
Big Optimization with Genetic Algorithms: Hadoop,
Spark and MPI
Carolina Salto

Universidad Nacional de La Pampa
Gabriela Minetti (minettig@ing.unlpam.edu.ar)

Universidad Nacional de La Pampa https://orcid.org/0000-0003-1076-6766
Enrique Alba

Universidad de Málaga
Gabriel Luque

Universidad de Málaga: Universidad de Malaga

Research Article

Keywords: Big optimization, Genetic Algorithms, MapReduce, Hadoop, Spark, MPI

Posted Date: July 31st, 2021

DOI: https://doi.org/10.21203/rs.3.rs-725766/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

https://doi.org/10.21203/rs.3.rs-725766/v1
mailto:minettig@ing.unlpam.edu.ar
https://orcid.org/0000-0003-1076-6766
https://doi.org/10.21203/rs.3.rs-725766/v1
https://creativecommons.org/licenses/by/4.0/

Noname manuscript No.
(will be inserted by the editor)

Big Optimization with Genetic Algorithms: Hadoop, Spark
and MPI

Carolina Salto · Gabriela Minetti · Enrique Alba · Gabriel Luque

the date of receipt and acceptance should be inserted later

Abstract Solving problems of high dimensionality (and
complexity) usually needs the intense use of technolo-

gies, like parallelism, advanced computers and new types

of algorithms. MapReduce (MR) is a computing paradigm

long time existing in computer science that has been

proposed in the last years for dealing with big data ap-
plications, though it could also be used for many other

tasks. In this article we address big optimization: the

solution to large instances of combinatorial optimiza-

tion problems by using MR as the paradigm to design
solvers that allow transparent runs on a varied num-

ber of computers that collaborate to find the problem

solution. We first investigate the influence of the used

MR technology, then including Hadoop, Spark and MPI

as the middleware plataforms to express genetic algo-
rithms (GAs), arising the MRGA solvers, in a style dif-

ferent from the usual imperative transformational pro-

gramming. Our objective is to confirm the expected

Carolina Salto
Facultad de Ingenieŕıa, Universidad Nacional de La Pampa,
Argentina
CONICET, Argentina
ORCID iD 0000-0002-3417-8603
E-mail: saltoc@ing.unlpam.edu.ar

Gabriela Minetti
Facultad de Ingenieŕıa, Universidad Nacional de La Pampa,
Argentina
ORCID iD 0000-0003-1076-6766
E-mail: minettig@ing.unlpam.edu.ar

Enrique Alba
ITIS Software, Universidad de Málaga, Spain
ORCID iD 0000-0002-5520-8875
E-mail: eat@lcc.uma.es

Gabriel Luque
ITIS Software, Universidad de Málaga, Spain
ORCID iD 0000-0001-7909-1416
E-mail: gabriel@lcc.uma.es

benefits of these systems, namely file, memory and com-
munication management, over the resulting algorithms.

We analyze our MRGA solvers from relevant points of

view like scalability, speedup, and communication vs.

computation time in big optimization. The results for

high dimensional datasets show that the MRGA over
Hadoop outperforms the implementations in Spark and

MPI frameworks. For the smallest datasets, the execu-

tion of MRGA on MPI is always faster than the exe-

cutions of the remaining MRGAs. Finally, the MRGA
over Spark presents the lowest communication times.

Numerical and time insights are given in our work, so

as to ease future comparisons of new algorithms over

these three popular technologies.

Keywords Big optimization · Genetic Algorithms ·

MapReduce · Hadoop · Spark · MPI

1 Introduction

The challenges that have arisen with the beginning of

the era of the Big Data have been largely identified

and recognized by the scientific community. These chal-

lenges include dealing with very large data sets, since
they may well limit the applicability of most of the

usual techniques. For instance, evolutionary algorithms,

as combinatorial optimization problem solvers, do not

scale well to high dimensional instances [20]. To over-

come these limitations, evolutionary developers can em-
ploy Big Data processing frameworks (like Apache Ha-

doop, Apache Spark, among others) to process and gen-

erate Big Data sets with a parallel and distributed algo-

rithm on clusters and clouds [5,8,22,26,33]. In this way,
the programmer may abstract from the issues of dis-

tributed and parallel programming, because the major-

ity of the frameworks manages the load balancing, the

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

https://www.editorialmanager.com/soco/download.aspx?id=572721&guid=7a1b751f-269e-4dbb-a838-a22ce836c253&scheme=1
https://www.editorialmanager.com/soco/download.aspx?id=572721&guid=7a1b751f-269e-4dbb-a838-a22ce836c253&scheme=1

2 Carolina Salto et al.

network performance, and the fault tolerance. These

features made them popular, creating a new branch of

parallel studies where the focus is on the application

and not on exploiting the underlying hardware.

A well-known computing paradigm that is used to
process Big Data is MapReduce (MR). It splits the

large data set into smaller chunks in which the map

function processes in parallel and produces key/value

pairs as output. The output of map tasks is the input
for reduce functions in such a way that all key/value

pairs with the same key go to the same reduce task [5].

Hadoop is a very popular framework, relying in the

MR paradigm [1,34], both in industry and academia.

This framework provides a ready-to-use distributed in-
frastructure, which is easy to program, scalable, reli-

able, and fault-tolerant [14]. Since Hadoop allows par-

allelism of data and control, we research for other soft-

ware tools doing similar jobs. The MapReduce-MPI
(MR-MPI) [24] is a library built on top of MPI, which

conforms another framework with a somewhat similar

goal. Here you can have more control of the platform,

allowing to improve the bandwidth performance and

reduce the latency costs. Another popular Big Data
framework is Apache Spark [13] that is different from

Hadoop and MR-MPI, since the computational model

of Spark is based on memory. The core concept in Spark

is Resilient Distributed Dataset (RDD) [14], which pro-
vides a general purpose efficient abstraction for dis-

tributed shared memory. Spark allows developing multi-

step data pipelines using a directed acyclic graph.

Although the three mentioned technologies allow

implementations following the MR paradigm, they have
significant differences. Consequently, they encourage us

to carry out a performance analysis targeted to dis-

cover how big optimization can be best implemented

onto the MR model that later is run by any of these

three platforms. This comparative analysis arouses in-
terest for any curious scientist, in order to offer evi-

dence about their relative performance (advantages and

disadvantages). Moreover, the MR paradigm can con-

tribute to build new optimization and machine learning
models, in particular scalable genetic algorithms (MR-

GAs), as combinatorial optimization problem solvers,

which are widely used in the scientific and industrial

community. In the literature, many researchers have

reported on GAs programmed on Hadoop [5,8,11,32,
33] and Spark [15,22,26], and a few ones under MR-

MPI [29], according to the authors knowledge. More-

over, these proposals present different GA parallel mod-

els for big optimization, but they are specific for a
particular MR framework. Furthermore, these research

works mainly focus on the parallelization of highly time-

consuming fitness computation, but not on solving prob-

lems whose complexity is associated with handling Big

Data. All this implies a significant lack of information

on the advantages and limitations of each framework to

implement MRGA solvers for big optimization. In this

sense, the selection of the most appropriate one to im-
plement this kind of algorithm results in a very complex

task. In order to mitigate the lack of information about

the MRGA scalability on the three most known MR

frameworks (MR-MPI, Hadoop, and Spark), we define
the following research questions:

– RQ1: Can we efficiently design big optimization MRGA

solvers using these frameworks?

– RQ2: Which of the frameworks allows the MRGA

solver to reach its best time performance by scaling

to high dimensional instances?

– RQ3: Are MRGAs scalable when considering an in-

creased number of the map tasks?

– RQ4: Is the time spent in communication a factor

to consider when choosing a solver?

With the first research question, we analyze the

usability of these frameworks to design MRGAs that

solve big optimization problems. The RQ2 deepens this
analysis, hopefully offering interesting information on

the MRGA performance when the instance dimension

scales. Furthermore, the scalability of all the studied

approaches is also analyzed considering the number of
parallel process (map tasks), as RQ3 suggests. Finally,

the last research question allows us to examine which

MRGA solver spends more time in communication than

in computation.

To address these RQs, we analyze how a Simple
Genetic Algorithm (SGA) [12] can take advantage of

these Big Data processing frameworks in the optimiza-

tion of large instances of a problem. We here decide to

use this SGA because because it is a canonical tech-

nique in the core of the Evolutionary Algorihtm (EAs)
family, and most things done on it can be reproduced

in other EAs and population-based metaheuristics. For

the purposes of this analysis, in this research a SGA

design is tailored for the MR paradigm, procuring the
so called MRGA [29], coming out from a parallelization

of each iteration of a SGA under the Iteration-Level

Parallel Model [31]. The contributions of this work are

manyfold. We develop the same optimizer (MRGA) us-

ing three open-source MR frameworks. We consider the
implementations made in our previous research [29],

MRGA-H for Hadoop and (MRGA-M) for MR-MPI.

Morever, in this work, the MRGA design is implemented

into the Spark framework, arising the MRGA-S algo-
rithm. Later on, we analyze and compare these three

implementations considering relevant aspects such as

execution time, scalability, and speedup to solve a large

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Big Optimization with Genetic Algorithms: Hadoop, Spark and MPI 3

problem size of industrial interest as the knapsack prob-

lem [10]. As to our knowledge, this is the first work

considering the same MRGA solver implemented in the

three widely known platforms and pointing out their

different features for the benefit of future researches.

This article is organized as follows: next section dis-

cusses the MR paradigm and Big Data frameworks,

showing their similarities and differences. Section 3 pre-

sents a brief state of the art in implementing GAs with
the MR paradigm, and contains our proposal. Sections

4 and 5 define meaningful experiments to reveal infor-

mation on the three systems, perform them, and give

some findings. Finally, Section 6 summarizes our con-

clusions and expected future work.

2 MR Paradigm and Frameworks

An application in the MR paradigm is arranged as a

pair (or a sequence of pairs) of map and reduce func-

tions [7]. Each map function takes as input a set of

key/value pairs (records) from data files and generates

a set of intermediate key/value pairs. Then, MR groups
together all these intermediate values associated with a

same intermediate key. A value group and its associated

key is the input to the reduce function, which combines

these values in order to produce a new and possibly
smaller set of key/value pairs that are saved in data

files. Furthermore, this function receives the intermedi-

ate values via an iterator, allowing the model to handle

lists of values that are too large to fit into main memory.

The input data is automatically partitioned into a set
of M splits when the map invocations are distributed

across multiple machines, where each input split is pro-

cessed by a map invocation. The intermediate key space

is divided into R pieces, which are distributed into R

reduce invocations. The number of partitions (R) and

the partitioning function are user defined.

As previously mentioned, our aim in this work is to

perform a comparison of the different Big Data frame-

works to develop big optimization MRGA solvers. For
that purpose, this section presents three Big Data frame-

works, as the Hadoop [1], the MR-MPI [24], and Spark

[13], with the goal of identifying the advantages and

limitations of each one. In this process, the focus is on

the installation, use, and productivity characteristics of
each framework.

2.1 Hadoop

The Hadoop framework consists of a single master Re-

sourceManager, one slave NodeManager per cluster-node,

and a MRAppMaster per application, which is imple-

mented using the Hadoop YARN framework [1]. In or-

der to meet those goals, the central Scheduler (in the

ResourceManager) responds to a resource request by

granting a container. Essentially, the container is the re-
source allocation, which allows to an application the use

of a specific amount of resources (memory, CPU, etc.)

on a specific host. In this context, the Hadoop client

submits the job/configuration to the ResourceManager
that distributes the software/configuration to the slaves,

schedules, and monitors the tasks, providing status and

diagnostic information to the client including fault tol-

erance management. In this sense, it is noticeable that

the installation and the configuration of the Hadoop
framework requires a very specific and long sequence of

steps, becoming difficult to adapt it to a particular clus-

ter of machines. Moreover, at least one node (master)

is dedicated to the system management.

To deal with parallel processing applications on large

data sets, Hadoop incorporates the Hadoop Distributed
File System (HDFS) and Hadoop YARN. The first one

handles scalability and redundancy of data across nodes.

The second one is a framework for job scheduling that

executes data processing tasks on all nodes.

2.2 MR-MPI

MR-MPI is a small and portable C++ library that only
uses MPI for inter-processor communication, thus the

user writes a main program that runs on each proces-

sor of a cluster, making map and reduce calls to the

MR-MPI library. As a consequence, a new framework
arises with no extra installation and configuration tasks

(light management and easy to program with it), but

not fault tolerance. The use of the MR library within

MPI follows the traditional mode to call the MPI Send

and MPI Recv primitives between pairs of processors,
using large aggregated messages to improve the band-

width performance and reduce the latency costs.

2.3 Spark

Apache Spark has a very powerful and high-level API,

which is built upon the basic abstraction concept of

the Resilient Distributed Dataset [35]. A RDD is an
immutable and a fault-tolerant collection of elements

in shared memory that can be operated on parallel.

This kind of datasets is divided into logical partitions,

each one is computed on different nodes of the cluster
through operations that transform a RDD (creating a

new one) or perform computations on the RDD (re-

turning a value).

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

4 Carolina Salto et al.

Spark applications are composed of a single driver

program and multiple workers or executors. The client

process starts the driver program, which orchestrates

and monitors execution of a Spark application and calls

to actions. With each action, the Spark scheduler builds
an execution graph and launches a Spark job. Each

job consists of stages, which are a collection of tasks

that represent each parallel computation and are per-

formed on the executors (Java Virtual Machine, JVM,
processes). Each executor has several task slots for

running tasks in parallel. The physical placement of

executor and driver processes depends on the clus-

ter type and its configuration.

In order to run on a cluster, the SparkContext can
connect to several types of cluster managers (either

Sparks own standalone cluster manager, Mesos or YARN),

which allocate resources across applications. In this work,

the Hadoop YARN is adopted as cluster manager, due
to their previous use with Hadoop. The installation and

the configuration of the Spark framework is not direct,

requiring the configuration of many properties that con-

trol internal settings. Most of then have reasonable de-

fault values, but others require to be adjusted to an
appropriate values and generally are particular to the

cluster features. These parameters vary from Spark’s

properties to size’s settings of the JVM.

2.4 Final Discussion on the Platforms

Spark allows a more flexible organization of the pro-

cesses, appropriate for iterative algorithms, and eases

efficiency due to the use of in memory data structures
(RDDs). But Spark requires a quite large amount of

RAM memory and it is quite greedy in the utilization

of the cluster resources, while Hadoop and MR-MPI

can be used in low-resource and non-dedicated plat-

forms. Hadoop is designed mainly for batch processing,
while with enough RAM, Spark may be used for near

real-time processing. Also, many problems in industrial

domains are implemented in C/C++, which are only

natively supported by Hadoop and MR-MPI implemen-
tations (and not in Spark). Therefore, the research on

efficient uses of these first frameworks (as done in this

article) is today an important domain [5,8].

Hadoop framework stores both the input and the

output of the job in the HDFS, whereas MR-MPI al-
locates pages of memory. Spark can also use HDFS to

store the data, providing fault tolerance by the task

duplication. In this way, Hadoop and Spark also sup-

ply data redundancy. But the HDFS creation and its
configuration require a careful setting of properties, re-

sulting in a time-consuming process. Instead, MR-MPI

is not able to detect a dead processor and retrieve the

data, being the MPI implementation responsible for de-

tecting and handling network faults.

Spark uses lazy evaluation to reduce the number of

passes it has to take over our data by grouping opera-

tions together. In platforms like MR-MPI and Hadoop,

developers often have to spend a lot of time consider-
ing how to group together operations to minimize the

number of MR passes. In Spark, there is no substan-

tial benefit to writing a single complex map instead of

chaining together many simple operations. Thus, users

are free to organize their program into smaller, more
manageable operations.

Table 1 shows a comparison between the considered

frameworks taking into account various aspects: such

as language supported, volume of data sets, processing

type, easy configuration, among others.

3 Big Optimization with Genetic Algorithms

In this section, we start with a review of the litera-

ture about how GAs were translated into different Big

Data frameworks. After that, we describe the simple

model of SGA used in this work and how it is adapted

to be implemented by following MapReduce (MRGA).
The idea is to implement the same MRGA using the

Hadoop (MRGA-H), MR-MPI (MRGA-M) and Spark

(MRGA-S) frameworks to solve big optimization prob-

lems. This will allow us to compare the results and to
find out their strong and weak features. The implemen-

tations of MRGA-H and MRGA-M algorithms are ob-

tained from [32] and own previous work [29], respec-

tively. In the case of MRGA-S, its implementation was

developed from scratch.

3.1 Literature Review

Some of the most representative works that model GAs

using Big Data frameworks are discribed in this section.

Verma et. al [32,33] proposed a SGA and a CGA based

on the selecto-recombinative GA, proposed by [12], which
only use two genetic operators: selection and recombi-

nation. SGA was developed using the Hadoop frame-

work. The authors match the map function with the

evaluation of the population fitness, whereas the re-

duce function performs the selection and recombina-
tion operations. They proposed the use of a custom-

made Partitioner function, which splits the interme-

diate key/value pairs among the reducers by using a

random shuffle. In [11], the authors proposed a simi-
lar model of GA than Verma et. al [32] for software

testing. The main difference relays in the use of only

one reducer that receives the entire population. Thus,

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Big Optimization with Genetic Algorithms: Hadoop, Spark and MPI 5

Table 1 Comparison between Big Data frameworks.

Features

open-source yes yes yes
popular for big-data yes no yes
language supported Java, C++, Ruby, Python C, C++, Python scala, Java, Python, R

fault-tolerance yes no yes
processing approach read and write to disk read and write to disk in-memory
volume of data sets huge large (RAM + disk) quite large (memory sizes)
processing type batch batch near real-time

iterative processing no yes yes
load balancing automatic manual automatic
installation easy easy easy
configuration relatively difficult easy relatively difficult

the reducer can perform the selection and apply the
crossover and mutation operators to produce a new off-

spring to be evaluated in the next MR job. However,

different parallel GA’s models were proposed by Fer-

rucci et al. [8] using Hadoop as distributed infrastruc-

ture. The authors propose a global model, a grid model,
and finally an island model. They analyze the proposals

in terms of execution time and speedup, as well as the

behavior of the three parallel models in relation to the

overhead produced using Hadoop. Chavez et al. [6] in-
troduce changes in ECJ [30] to follow the MP paradigm

in order to launch any EA problem on a big data in-

frastructure using Hadoop similarly as when a single

computer is used to run the algorithm. Jatoth et al. [16]

solved the problem of QoS-aware big service composi-
tion by implementing a MapReduce based evolutionary

algorithm with guided mutation on a Hadoop cluster,

which use a global model in the MapReduce phase.

An implementation of GAs using Spark can be found

in [22]. Their proposal consists in the partition of the

population in many worker processes which applies the

genetic operations and evaluation by the use of map

function, when the stop criterion is met, a reduce func-

tion aggregates the subpopulations to find the most

promising individuals. In the same line of using Spark

as parallel platform, Hu et al. [15] use a SGA as opti-
mizer tool, where the population is divided in chunks

for evaluation purposes by using a map function. After

that, a collect function is used to gather all the individ-

uals of the population together to apply genetic opera-

tions. More recently, two versions of parallel GAs were
proposed in [4] using Spark framework. The proposals

are based on the traditional master slave model and the

island model to solve large dimensional classifier prob-

lems. The first model handles the evolutionary process
by the Spark driver, which sends the individuals across

the executors to compute the fitness. In the second one,

each island is an executor and evolves a subpopula-

tion. The proposed models are evaluated in relation to
performance and accuracy over multiple cluster sizes.

Many of the reviewed works deploy computing-intensive

runs of EAs on the Big Data infrastructures [8,6,16].

In particular, they implement parallel versions of EAs

to optimize the running time for the algorithmic exper-

iments, because the optimization problems have com-
putationally costly fitness evaluation functions. As to

papers dealing with large data volume, we can men-

tion the work of Verma et al. [32,33], which involves

10n(n = 4) variables and a population of n× logn size.
Finally, Chavez et al. [6] and Alterkawi et al. [4] address

large and complex data classification tasks, but the au-

thors do not indicate the amount of memory usage.

The aforementioned proposals present different GA

parallel models for big optimization, but they are spe-

cific for a single MR framework. This implies a signif-
icant lack of information on the advantages and lim-

itations of each framework to implement GAs for big

optimization. In this sense, the selection of the most

appropriate one to implement this kind of algorithm
results in a very complex task. In order to mitigate this

lack of information, the main objective of our research

is to design and implement a scalable GA on the three

most known MR frameworks: MR-MPI, Hadoop, and

Spark.

3.2 Big Optimization MRGA Solver

For our study, we will use a simple genetic algorithm,

SGA, whose operations can be found in a great number

of Evolutionary Algotithms in the literature. Our aim
is then to guide future research that is linked to these

search operations when designing other algorithms to

MR implementations. The pseudocode of SGA is pre-

sented in the Algorithm 1, which starts by generating
an initial population. During the evolutionary cycle, the

population is evaluated and then a set of parents is se-

lected by tournament selection [21]. After that, the uni-

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

6 Carolina Salto et al.

Algorithm 1 Sequential GA
1: t = 0; {current generation}
2: initialize(Pop(t));
3: evaluate(Pop(t));
4: while (non stop criterion is met) do

5: Pop′(t) = select(Pop(t)); {k-wise tournament selection with-
out replacement}

6: offspring = recombine(Pop′(t), pc); {uniform crossover}
7: Pop(t + 1) = replace(Pop(t),offspring);
8: evaluate(Pop(t + 1));
9: t = t + 1
10: end while

11: return (best individual);

form recombination operator is applied to them. The

recently created offspring conform the new population

for the next generation (using the generational replace-

ment). The evolutionary process ends when either the
optimum solution to the problem at hand is found or

the maximum number of iterations is reached.

Our proposed MRGA algorithm preserves the SGA

behavior, but it resorts to parallelization for some parts:

the evaluation and the application of genetic operators.

Although, our technique performs several operations in
parallel, its behavior is equal to the sequential GA.

A key/value pair has been used to represent indi-

viduals in the population as a sequence of bits. To dis-

tinguish identical individuals (with the same genetic

configuration), a random identifier (ID) is assigned in

the map function to each one. The ID prevents that
identical individuals were assigned to the same reduce

function, in the phase of shuffling when the intermedi-

ate key/multivalues space are generated. The sequence

of bits together with the ID corresponds to the key in
the key/value pair. The value part is the individual fit-

ness, which is computed by the map function.

For large problem sizes, the population initializa-

tion could be a consuming time process. The situation

can get worse with large individual sizes, as the case

in this work. According to this situation, this initializa-
tion is parallelized in a separate MR phase. The map

functions are only used to generate random individu-

als. After that, the iterative evolutionary process be-

gins, where each iteration consists of a map and reduce

functions. The map functions compute the fitness of

individuals. As each map has assigned different chunk

of data, they evaluate a set of different individuals in

parallel. This fitness is added as value in the key/value

pair. Each map finds their best individual that is used
in the main process to determine if the stop criterion

is met. The reduce functions carry out the genetic op-

erations. The binary tournament selection is performed

locally with the intermediate key space, which is dis-
tributed in the partitioning stage after map operation.

The uniform crossover (UX) operator is applied over

the selected individuals. The generational replacement

is implemented to build the new population for the next

MR task (a new iteration).

Regardless of the framework used, the key/value

pairs, generated at the end of the map phase, are shuf-

fled and split to the reducers and converted in an in-

termediate key/multivalues space. The shuffle of indi-
viduals consists in a random assignment of individuals

to reducers instead of using a traditional hash function

over the key. This modification, as suggested in [32], re-

sponds to avoid that all values corresponding to a same

key (identical individuals) will be send to the same re-

duce function, generating a biased partition and fix as-

signed of individuals to the same partition through evo-

lution and an unbalance load of reduce functions at the

end of evolution. Therefore, the intermediate key/value
pairs are distributed into R partitions using an uniform

distribution.

3.3 MRGA-H Algorithm

Some modifications were introduced in the code devel-

oped in [32]. The most important ones are related to the
changes imposed by passing from the old MRV1 to the

new Java MapReduce API MRV2 [1], because they are

not compatible with each other. These important dif-

ferences involve the new package name, the context ob-

jects that allow the user code to communicate with the
MR system, the Job control that is performed through

the Job class in the new API (instead of the old one

JobClient), and the reduce() method that now passes

values as an Iterable Object. Also, some modifica-
tion were required during the generation of the random

individual ID. Finally, the individual evaluation was in-

cluded in the method fitness of the GAMapper Class.

The rest of the code with the functionality of the GA

remains without important modifications. The scheme
of MRGA-H is plotted in Figure 1. Chunks of data read

from HDFS and processed by each map are represented

by shaded rectangles.

3.4 MRGA-M Algorithm

MRGA-M creates the MPI environment for the parallel
execution. Then, the sequence begins with the instan-

tiation of an MR object and the setting of their pa-

rameters. The MRGA-M follows the scheme shown in

Figure 2 where boxes with solid outlines are files and

the chunks of data processed by each map are repre-
sented by shaded rectangles in a hard disk.

The first MR phase consists of only one map func-

tion (calling to a serial Initialize()) to create the ini-

tial population. In our implementation the main process

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Big Optimization with Genetic Algorithms: Hadoop, Spark and MPI 7

Figure 1 MRGA-H scheme.

(process with MPI id equal to zero) generates a list of
filenames. Our Initialize() function processes each file

to build the initial population.

The second and following MR phases have a se-

quence of map and reduce functions. These map func-
tions receive a chunk of the large file passed back to our

fitness() and then split it in M chunks. The fitness()

function processes each key (an individual) received,

evaluates it obtaining the fitness value and emits a

key/value pairs. After that, the MR-MPI aggregate()
function shuffles the key/value pairs across processors

by distributing the pairs randomly. Then, the MR-MPI

convert() function transforms a key/value pairs into

a key/multi-value pairs. Finally, the Evol() function
(from the reduce method) will be called once for each

key/multi-value pair assigned to a processor. This func-

tion selects a pair of individuals by tournament selec-

tion and performs the recombination. The new individ-

uals generated are written into permanent storage to be
read by the map methods in the following MR phase.

3.5 MRGA-S Algorithm

As we have before explained, Spark extends and gen-

eralizes the MR idea with a different implementation.

In consequence, we need to introduce changes to the

MRGA design to obtain the MRGA-S, which are de-
tailed in the following.

The proposed MRGA is based on Spark RDDs to

store the population. This RDD is cached in memory to

accelerate the processing instead of using files to store
the population, as in MRGA-H and MRGA-M. How-

ever, the MRGA-S also exploits the parallelism in the

evaluation and in the application of genetic operators.

Consequently, MRGA-S follows the same logical func-

tionalities than both MRGA-H and MRGA-M, with re-
spect to the SGA behavior.

In this MRGA implementation, a different concep-

tion of key/value pairs to represent individuals is used.

The key represents the partition were an individual has
to be assigned to, whereas the value correspond to the

individual itself.

Figure 3 presents a scheme of the MRGA-S. The

sequence begins with the creation of a RDD (Stage 1),

which is parallelized in the main program. The elements
of the RDD are copied to form a distributed dataset

that can be operated in parallel in each worker, which

transforms them and returns the results to the main

program. After that, an iterative process begins con-
sisting of two Spark stages that are repeated until the

stop criterion is met.

The first step in the main loop (Stage k) assigns a

random value to each individual in the range [1, .., R],

by using a special version of the map operation (map-

ToPair() operation). This conversion prepares a RDD

for the next operation, which consists in grouping the

individuals with the same key. Note that this step (Stage

k) is equivalent to the Partitioner in the MRGA-H or
to the agregate() function in MRGA-M.

The next Stage k+1 begins with the redistribution

of the individuals across the partitions, by using the

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

8 Carolina Salto et al.

Figure 2 MRGA-M scheme.

Figure 3 MRGA-S scheme.

groupByKey() function. After that, a mapToPair() op-

eration is invoked with the Evolution() function as its

parameter, in order to evaluate the individuals and ap-
ply genetic operators into a partition, generating the

new individuals for the next generation. Although, this

is a new difference with MRGA-H and MRGA-M, MRGA-

S maintains the SGA’s underlying idea. Finally, a new

RDD containing the individuals from all the partitions
(the whole population) is obtained to continue with the

first step of Stage k+1 in this iterative process.

4 Experimental Setting

To address the research questions about the efficiency

and scalability presented in Section 1, we consider as
a benchmark the knapsack problem [18,25,28,36] to

evaluate the proposed algorithms. The choice of this

problem was motivated by the fact that it allows us to

assess the MRGA scalability on different big instance
sizes. To carry out the evaluation of the analysis of our

proposals, we use metrics such as execution time, scal-

ability, speedup, and communication vs. computation.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Big Optimization with Genetic Algorithms: Hadoop, Spark and MPI 9

The problem, the experimentation methodology, and

the evaluation metrics are explained in the following

subsections.

4.1 Knapsack Problem

The knapsack problem (KP) is a classic NP-complete

problem [18], which is defined by the task of taking a

set of items, each with a weight and a profit, filling the

knapsack so that the total profit is maximized, but not
exceeding the maximum weight the knapsack can hold.

The KP formulation is shown in Equation 1.

max

Ns∑

i=1

xipi (1)

subject to

Ns∑

i=1

xiwi ≤ K

whereK is the maximum weight the knapsack can hold,

and Ns is the number of items in the set, S. Each

item has a weight wi and a profit pi. Here xi indicates

whether an item i is present or not in the knapsack.
Therefore, a KP solution is represented by a bit string

in MRGA, as is shown in Figure 4 and its implementa-

tion is described in Section 3.2.

KP is a very well-known problem in computer sci-
ence. It occurs in many situations be they in indus-

try, communication, finance, applied sciences or in real

life [9,17,19,27], being itself a very interesting combi-

natorial problem to be dealt using the big optimiza-

tion solver presented in this work. In general, the KP
literature solves problem instances that vary between

100 and 10,000 items in the knapsack. In this article,

we propose to optimize six different high dimensional

instances with a very large number of items: 25,000,
50,000, 75,000, 100,000, 125,000, 150,000, 200,000 and

300,000 items. They are named as 25K, 50K, 75K, 100K,

125K, 150K, 200K and 300K, respectively. These big

KP instances were obtained with the generator described

in [23] and can be found in the repository https://

github.com/GabJL/LargeKPInstances, choosing the un-

correlated data instances type (no correlation between

the weight and the profit of an item). We selected these

large datasets because they represent different degrees
of computational and memory load, being also an im-

portant contribution to the state-of-the-art of the prob-

lem of the knapsack.

Figure 4 Solution representation of the knapsack problem
in MRGA.

4.2 Experimentation Methodology

Each MRGA’s approach evolves 50000 randomly ini-

tialized individuals. This population size was chosen in

order to increase the memory load that our big opti-

mization solver has to manipulate. For each generation,
these algorithms use the binary tournament selection to

select parents, a probability of 100% to recombine the

parents using the UX operator, and the generational

replacement to obtain the next population. Let us re-

call that for each considered KP instance and number of
map tasks (#map), we execute 30 times the MRGA-M,

MRGA-H, and MRGA-S. The computational environ-

ment used in this work to carry out the experimentation

is a cluster of five nodes with 8 GB RAM.

The sequence of bits of an individual is grouped by

arrays of long ints (64 bits) and their lengths depends

on the instance dimension. For example, the individual

length for the 25K instance is 392 long ints (25,000/64)

requiring 3.1 KB of memory, and therefore the popu-
lation demands 156.25 MB. The decision of using long

ints was to optimize the bit operations required by the

evolutionary operators. In this way, the total RAM re-

quirements varies from 150 MB to 1.8 GB, justifying
the use of Big Data frameworks.

4.3 Evaluation Metrics

In the previous section we explained the methodoly for

experimentation, now we will develop on the strategy to

carry out a fair comparison between the MRGA solvers.

In this way, distinct metrics are considered to evaluate

them, such as execution time, scalability, and speedup.
This becomes as a good practice to report results in the

metaheuristic field [3]. We also evaluate the behavior

of our proposals considering different number of maps

and reducers in the case of MRGA-H and MRGA-M
and workers for MRGA-S, in order to assess an analysis

of the implications of the amount of parallelism in the

performance of MRGA approaches.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

10 Carolina Salto et al.

Figure 5 The method to compute times for MRGA-M and MRGA-H.

Execution Time. The execution time (or runtime)

achieved by each MRGA approach is measured in mil-

liseconds using the system clock. This includes the time

between starting and finishing the whole algorithm. Con-

sequently, we include all the communication involved
in the execution. As a way to analyze the implications

of the amount of parallelism in the execution of each

approach, a comparison among the different MRGA

solvers is carried out. This is the base metric to measure
the scalability and speedup that are explained below.

Scalability. We analyze the scalability from two

different dimensions. The first one refers to the algo-

rithm capacity to solve increasing sizes of the problem.

For that reason we include six different instances in the

study. In this case, we maintain the number of map

tasks constant. The second one addresses to increase

the number of map tasks whereas we keep the prob-

lem size fixed, considering 4, 8, and 12 map tasks. This

study allows us to determine how the execution times
are modified when more resources to solve the same

problem are available. Consequently, we have scalabil-

ity with an increasing problem size and scalability with

a constant overall load.

Speedup. The speedup (sm) is the ratio between

the mean execution time on one processor and the mean
execution time onm processors.We use the definition of

weak speedup given in [2] that compares the execution

time of the parallel algorithm on one processor against

the execution time of the same algorithm on m proces-
sors. For this particular study, the solution quality is

taken as the stopping criterion. The evaluated MRGA

solvers should compute solutions having a similar ac-

curacy. Thus, a relaxation of the optimal fitness value

for each KP instance (e.g., 90%) is considered, but in
any case the same value. All these define an orthodox

speedup measure in the Alba’s taxonomy [2].

Communication vs. Computation. A study about

the communication and computation times of each algo-

rithm allows us to understand the reasons that causes

our proposals have a slightly improved speedup. We

adopt the method used in [8], which is proposed for

the Hadoop framework and we have extended for the

other two ones. Figure 5 illustrates how the communi-
cation and computational times are calculated per gen-

eration. This method allows to isolate the GA execution

time (computational time) from the time spent by each

framework to put on-line and run each algorithm (com-
munication time).

5 Result Analysis

In this section, we present the results that allows as to

answer the different RQs formulated in Section 1. The

comparison between the MRGA solvers with respect

to the scalability is in Section 5.1. The analysis of the
speedup is in Subsection 5.2. Finally, in Subsection 5.3,

we contrast the communication and computation times

consumed by each MRGA.

5.1 Scalability

Table 2 and Figure 6 show the execution times achieved

for each algorithm by increasing the problem dimen-
sion. In Table 2, the MRGA-S execution time for the

300K instance is not available (N/A) because this solver

was not able of running such a large instance in our sys-

tems. For every instance, each bar of Figure 6 represents

a different number of map tasks. As expected, the exe-
cution times increase as the dimensionality of the prob-

lem grows. This situation is very clear in the case of

MRGA-M and MRGA-S. However, MRGA-H presents

a behavior with no direct dependence of the problem
size. The previous results give us support to answer the

RQ2 since these algorithms can solve efficiently incre-

mental high dimensional instances, becoming scalable

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Big Optimization with Genetic Algorithms: Hadoop, Spark and MPI 11

Table 2 Execution times achieved for each MRGA solver.

MRGA-M MRGA-H MRGA-S
Inst

#map=4#map=8#map=12 #map=4#map=8#map=12 #map=4#map=8#map=12
25K 15420 14025 14130 62862 56797 55978 22951 19391 23349
50K 39039 22424 22710 42607 35255 33931 38107 30232 28032
75K 66585 36600 36570 58439 48221 47597 51448 40955 37335
100K 78894 74724 40150 52234 38541 38479 65415 50923 45181
125K 108645 99390 51810 118170 94092 89665 79798 61931 55903
150K 136815 118110 113798 75931 54267 48066 94052 73351 66071
200K 157475 160672 148570 79271 50402 47387 123655 71088 83443
300K 251028 260218 248944 101026 63380 57806 N/A 172853 208043

Figure 6 Mean execution time of MRGA algorithms to solve
the KP instances.

big optimization solvers. In particular, the MRGA-H

presents the best performance.

Now, if we analyzed what happens when a same KP
instance is solved by some MRGA and the number of

map tasks is increased, as shown in Figure 6, we can

observe a decrease in the execution time. This study

allows to infer how is affected the MRGA execution
times when the same load is maintained but the amount

of map tasks is augmented. This suggests that when

more resources are used to solve the same problem, we

Figure 7 Mean execution time of MRGA algorithms for each
number of map tasks to solve the KP instances.

obtain a gain in the time. Being, 12 a good number of

map tasks for MRGA-M, while 8 map tasks is enough
for obtaining accurate results in both MRGA-H and

MRGA-S and the improvement achieved adding more

maps is meaningless.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

12 Carolina Salto et al.

Figure 8 Speedup trend per instance.

Figure 9 Mean speedup per MRGA solver.

5.2 Speedup

We analyze the results shown in Figure 7 by compar-
ing the execution times of each MRGA. In this way, we

find responses to the research questions RQ1 and RQ3

about the MRGA efficiency and scalability when more

computational resources to solve the same problem are

available. For the smallest datasets, i.e. instances with
less than 100,000 items, we observe that the execution

of MRGA-M is always faster than the executions of the

remaining MRGAs, regardless of the number of map

tasks used. However, for the largest data sets, MRGA-
M is the slowest MRGA solver, mainly when 4 and 8

map tasks are employed, while MRGA-H is the fastest

one. The MRGA-M weak behavior is caused by the

hardware resource limitations to support big instances

in a few number of map tasks. Moreover, MRGA-H is

the algorithm with less time variations than the other

two MRGAs for a given map task number. In the case
of MRGA-S, we observe a slight increasing in the run-

times when instances with more number of items are

solved. Consequently, we can infer that the three MR-

GAs present an efficient performance and are scalable,
being MRGA-H the most efficient and scalable solver

for big optimization. This conclusion can also be de-

duced from Figure 6, although it cannot be seen with

the naked eye.

Now, we focus on the speedup values to reinforce

the justification of the previous answer to RQ1 from a

different point of view. Figure 8 graphically shows the
speedup values for each KP instance. The MRGA-H

speedup is the best of the three algorithms for the ma-

jority of the problem instances. Although the speedup

is sub-linear (sm < m), the MRGA-H results are quite

good because they are approximately at 0.65 from the
ideal speedup value for 4 and 8map tasks. Both MRGA-

M and MRGA-S present a poor relation respect to the

ideal value, and this situation becomes worse when larger

number of map tasks is considered (the values are very
small, less than 0.3). These observations are corrob-

orated with the average speedup values per MRGA

solvers that is shown in Figure 9.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Big Optimization with Genetic Algorithms: Hadoop, Spark and MPI 13

Figure 10 The average communication vs. computational times spent by each algorithm per generation.

5.3 Communication vs. Computation

Figure 10 shows the communication and computation
times for each MRGA solver taken as reference the in-

stance with a dimension of 100,000 items. Similar obser-

vations can be done for the other instances. This kind of

analysis allows us to give more details about the execu-
tion time achieved by each approach. The stacked bars

represent communication and computational times for

a generation.

On the one hand, it is worth noting that MRGA-

S presents the lowest communication and it goes de-

creasing as the number of maps is increased, while the

computational time stays similar. What explains this
situation is that the total number of executors is fixed

regardless of the number of map tasks, consequently

the tasks assigned to a executor have to be executed

in a serial way. Another reason is that the available

hardware infrastructure is below the Spark hardware
requirements.

On the other hand, for MRGA-M and MRGA-H the

communication time surpasses the computation time,
but it remains stable for every number of map tasks.

The reasons of this behavior are the same large dataset

size is considered and always the number of maps is

equal to the assigned number of cores. However, the
computation time becomes smaller when the number

of tasks increase because each map task is assigned to

a different core of the cluster. Moreover, MR-MPI and

Hadoop are better suited to low cost commercial off-

the-shelf computers. In the view of these results, we
cannot answer RQ4 clearly. Although the communica-

tion time is an important factor to take into account

to chose a MRGA solver, this kind of time is strongly

related with the number of maps, dataset size, and the
hardware infrastructure. Therefore, the combination of

these last factors could lead or not to a reduction in the

communication time.

6 Conclusions

In this article, we have proposed big optimization solvers

based on MR implementations of a Simple Genetic Al-

gorithm in different Big Data processing frameworks.
These allowed us to solve large instances of combina-

torial optimization problems, in particular, the knap-

sack problem that is important in the industry and

academia. In this sense, we used three open-source frame-

works as Hadoop, MR-MPI, and Spark in order to gen-
erate MRGA-H, MRGA-M, and MRGA-S solvers, re-

spectively. We empirically assessed the effectiveness of

the tree MRGA algorithms in terms of execution time,

scalability, speedup, and communication vs. computa-
tion to answer the research questions formulated at the

beginning of this work. This assessment was carried out

by using six big instances with sizes varying from 25,000

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

14 Carolina Salto et al.

to 300,000 items, which were chosen to represent differ-

ent degrees of computational and memory load.

Results show that, from a computational point of

view, the execution times of the MRGA solvers increased

as the dimensionality of the problem grew, as it was
expected. This behavior is exhibited by MRGA-M and

MRGA-S, but not by MRGA-H, that is not affected for

the instance dimensionality and shows the best speedup

values. The MRGA-H then outperforms the other two
in terms of execution time when the problem size scales

to high dimensional instances. In this way, RQ1 and

RQ2 are satisfactorily answered.

Furthermore, the answer to the question about the

scalability of MRGA solvers to an increased number of
map task (RQ3) was that, in fact, a gain in time is

observed if more map tasks are used to solve the same

problem instance. It is more noticeable for MRGR-M

than for the other two MRGA solvers, due to the grow-
ing memory requirements as consequence of the increase

in the instance sizes. MRGA-S presents the lowest com-

munication times but it can not exploit the advantage

to use the in-memory persistence.

However, no conclusive evidence was found with re-
gards to the time spent in communication as a factor

to choose a particular MRGA solver, the last research

question formulated (RQ4) in the present study. The

communication time seems to be too much related in
an unknown way with the number ofmap tasks, dataset

size, and the hardware infrastructure.

The differences observed in the behavior of our MRGA

solvers are to some extent explained by the facts that

both, MRGA-M and MRGA-S, keep and manage the
population from memory, while MRGA-H uses HDFS

to manage it. Furthermore, the MRGA-S deserves spe-

cial attention due to the low performance in its be-

havior. Given that the population is updated in each
iteration, the contents of its RDD persists in memory

only one iteration. As a consequence, the Sparks per-

formance advantage with respect to the use in-memory

persistence can not be exploited.

Summarizing the above observations, MRGA-H pre-
sents a better performance and scalability than MRGA-

M and MRGA-S when high dimensional optimization

problems are solved. Therefore, the MRGA-H solver

continues to perform adequately as its workload grows

as much as the the capacity of the containers allows
it. Nevertheless, the MRGA-H and MRGA-S should be

positively considered since they are using frameworks

which allow easier programmability. They also present

further advantages, such as inherent support to node
failures and data replication.

In a future work, other models to parallelize the

SGA, such as the island model, using MR paradigm

will be considered on these three frameworks in order

to improve the speedup of the big optimizer and take

advantage of the distributed nature of the new propos-

als. Also, the sensitivity of the parameter settings on

the proposed algorithm will be addressed. Other appro-
priate big optimization problems to analyze the perfor-

mance of these big optimization solvers will be used to

give more insights of their behavior.

Acknowledgments

This research received financial support from the Uni-

versidad Nacional de La Pampa and the Incentive Pro-
gram from MINCyT (Argentina). Moreover, this re-

search has been partially funded by the Spanish MINECO

and FEDER project TIN2017-88213-R (6city), and by

PRECOG (UMA18-FEDERJA-003).

Conflict of interest

The authors declare that they have no conflict of inter-
est.

Human and animal rights

This article does not contain any studies with animals

performed by any of the authors.

Informed consent

Informed consent was obtained from all individual par-

ticipants included in the study.

References

1. Welcome to Apache Hadoop! Technical re-
port, The Apache Software Foundation,
http://hadoop.apache.org/, 2014.

2. E. Alba. Parallel evolutionary algorithms can achieve
super-linear performance. Information Processing Let-

ters, 82(1):7 – 13, 2002. Evolutionary Computation.
3. E. Alba. Parallel Metaheuristics: A New Class of Algo-

rithms. Wiley-Interscience, New York, NY, USA, 2005.
4. L. Alterkawi and M. Migliavacca. Parallelism and parti-

tioning in large-scale GAs using spark. In Proceedings of

the Genetic and Evolutionary Computation Conference,
GECCO 19, page 736744, New York, NY, USA, 2019.
Association for Computing Machinery.

5. A. Cano, C. Garćıa-Mart́ınez, and S. Ventura. Extremely
high-dimensional optimization with MapReduce: Scal-
ing functions and algorithm. Information Sciences, 415-
416(Supplement C):110 – 127, 2017.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Big Optimization with Genetic Algorithms: Hadoop, Spark and MPI 15

6. F. Chávez, F. Fernández, C. Benavides, D. Lanza,
J. Villegas, L. Trujillo, G. Olague, and G. Román.
ECJ+Hadoop: An easy way to deploy massive runs of
evolutionary algorithms. In G. Squillero and P. Bu-
relli, editors, Applications of Evolutionary Computation,
pages 91–106, Cham, 2016. Springer International Pub-
lishing.

7. J. Dean and S. Ghemawat. MapReduce: simplified data
processing on large clusters. In OSDI04: Proceedings of

the 6TH Conference on Symposium on Operating Sys-

tems Desing and Implementation. USENIX Association,
2004.

8. F. Ferrucci, P. Salza, and F. Sarro. Using Hadoop MR
for parallel GAs: A comparison of the global, grid and
island models. Evol. Computation, 0(0):1–33, 2017.

9. J. Rui Figueira, G. Tavares, and M. Wiecek. Labeling
algorithms for multiple objective integer knapsack prob-
lems. Computers & Operations Research, 37(4):700 –
711, 2010.

10. M.R. Garey and D.S. Johnson. Computers and In-

tractability: a Guide to the Theory of NP-Completeness.
Freeman, 1979.

11. L. Di Geronimo, F. Ferrucci, A. Murolo, and F. Sarro. A
parallel genetic algorithm based on Hadoop MapReduce
for the automatic generation of JUnit test suites. In 2012

IEEE Fifth International Conference on Software Test-

ing, Verification and Validation, pages 785–793, April
2012.

12. D.E. Goldberg. The Design of Innovation: Lessons from

and for Competent Genetic Algorithms. Kluwer Aca-
demic Publishers, 2002.

13. M. Hamstra, H. Karau, M. Zaharia, A. Konwinski, and
P.Wendell. Learning Spark: Lightning-Fast Big Data An-

alytics. OReilly Media, 2015.
14. I. Hashem, N. Anuar, A. Gani, I. Yaqoob, F. Xia, and

S. Khan. Mapreduce: Review and open challenges. Sci-

entometrics, 109(1):389–422, Oct 2016.
15. C. Hu, G. Ren, C. Liu, M. Li, and W. Jie. A spark-

based genetic algorithm for sensor placement in large
scale drinking water distribution systems. Cluster Com-

puting, 20(2):1089–1099, 2017.
16. C. Jatoth, G.R. Gangadharan, U. Fiore, and R. Buyya.

Qos-aware big service composition using mapreduce
based evolutionary algorithm with guided mutation. Fu-

ture Generation Computer Systems, 86:1008 – 1018,
2018.

17. L. Jenkins. A bicriteria knapsack program for planning
remediation of contaminated lightstation sites. European
Journal of Operational Research, 140(2):427–433, 2002.

18. H. Kellerer, U. Pferschy, and D. Pisinger. Introduction to

NP-Completeness of Knapsack Problems, pages 483–493.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.

19. K. Klamroth and M. M. Wiecek. Time-dependent capital
budgeting with multiple criteria. In Yacov Y. Haimes and
Ralph E. Steuer, editors, Research and Practice in Mul-

tiple Criteria Decision Making, pages 421–432, Berlin,
Heidelberg, 2000. Springer Berlin Heidelberg.

20. M. Lozano, D. Molina, and F. Herrera. Editorial scalabil-
ity of evolutionary algorithms and other metaheuristics
for large-scale continuous optimization problems. Soft

Computing, 15(11):2085–2087, 2011.
21. B. Miller and D. Goldberg. Genetic algorithms, tourna-

ment selection, and the effects of noise. Complex Systems,
9:193–212, 1995.

22. C. Paduraru, M. Melemciuc, and A. Stefanescu. A dis-
tributed implementation using apache spark of a genetic
algorithm applied to test data generation. In Proceedings

of the Genetic and Evolutionary Computation Confer-

ence Companion, GECCO ’17, pages 1857–1863. ACM,
2017.

23. D. Pisinger. Core problems in knapsack algorithms. Op-

erations Research, 47:570–575, 1999.
24. S. Plimpton and K. Devine. Mapreduce in MPI for large-

scale graph algorithms. Parallel Computing, 37(9):610–
632, 2011.

25. T. Pradhan, A. Israni, and M. Sharma. Solving the 01
knapsack problem using genetic algorithm and rough set
theory. In 2014 IEEE International Conference on Ad-

vanced Communications, Control and Computing Tech-

nologies, pages 1120–1125, 2014.
26. R. Qi, Z. Wang, and S. Li. A parallel genetic algorithm

based on spark for pairwise test suite generation. Journal
of Computer Science and Technology, 31:417–427, 2016.

27. V. Quintuna Rodriguez and Ma. Laye. Modeling and
optimization of content delivery networks with heuris-
tics solutions for the multidimensional knapsack problem.
pages 13–18, 2016.

28. A. Salama, M. Wahed, and E. Yousif. Big data flow ad-
justment using knapsack problem. Journal of Computer

and Communications, 6:30–39, 2018.
29. C. Salto, G. Minetti, E. Alba, and G. Luque. Develop-

ing genetic algorithms using different mapreduce frame-
works: MPI vs. Hadoop. In F. Herrera, S. Damas,
R. Montes, S. Alonso, Ó. Cordón, A. González, and
A. Troncoso, editors, Advances in Artificial Intelligence,
pages 262–272, Cham, 2018. Springer International Pub-
lishing.

30. E. Scott and S. Luke. ECJ at 20: Toward a general meta-
heuristics toolkit. In Proceedings of the Genetic and Evo-

lutionary Computation Conference Companion, GECCO
19, pages 1391–1398, New York, NY, USA, 2019. Associ-
ation for Computing Machinery.

31. E. Talbi. Metaheuristics: From Design to Implementa-

tion. Wiley Publishing, 2009.
32. A. Verma, X. Llorà, D.E. Goldberg, and R. Camp-

bell. Scaling genetic algorithms using MapReduce. In
ISDA’09, pages 13–18, 2009.

33. A. Verma, X. Llorà, S. Venkataraman, D.E. Goldberg,
and R. Campbell. Scaling eCGA model building via data-
intensive computing. In IEEE Congress on Evolutionary

Computation, pages 1–8, 2010.
34. T. White. Hadoop, The Definitive Guide. OReilly Media,

2012.
35. M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,

M. McCauley, M. Franklin, S. Shenker, and I. Stoica.
Resilient distributed datasets: A fault-tolerant abstrac-
tion for in-memory cluster computing. In Proceedings of

the 9th USENIX Conference on Networked Systems De-

sign and Implementation, NSDI’12, pages 2–2. USENIX
Association, 2012.

36. Guo Zhou, Ruixin Zhao, and Yongquan Zhou. Solving
large-scale 0-1 knapsack problem by the social-spider op-
timisation algorithm. IJCSM, 9(5):433–441, 2018.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

