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Effects of frequency detuning and excitation quantum number on the dynamics of

entanglement in the Jaynes-Cummings polariton model

Christopher Mayero1, ∗ and Patrick Owiny1

1Maseno University, Department of Physics and Materials Science, Private Bag-40105, Maseno, Kenya.

(Dated: April 1, 2021)

We present a scheme for generating polaritons which are maximally entangled qubit states in
the Jaynes-Cummings interaction mechanism. Considering a specific case of an atom initially in
an excited state entering a cavity mode initially in vacuum state and in a non-resonant atom-
field Jaynes-Cummings interaction, we demonstrate using graphical representation on the Bloch
sphere that an increase in frequency detuning leads to an increase in Rabi oscillations. Analysis
of the dynamical behaviour of quantum entanglement in the general Jaynes-Cummings atom-field
interactions measured by concurrence show that frequency detuning and photon number parameters
are vital in enhancing entanglement.
Keywords: Jaynes-Cummings, Rabi oscillations, entanglement, concurrence

I. INTRODUCTION

We begin by giving a general observation that the
Jaynes-Cummings model (JC) [1] originally presented
in a 1963 article by Edwin Jaynes and Fred Cummings
made clear the idea of a fully quantum mechanical inter-
action between a two-level atom and a quantized single
mode electromagnetic field. The JC model aims to find
how quantization of the radiation field affects the pre-
dictions for the evolution of the state of a two-level sys-
tem, in comparison with semi-classical theory of matter-
radiation interaction [2, 3]. What is a purely quantum
effect described only by the JC model and not the semi-
classical theory, is the revival of the atomic population
inversion after its collapse, providing a direct evidence of
the discreteness of the field states (photons).
In order to precisely describe the interaction between

an atom and a laser field, the JC model is generalized in
different ways. Some of the generalizations comprehend
different initial conditions [4–7] dissipation and damping
in the model [8], multilevel atoms and multiple atoms
[9], and multi-mode description of the field [10]. Other
extensions of the JC model include a driving pump laser
acting on one or more two-level atoms, which allows si-
multaneous action of rotating and counter-rotating cou-
pling terms in the Hamiltonian, including dissipative
effects due to Markovian environments [11, 12]. Re-
cently, it has been shown in [4–6] that the quantum Rabi
model (QRM) [4, 13] is composed of a rotating compo-
nent, dominated by an exactly solvable the JC interac-
tion specified by a conserved JC excitation number op-
erator which generates the U(1) symmetry of the rotat-
ing frame (RF) and a counter-rotating component, the
anti-Jaynes-Cummings (AJC) interaction specified by a
conserved AJC excitation number operator which gen-
erates the U(1) symmetry of the counter rotating frame
(CRF). In the reformulation [4–6], consistent generalisa-
tion of the initial states to corresponding n ≥ 0 entangled

∗ E-mail address: cmayero@yahoo.com

states of the JC in the RF (polariton) and AJC in the
CRF (anti-polariton), provides general dynamical evolu-
tion of the QRM characterised by collapses and revivals
of in the time-evolution of the atomic, field mode, JC and
AJC excitation numbers for large initial photon numbers.
The JC and AJC excitation numbers are conserved [4] in
the respective RF and CRF, but each evolve in time in
the alternate frame. In this paper a specified analysis
of dynamics of the JC polariton model posed in our ini-
tial work [14] as a comparison to the AJC interaction
mechanism is presented. We are interested in analysis
of quantum state configuration of the qubit states and
entanglement of qubits in the JC polariton model [5, 6].
To do this, we study the effect of frequency detuning
and photon number on the dynamics of the JC polariton
model.
The content of this paper is therefore summarized as

follows. Section II presents an overview of the theoretical
model. In section III, Rabi oscillations in the JC model
is studied. Entanglement analysis of the JC qubit state
vectors and time-evolution of entanglement of the gen-
eral JC interaction is presented in section IV and finally
section V contains the conclusion.

II. THE MODEL

The quantum Rabi model of a quantized electromag-
netic field mode interacting with a two-level atom is gen-
erated by the Hamiltonian [4–6]

ĤR =
1

2
~ω(â†â+ ââ†) + ~ω0ŝz + ~λ(â+ â†)(ŝ+ + ŝ−)(1)

noting that the free field mode Hamiltonian is ex-
pressed in normal and anti-normal order form 1

2~ω(â
†â+

ââ†). Here, ω , â , â† are quantized field mode angu-
lar frequency, annihilation and creation operators, while
ω0 , ŝz , ŝ+ , ŝ− are atomic state transition angular fre-
quency and operators. The Rabi Hamiltonian in eq. (1)
is expressed in a symmetrized two-component form [4–6]
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ĤR =
1

2
(Ĥ + Ĥ) (2)

where Ĥ is the standard JC Hamiltonian interpreted as a
polariton qubit Hamiltonian expressed in the form [4–6]

Ĥ = ~ωN̂ + 2~λÂ− 1

2
~ω ; N̂ = â†â+ ŝ+ŝ− ;

Â = αŝz + âŝ+ + â†ŝ− ; α =
ω0 − ω

2λ
(3)

In Eq. (3), N̂ and Â are the respective polariton qubit
conserved excitation number and state transition opera-
tor.
Following the physical property established in [6], that

for the field mode in an initial vacuum state only an atom
in an initial excited state |e〉 entering the cavity couples
to the rotating positive frequency field component in the
JC interaction mechanism, we generally take the atom to
be in an initial excited state |e〉 in the JC model.
Considering the JC dynamics, applying the state tran-

sition operator Â from Eq. (3) to the initial atom-field
n-photon excited state vector |e, n〉, the basic qubit
state vectors |ψen〉 and |φen〉 are determined in the form
(n = 0, 1, 2,....) [6]

|ψen〉 = |e, n〉 ; |φen〉 = cen|e, n〉+ sen|g, n+ 1〉 (4)

with dimensionless interaction parameters cen, sen and
Rabi frequency Ren defined as

cen =
δ

2Ren

; sen =
2λ

√
n+ 1

Ren

; Ren = 2λAen ;

Aen =

√

(n+ 1) +
δ2

16λ2
; δ = ω0 − ω (5)

where we have introduced detuning δ = ω0−ω to redefine
α in Eq. (3).
The qubit state vectors in Eq. (4) satisfy the qubit

state transition algebraic operations

Â|ψen〉 = Aen|φen〉 ; Â|φen〉 = Aen|ψen〉 (6)

In the JC qubit subspace spanned by normalized but non-
orthogonal basic qubit state vectors |ψen〉, |φen〉 the basic
qubit state transition operator ε̂e and identity operator
Îe are introduced according to the definition

ε̂e =
Â

Aen

; Îe =
Â2

A2
en

⇒ ε̂2e = Îe (7)

which on substituting into Eq. (6) generates the basic
qubit state transition algebraic operations

ε̂e|ψen〉 = |φen〉 ; ε̂e|φen〉 = |ψen〉 ;

Îe|ψen〉 = |ψen〉 ; Îe|φen〉 = |φen〉 (8)

The algebraic properties ε̂2ke = Îe and ε̂2k+1
e = ε̂e easily

gives the final property (k = 0, 1, 2, ...)

eiθε̂e = cos(θ)Îe + i sin(θ)ε̂e (9)

which is useful in evaluating the time-evolution operator.
The JC qubit Hamiltonian defined within the qubit

subspace spanned by the basic qubit state vector vectors
|ψen〉, |φen〉 is then expressed in terms of the basic qubit

state transition operators ε̂e, Îe in the form [6]

Ĥe = ~ω

(

n+
1

2

)

Îe + ~Renε̂e (10)

We use this form of the JC Hamiltonian to determine
the general time-evolving state vector describing Rabi
oscillations in the JC dynamics in Sec. III.

III. RABI OSCILLATIONS BETWEEN THE

BASIC JC QUBIT STATE VECTORS |ψen〉 AND

|φen〉

The general dynamics generated by the JC Hamilto-
nian in Eq. (10) is described by a time evolving JC qubit
state vector |Ψen(t)〉 obtained from the time-dependent
Schrödinger equation in the form [6]

|Ψen(t)〉 = Ûe(t)|ψen〉 ; Ûe(t) = e−
i

~
Ĥet (11)

where Ûe(t) is the time evolution operator. Substituting

Ĥe from Eq. (10) into Eq. (11) and applying appropriate
algebraic properties [6], we use the relation in Eq. (9) to
express the time evolution operator in its final form

Ûe(t) = e−iωt(n+ 1

2
)
{

cos(Rent)Îe − i sin(Rent)ε̂e

}

(12)

which we substitute into equation Eq. (11) and use the
qubit state transition operations in Eq. (8) to obtain the
time-evolving JC qubit state vector in the form

|Ψen(t)〉 = e−iωt(n+ 1

2
)
{

cos(Rent)|ψen〉−i sin(Rent)|φen〉
}

(13)
This time evolving state vector describes Rabi oscilla-
tions between the basic qubit states |ψen〉 and |φen〉 at
Rabi frequency Ren.
In order to determine the length of the Bloch vector

associated with the state vector in Eq. (13), we introduce
the density operator

ρ̂en(t) = |Ψen(t)〉〈Ψen(t)| (14a)
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which we expand to obtain

ρ̂en(t) = cos2(Rent)|ψen〉〈ψen|+
i

2
sin(2Rent)|ψen〉〈φen|

− i

2
sin(2Rent)|φen〉〈ψen|+ sin2(Rent)|φen〉〈φen|

(14b)

Defining the coefficients of the projectors in Eq. (14b) as

ρ11en(t) = cos2(Rent) ; ρ12en(t) =
i

2
sin(2Rent) ;

ρ21en(t) = − i

2
sin(2Rent) ; ρ22en(t) = sin2(Rent)

(14c)

and interpreting the coefficients in Eq. (14c) as elements
of a 2×2 density matrix ρen(t), which we express in terms
of standard Pauli operator matrices I, σx, σy and σz as

ρen(t) =

(

ρ11en(t) ρ12en(t)
ρ21en(t) ρ22en(t)

)

=
1

2
(I + ~ρen(t) · ~σ) (14d)

where ~σ = (σx, σy, σz) is the Pauli matrix vector and we
have introduced the time-evolving Bloch vector ~ρen(t)
obtained in the form

~ρen(t) = (ρxen(t), ρ
y
en(t), ρ

z
en(t)) (14e)

with components defined as

ρxen(t) = ρ12en(t) + ρ21en(t) = 0 ;

ρyen(t) = i
(

ρ12en(t)− ρ21en(t)
)

= − sin(2Rent) ;

ρzen(t) = ρ11en(t)− ρ22en(t) = cos(2Rent) (14f)

The Bloch vector in Eq. (14e) takes the explicit form

~ρen(t) =
(

0, − sin(2Rent), cos(2Rent)
)

(14g)

which has unit length obtained easily as

|~ρen(t)| = 1 (14h)

The property that the Bloch vector ~ρen(t) is of unit
length (the Bloch sphere has unit radius), clearly shows
that the general time evolving state vector |Ψen(t)〉 in
Eq. (13) is a pure state.

We now proceed to demonstrate the time evolution of
the Bloch vector ~ρen(t) which in effect describes the ge-
ometric configuration of states. We have adopted class
4 Bloch-sphere entanglement of a quantum rank-2 bipar-
tite state [15, 16] to bring a clear visualization of this
interaction. In this respect, we consider the specific ex-
ample (which also applies to the general n-photon case)
of an atom initially in excited state |e〉 entering a cavity
with the field mode starting off in an initial vacuum state
|0〉, such that the initial atom-field state is |e, 0〉.
In the specific example starting with an atom in the

excited state |e〉 and the field mode in the vacuum state

|0〉 the basic qubit state vectors |ψe0〉 and |φe0〉, together
with the corresponding entanglement parameters, are ob-
tained by setting n = 0 in Eqs. (4) and (5) in the form

|ψe0〉 = |e, 0〉 ; |φeo〉 = ce0|e, 0〉+ se0|g, 1〉

ce0 =
δ

2Re0
; se0 =

2λ

Re0
; Re0 =

1

2

√

16λ2 + δ2

|e, 0〉 = |e〉 ⊗ |0〉 ; |g, 1〉 = |g〉 ⊗ |1〉 (15)

The corresponding Hamiltonian in Eq. (10) becomes (n =
0)

Ĥe =
1

2
~ωÎe + ~Re0ε̂e (16)

The time-evolving state vector in Eq. (13) takes the form
(n = 0)

|Ψe0(t)〉 = e−
iωt

2 {cos(Re0t)|ψe0〉 − i sin(Re0t)|φe0〉}
(17)

which describes Rabi oscillations at frequency Re0 be-
tween the initial separable qubit state vector |ψe0〉 and
the entangled qubit state vector |φe0〉.
The Rabi oscillation process is best described by the

corresponding Bloch vector which follows from Eq. (14g)
in the form (n = 0)

~ρe0(t) = (0, − sin(2Re0t), cos(2Re0t)) (18)

The time evolution of this Bloch vector reveals that the
Rabi oscillations between the basic qubit state vectors
|ψe0〉, |φe0〉 describe circles on which the states are dis-
tributed on the Bloch sphere as we demonstrate in Fig. 1
below.
In Fig. 1 we have plotted the JC Rabi oscillation pro-

cess with respective Rabi frequencies Re0 determined
according to Eq. (15) for arbitrary values of detuning
δ = ω0 − ω.
In the present work, for various values of δ =

λ , 2λ, 3λ , 4λ, 0 and field mode frequency ω = 2λ we use
the general time evolving state vector in Eq. (17), with
Re0 as defined in Eq. (15) to determine the coupled qubit
state vectors |ψe0〉 , |φe0〉 in Eq. (15) by setting Re0t =

π
2 ,

describing half cycle of Rabi oscillation as presented be-
low. In each case we have an accumulated global phase
factor which does not affect measurement results [17–19],
but we have maintained them here in Eqs. (19a) - (19e)
to explain the continuous time evolution over one cycle.
δ = 0:

|e, 0〉 → e−iπ 3

4 |g, 1〉 → e−iπ 3

2 |e, 0〉 (19a)

δ = λ:

|e, 0〉 → e−iπ 25

34

{

1√
17

|e, 0〉+ 4√
17

|g, 1〉
}

→ e−iπ 25

17 |e, 0〉

(19b)
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δ = 2λ:

|e, 0〉 → e−iπ 7

10

{

1√
5
|e, 0〉+ 2√

5
|g, 1〉

}

→ e−iπ 14

10 |e, 0〉

(19c)

δ = 3λ:

|e, 0〉 → e−iπ 7

10

{

3

5
|e, 0〉+ 4

5
|g, 1〉

}

→ e−iπ 14

10 |e, 0〉

(19d)

δ = 4λ:

|e, 0〉 → e−iπ 7

10

{

1√
2
|e, 0〉+ 1√

2
|g, 1〉

}

→ e−iπ 14

10 |e, 0〉

(19e)

FIG. 1: Rabi oscillations in JC interaction mechanism.
Here, blue circle is at resonance with detuning δ = ω0 −
ω = 0, red circle is for detuning δ = λ, brown δ = 2λ,
black circle for detuning δ = 3λ and green δ = 4λ.

The JC Rabi oscillations for cases δ = λ , 2λ , 3λ , 4λ , 0
are plotted as red, brown, black, green and blue circles in
Fig. 1. Here, Fig. 1 is a Bloch sphere entanglement [15]
that corresponds to a 2-dimensional subspace of C

2 ⊗
C

2 Span{|e, 0〉 , ce0|e, 0〉+ se0|g, 1〉} with ce0 = δ
2Re0

and

se0 = 2λ
Re0

, where we recall that, in the JC interaction
the initial atom-field ground state with the field mode in
the vacuum state is |e, 0〉.
We clearly see in Fig. 1 that in a resonant atom-field

interaction δ = 0, Rabi oscillations occur between |e, 0〉
and |g, 1〉 and the Bloch vector in Eq. (18) describes a

path along the yz -plane as shown by the blue circle, while
in a non-resonant δ 6= 0 atom-field interaction, effective
Rabi state transition oscillations occur only between |e, 0〉
and a linear superposition of |e, 0〉 and |g, 1〉 with time
evolution following a circular path described by the Bloch
vector in Eq. (18) at an axis about the North pole of the
Bloch sphere (see the red, brown, black and green circles
as examples). It is also clear in Fig. 1 that an increase
in the frequency detuning parameter in a non-resonant
atom-field interaction δ 6= 0 results into an increase in
Rabi frequency and hence a reduction in the period of
Rabi oscillations as demonstrated by reduction in size of
the Rabi oscillation circles (red, brown, black and green).
The geometric configuration of the state space demon-

strated on the Bloch-sphere in Fig. 1 determined using
the approach in [6] agrees precisely with that determined
using the semi-classical approach in [20] corresponding
to a 2-dimensional subspace of C

2 Span {|e〉 , |g〉}. In
the approach [20], at resonance where detuning δ = 0
the atomic population is inverted from |e〉 to |g〉 and the
Bloch-vector ~r = (sin(θ) cos(φ) , sin(θ) sin(φ) , cos(θ)) de-
scribes a path along the yz -plane on the Bloch-sphere.
For other values of detuning, the atom evolves from |e〉
to a linear superposition of |e〉 and |g〉 and back to |e〉
and the Bloch-vector ~r describes a circle about the North
pole of the Bloch-sphere.

IV. ENTANGLEMENT PROPERTIES

In quantum information, it is of interest to measure
or quantify the entanglement of states. In a bipartite
case, with two sub-systems A,B concurrence [17, 21, 22]
is a good measure of entanglement in practical situations.
For pure states of two spins, concurrence is defined as

C(|ψAB〉) = |〈ψAB |ψ̃AB〉| (20)

where |ψ̃AB〉 ≡ σ̂⊗2
y |ψ∗

AB〉 is referred to as the ’spin-
flipped’ state vector [21]. Further, concurrence can be
expressed in terms of the minimum average pure-state
concurrence where the required minimum is to be taken
over all possible ways of decomposing the ensemble ρ̂AB

into a mixture of pure states |ψAB〉. In this respect, for
a general two-spin state, concurrence is defined as

C(ρAB) = max{0, λ1, −λ2, −λ3, −λ4} ;

ρ̂AB = |ψAB〉〈ψAB | ; ˆ̃ρAB = ρ̂ABσ̂
⊗2
y ρ̂∗ABσ̂

⊗2
y

(21)

where λi are real square-roots of the eigenvalues of the
matrix ˆ̃ρAB in Eq. (21). Concurrence varies from 0 for
a completely disentangled state to 1 for a maximally en-
tangled state.
In this section we analyse the entanglement properties

of the qubit state vectors and the dynamical evolution of
entanglement generated in the JC interaction.
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A. Entanglement analysis of basic qubit state

vectors |ψe0〉 and |φe0〉

Let us start by considering the entanglement properties
of the initial state |ψe0〉 which according to the definition
in Eq. (15) is a separable pure state. In this context

|ψ̃e0〉 = σ̂⊗2
y |ψ∗

e0〉 = σ̂⊗2
y (|e〉 ⊗ |0〉) = i|g〉 ⊗ i|1〉 (22)

substituting into Eq. (20) we obtain

C(|ψe0〉) = |〈ψe0|ψ̃e0〉| = | − 〈e|g〉〈0|1〉| = 0 (23)

quantifying the state in Eq. (15) (or the initial qubit state
in Eq. (19a)) as a pure product state |e〉 ⊗ |0〉. Similarly,
ignoring the global phase factor in Eq. (19a), the transi-
tion qubit state |φe0〉 = |g, 1〉 obtained at resonance δ = 0
is a pure product state |g〉 ⊗ |1〉.
We now proceed to determine the entanglement prop-

erty of the transition qubit state vector |φe0〉 obtained at
detuning δ = λ in Eq. (19b). Ignoring the global phase
factor in Eq. (19b), the transition qubit state |φe0〉 takes
the form

δ = λ :
1√
17

|e, 0〉+ 4√
17

|g, 1〉 (24)

The corresponding density operator of the state in
Eq. (24) is

ρ̂e0 = |φe0〉〈φe0|

=
1

17
|e, 0〉〈e, 0|+ 4

17
|e, 0〉〈g, 1|+ 4

17
|g, 1〉〈e, 0|

+
16

17
|g, 1〉〈g, 1| (25)

which takes the explicit 4× 4 matrix form

ρ̂e0 =
1

17







1 0 0 4
0 0 0 0
0 0 0 0
4 0 0 16






(26)

and ˆ̃ρe0 by applying the definition in Eq. (21) is

ˆ̃ρe0 = ρ̂e0(σ̂
⊗2
y )ρ̂∗e0(σ̂

⊗2
y ) (27)

which takes the explicit 4× 4 matrix form

ˆ̃ρe0 =
1

289







32 0 0 8
0 0 0 0
0 0 0 0
128 0 0 32






(28)

The eigenvalues of the matrix in Eq (28) are

λ1 =
64

289
, λ2 = 0, λ3 = 0, λ4 = 0 (29)

Substituting the eigenvalues in Eq. (29) into Eq. (21) we
obtain

C(ρ̂e0) = max

{

0,

√

64

289

}

=
8

17
< 1 (30)

quantifying the transition qubit state in Eq. (24) (or
Eq. (19b)) as an entangled state but not maximally en-
tangled since C(ρ̂e0) < 1. Similarly, the transition qubit
states |φe0〉 = 1√

5
|e, 0〉 + 2√

5
|g, 1〉 obtained for detuning

δ = 2λ in Eq. (19c) and |φe0〉 = 3
5 |e, 0〉+ 4

5 |g, 1〉 obtained
for detuning δ = 3λ in Eq. (19d) are entangled but not
maximally entangled.
Finally we consider the case of detuning δ = 4λ. Once

again ignoring the global phase factor in Eq. (19e), the
transition qubit state vector takes the form

δ = 4λ :
1√
2
|e, 0〉+ 1√

2
|g, 1〉 (31)

The corresponding density operator of the state in
Eq. (31) is

ρ̂e0 =
1

2
|e, 0〉〈e, 0|+ 1

2
|e, 0〉〈g, 1|+ 1

2
|g, 1〉〈e, 0|

+
1

2
|g, 1〉〈g, 1| (32)

The explicit 4×4 matrix forms of ρ̂e0 in Eq. (32) and ˆ̃ρe0
by applying the definition in Eq. (21) are of the form

ρ̂e0 =
1

2







1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1






; ˆ̃ρe0 =

1

2







1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1






(33)

The eigenvalues of ˆ̃ρe0 in Eq. (33) are

λ1 = 1, λ2 = 0, λ3 = 0, λ4 = 0 (34)

which on substituting into Eq. (21) we obtain

C(ˆ̃ρe0) = max{0, 1} = 1 (35)

The unit concurrence determined in Eq. (35) reveals that
the transition qubit state vector in Eq. (31) (or Eq. (19e)
determined at detuning δ = 4λ is a maximally entangled
bipartite pure state.
A similar proof of entanglement of the JC qubit states

is easily achieved for all possible values of frequency de-
tuning parameter δ = ω0 − ω, confirming that in the ini-
tial vacuum-field JC interaction, when δ 6= 0 reversible
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transitions occur only between a pure initial separable
qubit state vector and a pure entangled qubit state vec-
tor while when δ = 0 reversible transitions occur only

between pure initial and transition separable qubit state
vectors. These properties of Rabi oscillations occurs in
the general JC interaction described by the general time
evolving state vector |Ψen(t)〉 in Eq. (13).

B. Entanglement evolution

Let us consider the general dynamics of the JC inter-
action described by the general time-evolving qubit state
vector |Ψen(t)〉 in Eq. (13). Substituting |Ψen(t)〉 from
Eq. (13) into Eq. (14a) and using the definitions of |ψen〉
and |φen〉 in Eq. (4) the density operator takes the form

ρ̂en(t) = {cos2(Rent) + c2en sin
2(Rent)}|e, n〉〈e, n|

+ {isen cos(Rent) sin(Rent)

+ censen sin
2(Rent)}|e, n〉〈g, n+ 1|

+ {−isen cos(Rent) sin(Rent)

+ censen sin
2(Rent)}|g, n+ 1〉〈e, n|

+ {s2en sin2(Rent)}|g, n+ 1〉〈g, n+ 1| (36a)

The reduced density operator of the atom is determined
by tracing over the field states thus taking the form

ρ̂A(t) = trF (ρ̂en(t)) = Pe(t)|e〉〈e|+ Pg(t)|g〉〈g| (36b)

after introducing the general time-evolving atomic state
probabilities Pe(t) and Pg(t) obtained as

Pe(t) = cos2(Rent) + c2en sin
2(Rent) ;

Pg(t) = s2en sin
2(Rent) (36c)

The degree of entanglement (DEM) using concurrence
measure which was formulated as a convex measure to
amount the DEM for two qubits in pure states by Woot-
ers and Hill [23] is defined as

C(t) =
√

2(1− trρ̂2) (37)

where ρ̂ is the reduced density operator. Substituting
ρ̂A(t) in Eq. (36b) into Eq. (37) and using the stan-
dard definitions of cen, sen and Ren in Eq. (5) to evaluate
the probabilities in Eq. (36c), we plot concurrence C(τ)
Eq. (37) against scaled time τ = λt at resonance where
the frequency detuning δ = 0, arbitrarily chosen val-
ues of non-resonant frequency detuning δ = λ, 2λ, 3λ, 4λ
and photon number n = 0, 1, 2 in Figs. 2 - 5. We note
in Figs. 2 - 5 that the dynamical behaviour of quan-
tum entanglement measured by concurrence is in the
range 0 ≤ C(τ) ≤ 1, such that min C(τ) = 0 and
max C(τ) = 1.

0.2 0.4 0.6 0.8 1.0 1.2 1.4
τ

0.2

0.4

0.6

0.8

1.0

C(τ)

n=0;δ=0

FIG. 2: Concurrence C(τ) against scaled time τ at reso-
nance δ = 0 when n = 0.
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C(τ)
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n=0;δ=3λ
n=0;δ=4λ

FIG. 3: Concurrence C(τ) against scaled time τ at off-
resonance δ = λ, δ = 2λ, δ = 3λ and δ = 4λ when n = 0.
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FIG. 4: Concurrence C(τ) against scaled time τ at reso-
nance δ = 0 when n = 1, 2.
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FIG. 5: Concurrence C(τ) against scaled time τ at off-
resonance δ = λ when n = 1, 2.

Comparing Fig. 2 and Fig. 3 we observe that at reso-
nance δ = 0 the frequency of oscillation of C(τ) as shown
in Fig. 2 is higher than when detuning is set at off res-
onance δ 6= 0 as demonstrated in Fig. 3 for the specific
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cases of δ = λ, 2λ, 3λ, 4λ. In addition, Figs. 2 and 3
clearly show that there are Rabi oscillations even for the
case when n = 0, commonly referred to as vacuum-field
Rabi oscillations [1, 24, 25]. Further we observe in Fig. 3,
that despite the reduction in frequency of oscillation of
C(τ) when δ 6= 0 in comparison to the resonance case
δ = 0 in Fig. 2, the frequency of oscillation of C(τ) in-
creases with an increase in detuning δ 6= 0. In the specific
case of an initial photon number n = 0 and frequency de-
tuning δ = 4λ as demonstrated in Fig. 3, we observe a
long-lived entanglement at C(τ) = 1. This agrees pre-
cisely with the result presented in Sec. IVA, where the
transition qubit state vector obtained for parameter val-
ues n = 0 and δ = 4λ was determined to be maximally
entangled (resulting into the long-lived entanglement) be-
fore returning momentarily to a separable state. What
is more, with reference to Fig. 3 it is evident that there
is gradual vanishing of local minimums with increasing
frequency detuning δ 6= 0 indicating enhancement of en-
tanglement.

To investigate the effect of photon number on the dy-
namics of C(τ) we considered a resonance case δ = 0 and
varied the photon number n in Fig. 4, while in Fig. 5,
we set detuning constant at δ = λ and varied the photon
number n. In both cases, we observe that the frequency
of oscillation of C(τ) increases with an increase in photon
number n.

Finally in all the plots in Figs. 2 - 5, entanglement sud-
den birth (ESB) and entanglement sudden death (ESD)
is observed during time evolution of C(τ). In ESB, there
is an observed creation of entanglement where the ini-
tially un-entangled qubits are entangled after a very short
time interval. Consequently DEM decreases and goes to
zero over a short period of time, where the system re-
turns momentarily to a separable state. These findings
in Sec. IVB are consistent with those obtained in [26–28]
as examples.

V. CONCLUSION

We have analysed entanglement of a two-level atom
and a single mode quantized electromagnetic field in a
JC qubit formed in the JC interaction mechanism. The
results confirm that in a resonant JC interaction, Rabi
state transition oscillation occur between an initial and
transition pure separable qubit states while in a non-
resonant JC interaction Rabi state transition oscillations
occur between an initial pure separable qubit state and
a pure entangled transition qubit state where the degree
of entanglement varies from entangled to maximally en-
tangled depending on the set frequency detuning.
The effect of detuning parameter and photon number

on the dynamical behaviour of entanglement in both res-
onant and non-resonant atom-field JC interaction mea-
sured by concurrence was studied giving a result sim-
ilar to that obtained in the analysis of quantum state
configurations on the Bloch sphere. The findings pre-
sented features such as long-lived entanglement, local
minimums, entanglement sudden birth and entanglement
sudden death.
In general, the results obtained in this work confirm

that frequency detuning and photon number as parame-
ters in JC interaction are fundamental in enhancing en-
tanglement which plays a central role in quantum infor-
mation and computation consistent with previous studies
of the JC model cited herein.

ACKNOWLEDGMENT

We thank Maseno University Department of Physics and
Materials Science for providing a conducive environment
to do this work.

CONFLICTS OF INTEREST

The authors declare no conflicts of interest regarding the
publication of this paper.

[1] E. T. Jaynes and F. W. Cummings, Proceedings of the
IEEE 51, 89 (1963).

[2] I. Rabi, Phys. Rev. 49, 324 (1936).
[3] I. I. Rabi, Phys. Rev. 51, 652 (1937).
[4] J. A. Omolo, arXiv preprint arXiv:2103.06577 (2021).
[5] J. A. Omolo, preprint Research Gate,

DOI:10.13140/RG.2.2.11833.67683 (2017).
[6] J. A. Omolo, preprint Research Gate, DOI:

10.13140/RG.2.2.27331.96807 (2019).
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