP beads
(Agencourt, Inc, Beverly, Manchester, MA, USA) and AxyPrep DNA Gel Extraction Kit (Axygen, Inc, Union
City, CA). Qualified PCR products were sequenced with the HiSeq platform (Illumina, Inc, San Diego, CA,
USA) using the 2 × 150-bp paired-end sequencing protocol.

Amplicon data processing
Sequenced reads were demultiplexed according to barcodes. Paired-end reads were merged with the
fastq_mergepairs command from VSEARCH v. 2.4.4 47.The minimum length of overlap between paired-
end reads was set to 5. Merged reads were then imported into Qiime2 (v. 2020.2) 48. Jointed reads were
processed by the qiime quality-filter q-score-joined command to filter sequences with low-quality scores.
Sequences were denoised with the Deblur workflow 49. Amplicon sequence variants (ASVs) were
summarized with the feature-table summarize command. To calculate phylogenetic diversity, a rooted
phylogenetic tree was constructed using the align-to-tree-mafft-fasttree pipeline from the q2-phylogeny
plugin within Qiime2. The pipeline performed a multiple sequence alignment of the ASV sequences and
then masked the alignment to remove positions that are highly variable. The masked alignment was used
to generate a phylogenetic tree by FastTree program 50. Alpha and beta diversity matrices were generated
through the q2-diversity plugin using the above-mentioned ASV feature table and rooted phylogenetic
tree. De novo clustering of ASVs was performed with the cluster-features-de-novo command within
vsearch plugin 47. Input features were collapsed at 97% identity, resulting in new OTU features that are
clusters of the ASV features. Representative OTU sequences were then annotated with pre-trained Naive
Bayes classifier trained on the Greengenes 13_8 99% OTU database using the feature-classifier plugin 51.
The sequences used for training were trimmed to include only the V4 region. Taxonomic composition was
summarized with the collapse method from the taxa plugin within Qiime2.

Functional prediction
We used the OTU feature table generated from Qiime2 to predict microbial community function with
PICRUSt2 52. The PICRUSt2 algorithm performed functional prediction based on marker gene sequencing
profiles and searched for the most closely related organisms with annotated genomes to infer gene
contents per OTU. Gene family abundance per sample was summarized and grouped into KEGG
orthologs (KOs). To facilitate the interpretation of functional results, KOs were further summarized into
KEGG pathways on the basis of structured pathway mappings. For differential pathway analysis, we
applied the two-sided Welch’s t-test to identify discriminative KEGG pathways concerning clinical
responses (PR versus CR) and CRS level (level 1 versus level 3).

Bioinformatics and statistical analysis
Comparisons of alpha diversity and taxonomic abundances between two groups were conducted with the
Wilcoxon rank-sum test, while comparisons among three or more groups were conducted using the
Kruskal-Wallis rank-sum test. For beta diversity analysis, a PCoA plot was generated with weighted
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Unifrac distances. To test the significance of between-sample diversity alternation, permutational
analysis of variance (PERMANOVA) was performed with the adonis function within the R package vegan.

The feature-volatility plugin 53 within Qiime2 was applied to implement longitudinal analysis to identify
features that are associated with therapy stages. In this pipeline, supervised learning regressor was used
to identify important features and assess their ability to predict therapy states. Unclassified taxonomic
features, features absent in more than 90% of all samples, and features with low abundance (< 0.01%)
were all excluded from the analysis. Net average change scores and importance scores, which denote the
correlation between input features and therapy stages, were exported and visualized in a volcano plot.
Only features with net average change scores more than 0.2% and importance scores within the first
tertile of distribution were retained.

For time-course differential analysis, the R package maSigPro54, 55 was used to find taxonomic features
with significant temporal changes and significant differences between experimental groups (e.g., clinical
response and CRS grade groups). Specifically, the maSigPro algorithm defined a generalized regressive
model by dummy variables followed by two regression steps: the first one selects features with non-flat
profiles by the least-squared technique and the second step creates best regression models for each
feature by using stepwise regression to identify features with different profiles between experimental
groups. We used as input, the normalized relative abundance (scaled to 100 million) and excluded
features that did not occur in more than 90% of all samples. We employed a negative binominal
regressive model for the microbial counts data and ran maSigPro on therapy stages with a degree of 4.
All features with a significant group difference were exported. The significant features were further
clustered together using the hclust function method according to the patterns of their relative abundance.
For each cluster, a median profile and fitted curve of all included features were summarized to visualize
the profile pattern.

The LAD effect size (LEfSe) algorithm24 was employed to identify differentially abundant features
between groups (e.g., between clinical response and CRS grade). The method first detected features with
significant differential abundance using the non-parametric factorial Kruskal-Wallis rank-sum test with
pre-defined α of 0.05. Significant features were then used to build a Linear Discriminant Analysis (LDA)
model for estimating the effect size of each differentially abundant feature. The LDA score threshold for
discriminative features was set to 2.0.

To identify early predictive biomarkers with respect to clinical response (PR vs. CR), we implemented a
random forest (RF) feature selection procedure within the R package caret. The recursive feature
elimination (RFE) algorithm with 5-fold cross validation was applied for feature selection. An optimized
number of feature sets was determined by performance of 5-fold cross validation. To depict the receiver
operating characteristic (ROC) curve and calculate the area under the curve (AUC), the pROC package was
utilized.
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For progression-free survival (PFS) analysis, subjects were classified as high, medium, or low based on
tertiles of the distribution of specific taxa abundance (e.g., genus Sutterella). Time to progression was
defined as the interval (in days) from the date of CAR T-cell infusion to the date of disease progression.
Survival curves were estimated using the Kaplan-Meier product-limit method and compared using the log-
rank test within the R package survminer.

We applied Spearman’s rank-order correlation to test the association between bacterial abundance and
concentration of immune cells and inflammatory factors. Only genus-level features deemed to be
associated with clinical response and CRS grades were included in this analysis. Associations with an
absolute value of correlation coefficient higher than 0.2 and FDR less than 0.2 were depicted using
Cytoscape 56.
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Figure 1

Trial profile and clinical response in r/r MM patients treated with CAR-T cell infusion. (A) Patient
enrollment. (B) Anti–BCMA single-chain variable fragment (scFv), a hinge and transmembrane regions,
and 4-1BB costimulatory moiety, and CD3ζ T-ce ll activation domain. (C) Blood and fecal sample
collection. (D) Clinical response; CRS grade distribution in 43 r/r MM patients. (E) Numbers of BCMA CAR-
T cell percentages in PB assessed by FACS in different therapy stages after CAR-T cell infusion and
serum concentrations of IL-6 and IFN-γ in different therapy stages among the CR, EPR, and PR groups. (F)
Body temperature and serum concentrations of IL-6 and IFN-γ in different therapy stages among CRS
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grade groups. (G) Representative MM patients with impressive antimyeloma response. Positron emission
tomography-computed tomography scans before and five months after CAR-T cell treatment showing
complete elimination of large number of MM bone metastases. Before receiving CAR-T cell infusion,
43.5% of bone marrow cells of the patient were plasma cells, but after 1.5 months of infusion, dramatic
eradication of MM from the bone marrow was observed; and MM cells became undetectable by flow
cytometry.

Figure 2

Changes of microbial composition during CAR-T therapy. (A) Simpson diversity indices of gut
microbiome across CAR-T stages in all myeloma patients by Wilcoxon rank-sum test. (B) Pairwise
Spearman correlation of OTU-level bacterial abundance across different timepoints. Rho value for each
significant correlation is labelled inside box. (C) Stacked bar plot of mean phylum-level phylogenetic
composition of bacterial taxa in myeloma patients across therapy stages. (D, E) Relative abundance of
phyla Firmicutes and Bacteroidetes across therapy stages. Significance was assessed by Wilcoxon rank-
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sum test. (F) Longitudinal analysis by Qiime2 “feature-volatility” plugin to identify taxonomic features
associated with therapy stages. Important genus-level features are labelled.

Figure 3

Association of compositional differences in gut microbiome with responses to CAR-T therapy. (A)
Shannon diversity indices of gut microbiome differed between CR and PR groups across CAR-T stages.
Significances were assessed by Wilcoxon rank-sum test. (B) Principal coordinate analysis of fecal
samples by response using weighted UniFrac distances. (C) Summary of number of PR or CR-enriched
OTUs in different therapy stages. Difference between CR and PR groups was assessed by Wilcoxon rank-
sum test. P value significant cutoff was 0.05. (D) Heatmap for abundance of OTUs with significant
temporal differences between CR and PR groups identified by maSigPro. Rows denote bacterial OTUs
grouped into three sets according to regression coefficients and sorted by mean abundance within each
set. Individual samples are organized in columns, with colored bars representing response group and
therapy stage. (E) Profiles of significant gene clusters correspond to (D). Solid lines denote median profile
of abundance of OTUs within cluster for each experimental group through time. Fitted curve of each
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group is displayed as dotted line. (F) Phylogenetic composition of OTUs within each cluster in (D) at
phylum and order levels.

Figure 4

Determination of correlated genera with clinical response to CAR-T therapy. (A) Differentially abundant
genera in CR and PR patients were identified by LefSe and maSigPro. Bar plots denote linear discriminant
analysis (LDA) scores computed for differentially abundant genera in CR (blue) and PR (red) groups
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using LefSe. P < 0.05 for Kruskal-Wallis H statistic; LDA score > 2. Bubble plot on left marked p values
from temporal group difference analysis for each genus. Bubble size and color are proportional to log-
transformed p value. (B) Mean bacterial abundance (log transformed) of CR, VGPR, and PR myeloma
patents before and after CAR-T cell infusion. Significances tested with Wilcoxon rank-sum test; * p < 0.05.
(C) Relative abundance (log transformed) of top discriminative signatures at baseline (FCa) timepoint
identified by RF feature selection procedure. Genera with highest scores of mean decreases in Gini were
selected. Importance scores in RF classification model and fold-change levels in log2 scale are noted
below plot for each genus. Underlined genera are those identified at both baseline and post-
chemotherapy stages. (D) Same as panel C for post-chemotherapy (FCb) timepoint. Only signatures
enriched in CR patents are displayed. Those depleted in CR patents are displayed in Fig. S2C. (E) Receiver
operating characteristic (ROC) curve of RF model using discriminatory genera as predictors for baseline
timepoint. (F) Same as panel E for post-chemotherapy timepoint. (G) Kaplan-Meier (KM) plot of PFS
curves by log-rank test for patients with high (dark blue), median (green). or low (red) abundance of
Sutterella. Abundance of genus Sutterella was in terms of median abundance of all timepoints. (H)
Differential KEGG pathways in CR and PR groups measured by Welch’s t-test. Bar plot on left denotes
mean proportion of each pathway in CR and PR groups. Dot plot on right depicts difference in mean
proportion. Blue and red dots represent pathways enriched in CR and PR groups, respectively.
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Figure 5

Compositional differences between subjects with different CRS grades. (A) Differentially abundant
genera in severe (CRS = 3) and mild (CRS = 1) CRS groups identified by LefSe and maSigPro. Bar plots
denote linear discriminant analysis (LDA) scores computed for differentially abundant genera in CRS
grades 1 (green) and 3 (orange) groups by LefSe (p < 0.05 and LDA score > 2). Bubble plot on left marks
p values from temporal group difference analysis for each genus calculated by maSigPro. Bubble size
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and color are proportion to log-transformed p value. (B) Mean bacterial abundance in MM patients with
different CRS grades before and during occurrence of CRS. Significances were assessed with Wilcoxon
rank-sum test. (C) Concentrations of immune cells and inflammatory markers in different CRS grades
across therapy stages. Significances were assessed by Kruskal-Wallis test. (D) Network representing
correlations between gut microbes (blue nodes) and immune cells and inflammatory markers (green
nodes) at FDR < 0.2 and ρ > 0.2. Red edges indicate positive correlations and blue edges negative
correlations. Edge width is proportional to correlation coefficient (ρ) calculated by Spearman correlation
test. Only genera identified as associated with clinical response and CRS grade were included in
correlation analysis. (E) Correlation plots for Leuconostoc and correlated immune cells and inflammatory
markers from network shown in (D). Color of dots represents CRS grades. (F) Same as (E) for
Bifidobacterium. p < 0.1; * p < 0.05; ** p < 0.01.
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