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RV reducer Design Using Resnet-based model and integration of Discretized 
OPtimization 

 

Jiacheng Miao1, Chaoyang Li1, Bingkui Chen1 

 

ABSTRACT 

A new type of mechanical system structure design model is proposed, which uses a small 
number of system feature samples to generate a new structure model. In this model, (1) the theory 
of limited sample recommendation algorithm is used to study the external dimensions 
recommendation of the reducer, an SG-Resnet network suitable for the generation of reducer 
structure parameters is established, the main factors affecting the promotion ability and learning rate 
of the SG-Resnet network structure are analyzed through hyperparameters, and in-depth study of 
the mechanism of each influencing factor. (2) Establish an optimization design method for the 
internal dimensions of the reducer, and initially calculate the structural parameters according to the 
basic performance parameters of the reducer, combine the objective function and constraint 
conditions to establish the corresponding multi-objective optimization model, and establish the 
Kriging proxy model. The mixed population NSGA-II algorithm is proposed, the MP-NSGA-II 
algorithm is used to obtain multiple sets of Pareto optimal solutions, and the multi-objective 
evaluation method is used to select the optimal solution from the non-dominated solution set.  

Experiments were carried out to verify the positive enhancement effect of the structural design 
model on the stiffness of the reducer. The experiment showed the reliability and generalizability of 
the model. This research provides a new solution for reducer design and lays a solid foundation for 
the development of integrated RV reducer forward design software. 

 

Key words: Sequential Engineering; RV reducer; Multidisciplinary optimization; MP-NSGA-II 
algorithm; Secondary development 
 

1 Introduction 
1) The value of this research. Under normal circumstances, when designing the structure of 

the reducer, the dynamic characteristics of the mechanism are not considered too much. The key 
components are usually fine-tuned based on existing experience, and the effect is not ideal. This 
design method requires increasing transmission performance of the reducer not effectively. 
Therefore, in order to achieve good transmission characteristics in the structural design stage, the 
design process is divided into external parameter recommendation and internal parameter 
optimization. 

2) The key to system implementation. It is necessary to introduce a parameter 
recommendation algorithm in the process of external structure design, and uses a computer to 
conduct preliminary design of the reducer structure 1. Regarding the complex mechanical system 
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scheme design, the parameters obtained from the prototype series are employed to obtain the 
appropriate structure for the final system. These parameters are provided as background data.  

Optimization of internal structure is based on the background data, and its essence is a kind of 
multi-objective mixed integer nonlinear programming (MOMINLP) problem. Generally, precise 
algorithms such as cutting plane method and branch and bounding method are used to solve 
problems with small variable spaces. However, when solving problems with high-dimensional 
variable spaces, precise algorithms are used. The time complexity is extremely high. As an 
optimization method with good convergence, high parallelism, and strong robustness, evolutionary 
algorithm is suitable for solving the multi-objective optimization problem of reducer structure 
parameter design with many solving variables and large parameter space. 

3) Traditional method/existing method. The essence of the design of the shape and structure 
parameters of the reducer is to establish the mapping relationship between performance parameters 
and structural dimensions. Researchers generally carry out structural design based on experience 
and existing foreign structures. For situations where performance requirements are different from 
existing products, more scientific research is needed. Effective design methods, such as Hopfield 
neural network proposed by Hopfield. The bionic design of biological knowledge modeling 
provides ideas for the forward design method. SHU et al. 2 bridged biological systems and 
engineering systems through cross-domain terminology, searching for biological knowledge data 
and related biological phenomena. NAGEL et al.3used functional modeling and biological databases 
to provide solutions to engineering design problems. Some scholars have carried out in-depth 
research in the field of small sample learning, and their research work mainly focuses on lightweight 
network structure design, sample expansion and training strategy adjustment. Since the existing data 
of the structure parameters and transmission performance of the reducer belongs to the small sample 
type, the modeling reliability of the small sample mapping model should be considered. Shimizu S 
et al.4 For fatigue reliability evaluation, in order to achieve accurate life evaluation of small sample 
data, artificial neural networks are used to analyze the fatigue life dispersion and obtain a high-
precision P-S-N curve. In order to improve the performance and quality of unbalanced data analysis 
in small sample problems, literature5 proposed a method of data generation, which provides a data 
basis for classification. The key to establishing a mapping relationship is to achieve effective data 
association. Traditional data association methods include joint probabilistic data association (JPDA) 
algorithm6  7  and K nearest neighbor (KNN) algorithm8 , both of which are stable in data error 
distribution. Based on this algorithm, the method of hypothesis testing is used to distinguish the data 
association relationship. In order to improve the performance and quality of unbalanced data 
analysis, literature9 proposed a method of data generation. The classification algorithm provides 
the basis for the establishment of the mapping model. Hasnat et al.10  proposed a fabric defect 
classification system (PNN) using a probabilistic neural network, and implemented the system using 
field programmable gate array (FPGA) hardware. Zhang et al.11 proposed a new method of fabric 
defect classification based on Gaussian Mixture Model (GMM) improved radial basis function 
(RBF) network, and verified it on 9 types of defect images; 

4) New method. The performance of the deep learning model is closely related to the quality 
and scale of the original data. The deep learning model supported by large-scale samples has 
excellent performance and good generalization ability, but in many situations where it is difficult to 
obtain a large amount of labeled data, the prediction performance of existing deep learning models 
is usually unsatisfactory. Some scholars have conducted in-depth research in the field of small 



sample learning. The research work mainly focuses on lightweight network structure design, sample 
expansion and training strategy adjustment. 

The existing deep learning network has a complicated structure, and the effect on tasks with 
large data volume is remarkable. GoogLeNet, VGGNet, AlexNet and other network structures 
perform well in the ILSVRC image classification competition, but under small sample conditions, 
such complex network structures are prone to overfitting. Therefore, in a small sample learning task, 
a lightweight network structure that matches the number of parameters and the sample size can be 
designed to appropriately reduce the width and depth of the network. 

Sufficient training samples can avoid overfitting. When there are few training samples, sample 
perturbation or sample synthesis can be used to increase the amount of data. Sample perturbation 
mainly includes geometric transformation, principal component perturbation, noise perturbation, etc. 
Sample synthesis can use prior knowledge to generate data, add irrelevant details to existing data, 
or use the generative confrontation network (GAN) generation model and the discriminant model 
to play against each other to generate new training samples. 

Under the premise that the network structure and training samples are fixed, the training 
strategy planning has a direct impact on the network performance. Under the condition of big data, 
the method of randomly initializing parameters can be used, while under the condition of small 
samples, the training strategy of fine-tuning the pre-trained model can be used. Initializing the 
network with the weight information trained on a large-scale data set can greatly improve the 
network prediction performance and accelerate network convergence. 

The overall deep learning network model is mainly in the fields of image recognition, data 
classification and other information processing and pattern recognition, and the design research on 
the end-to-end physical structure generation model is still in the exploratory stage. Through the 
continuous development of intelligent design technology, this paper proposes a detailed design 
model of the serialized product structure generation model. 

Considering the mutual restriction of mechanical system performance, evolutionary algorithm 
can be used to solve the design problem of internal structural parameters of reducer. Swarm 
intelligence algorithm researchers deduced the evolutionary algorithm12, and part of the research is 
based on multi-objective particle swarm optimization (MOPSO) or real number coding Differential 
Evolution Algorithm (DE), using trigonometric functions, Sigmod functions, etc. to establish the 
mapping relationship between real numbers and integers 1314 . The difficulty in structural 
optimization is how to deal with FEM models that consume a lot of computing resources, and the 
use of proxy models such as response surface method, support vector machine, Kriging model or 
artificial neural network can reduce the computational cost of structural optimization. Some scholars 
use the combination of optimization theory and software design technology to carry out computer-
aided design. In order to find the optimal solution for multi-objective optimization problems, Pareto 
theory is generally used to solve the Pareto non-dominated solution set. Corresponding research has 
been conducted on the optimization design of the linear reducer. The existing NSGA-II algorithm 
has a single coding population type, and there are few solutions to the optimal design of the reducer 
such as the mixed variable optimization problem containing continuous and discrete variables. 
Therefore, on the basis of studying the traditional optimization method of reducer, improving the 
coding population and constructing an algorithm suitable for solving multi-objective mixed integer 
nonlinear programming problems have certain practical value. 

5) Research goals/organizational structure of the paper. The research in this article is based 



on the current domestic reducer as a reference to the positive development of the new model. To 
achieve serial design, one method is the design of a new structure, which in the structural design 
optimization process of the existing complex model information utilization is insufficient, and a 
large number of analysis and test tasks brought by a large number of structural design schemes are 
difficult to achieve; another way is to improve the design of the reducer, this design method includes 
the geometric parameter information of a large number of old model models reorganization. In order 
to make the design more efficient, a simplified parametric model of the reducer, a prototype model 
that can be repeatedly called in the component library, and a general optimization method for the 
reducer components are required. 

At present, the structure design of reducer mainly adopts two methods of experiment and 
numerical simulation. There are few reports about the use of parameter recommendation methods 
for product development. Compared with manual adjustment of parameters, parameter 
recommendation algorithms can reduce trial and error costs, but they must be available. Structural 
parameters, training samples and algorithm learning ability are the key point. 

The performance of a deep learning model is closely related to the quality and scale of the 
original data. The deep learning model supported by large-scale samples has excellent performance 
and good generalization ability. However, in many cases where it is difficult to obtain a large amount 
of labeled data, the prediction performance of the existing deep learning model is usually not 
satisfactory. In order to meet engineering requirements and reduce the design workload, research on 
the establishment of small-sample recommendation algorithms, optimization and implementation 
effect evaluation is necessary. 

Torsional stiffness is one of the key performance parameters of RV reducer. At present, 
researchers have carried out more in-depth research on the stiffness characteristics of cycloid 
reducers1516, but there are few discussions on the stiffness optimization schemes of RV reducers. 
The optimization design goals of related documents are mainly based on volume and efficiency. The 
transmission efficiency, volume and torsional stiffness of the integrated RV reducer restrict each 
other, and it is necessary to balance each performance index to obtain a more balanced and 
reasonable optimization result. The current stiffness analysis of reducer usually adopts the method 
of prototype simulation or numerical analysis. The former has a huge amount of calculation and is 
difficult to meet the requirements of the optimization algorithm, and the latter is difficult to 
accurately reflect the nonlinear relationship between the structure parameters and torsional stiffness 
of the reducer. In order to reduce the time-consuming simulation, it is necessary to establish the 
Kriging proxy model of the torsional stiffness of the integrated RV reducer17. 

Since the standard NSGA-II cannot handle optimization problems with mixed integer 
constraints, a modified NSGA-II that can simultaneously process real number populations, integer 
populations and discrete populations is developed. Compared with the function mapping method, 
there is no need to design and edit variables separately. The decoding scheme improves the 
versatility and computational efficiency of the algorithm. 

Through the improvement of the coding population, an algorithm suitable for solving multi-
objective optimization problems with continuous and discrete variables is constructed and applied 
to the internal dimension optimization of the reducer, and finally the torsional stiffness of the 
designed reducer is verified by experiments. This article is organized as follows. In Section 2, the 
SG-Resnet based network for structure generating is proposed to generate serialized RV reducer 
structure parameters. In Section 3, the optimal internal parameter is calculated by modified NSGA-



II algorithm to increase torsional stiffness. In Section 4, the prototype of BAJ-25E is manufactured, 
and the torsional stiffness is measured to validate the proposed method. 
 

2 Methodology 
In this section, explanations will be presented for data preprocessing procedure, the proposed 

model block, and some tricks during the training process. 

2.1 Resnet network system structure 

In the optimal design of mechanical equipment structure, the BP backpropagation network is 
widely used, but it has the problem of insufficient expressive ability. Due to this, researchers have 
developed deep networks such as AlexNet/VGG, with more than 20 layers. However, continuing to 
increase the number of layers will cause the deep stacking architecture to degrade18, and it is easy 
to fall into problems such as over-fitting under small sample conditions. He-Kaiming, Ren-Shaoqing, 
and Sun-Jian proposed the Resnet network in 2015, which has fewer network structure parameters 
than VGGNet, which simplifies the network structure and effectively improves the above problems. 
The difference between the residual network (Resnet) and the traditional deep network is its 
Residual structure, which allows the jump connection of the network, the so-called shortcut 
connection 

2.2 Batch Normalization 

Batch Normalization was proposed by Google’s Sergey Ioffe and others. Its purpose is to solve 
the problem of inconsistent feature distribution between data sets, that is, covariate shift. This 
inconsistency will lead to gradient dispersion and reduce the training rate of the network. The 
purpose of regularization is to limit the difference of input eigenvalues to the range where the mean 
is 0 and the variance is 1. The disappearance of the gradient is avoided, and the convergence rate of 
the network is greatly improved. The calculation method is as follows: 𝑦𝑖 = 𝛾 𝑥𝑖 − 𝜇𝐵√𝜎𝐵2 + 𝜖 + 𝛽 (1) 

In the formula, xi and yi are the input and output of the batch normalization layer, μB and σB2  are the mean and variance of the input parameters, respectively, ϵ is a constant, and γ and β are 
hyperparameters that can be obtained through training. 

2.3 activation function 

The activation function is the key to achieving nonlinear mapping. Commonly used activation 
functions are shown in formulas 2.2~2.6. The original Residual Block uses a modified linear unit 
(ReLU) function as the activation function, which is closer to the response of the animal brain to 
the stimulus, considering the input When it is a negative value, the learning rate is lower, and Leaky-
ReLU is used instead. ReLU   𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) (2) Leaky − ReLU   𝑓(𝑥) = 𝑚𝑎𝑥(𝛼𝑥, 𝑥) (3) 

2.4 Dropout algorithm 

In the process of model training, due to too few training samples of the reducer, if the number 
of layers of the network is too large, over-fitting is prone to occur, that is, the generalization ability 
of the model is insufficient. Hinton proposed the Dropout method in 2012. Its essence is to set the 
hidden layer node value of some neurons to 0 according to a certain probability p, which can reduce 
the symbiosis between feature detectors. The essence is to generate A large number of sub-networks 



constructed randomly. The algorithm for applying Dropout on the i-th neuron is: 

𝑜𝑖 = 𝑋𝑖𝑎 (∑ 𝑤𝑘𝑥𝑘 + 𝑏𝑑𝑖
𝑘=1 ) = {𝑎 (∑ 𝑤𝑘𝑥𝑘 + 𝑏𝑑𝑖𝑘=1 )0                 𝑖𝑓 𝑋𝑖 = 0  𝑖𝑓 𝑋𝑖 = 1 (4) 

Among them, P (Xi=0) = p, wk and b are related parameters of linear projection. 
In addition to considering the risk of overfitting, the structural parameters of a single training 

sample are also considered to be incomplete. If the established Resnet model is overly dependent 
on the interaction of features, the prediction performance will be greatly affected. Therefore, the 
experiment uses the Dropout strategy to improve the Resnet pair Robustness with missing features. 

 

2.5 Kriging proxy model 

Using Latin hypercube experimental design sampling in the design variable space, the original 
sample points of the Kriging proxy model are obtained, and the minimum value of the following 
formula is the condition that the sample points meet: ∑ ∑ 1‖𝑥𝑖 − 𝑥𝑗‖2𝑁𝑗=𝑖+1𝑁−1𝑖=1 (5) 

In the formula, the number of sample points is N; the distance between two sample points is ‖𝑥𝑖 − 𝑥𝑗‖. 
The relationship between the predicted value y and the design variable 𝑥 is defined by the 

Kriging proxy model, and the expression is as follows17: y(𝑥) = F(β, 𝓍) + z(𝓍) (6) 

Among them, the global model of the design variable space is F (β, x), and the local deviation 
of random distribution according to N (0, σ2) is z(x). The statistical characteristics of z(x) are as 
follows: E[𝑧(𝑥)] = 0 (7) Var[𝑧(𝑥)] = 𝜎𝑧2 (8) cov (𝑧(𝑥𝑖), 𝑧(𝑥𝑗)) = 𝜎𝑧2𝑅(𝑥𝑖 , 𝑥𝑗) (9) 

In the formula, R (xi, xj) is the correlation model about sample points xi and xj, which is used 
to describe the degree of correlation between the sample points. The Gaussian correlation model is 
usually used: 

R(𝑥𝑖 , 𝑥𝑗) = exp (− ∑ 𝜃𝑘|𝑥𝑖𝑘𝑛𝑣
𝑘=1 −𝑥𝑗𝑘|2) (10) 

In the formula, the relevant parameter vector to be determined is θ; the dimension of the design 
variable is nv; θk and xik, xjk are the kth component of θ, xi and xj, respectively. 
The prediction variance and response value of the Kriging model at the prediction point x are 
obtained by the linear weighted interpolation method: ŷ(𝑥) = F(β, 𝓍) + 𝑟𝑇(𝑥)𝑅−1(𝑔 − 𝛽̂𝐹) (11) 

𝑒̂2(𝑥) = 𝜎2 [1 − 𝑟𝑇𝑅𝑟 + [(1 − 𝑞𝑇𝑅−1𝑟)2𝑞𝑇𝑅−1𝑞 ]] (12) 

In the formula, the correlation model vector between the sample point and the x point is r(x); 
the correlation model matrix is R; the unit column vector with the number of elements nv and all 



1 is q; the vector of the sample point response is g. 
In order to effectively improve the accuracy of the Kriging proxy model, sample points can be 

added in the optimization process, usually adding points where the prediction variance is large or 
expected to improve (EI) as the Kriging adding point criterion. The Pareto optimal set is introduced 
into the point-adding criterion to effectively use the information of evolutionary algorithm in the 
optimization process. The number of points SE  where the prediction variance is large and the 
number of points SP where the Pareto optimal solution is added in a single evolution are: 𝑆𝐸 = ⌊𝑔 − 𝑔𝑐𝑔 ∙ 𝐶𝐸1 + 𝐶𝑇1⌋ (13) 

𝑆𝑃 = ⌊𝑔𝑐𝑔 ∙ 𝐶𝐸2 + 𝐶𝑇2⌋ (14) 

In the formula, the current number of iterations is gc; the total number of iterations is g; the 
adjustment coefficient and the minimum number of points added are CE  and CT , respectively. 
During the evolution process, the strategy of updating the Kriging model is to select scattered sample 
points according to the crowded distance of the Pareto optimal set. The dynamic number of points 
not only improves the efficiency of solving the optimal set, but also satisfies the accuracy of the 
model. 

2.6 Pareto selection based on entropy method 

The entropy method is an objective weighting method that uses the entropy of the decision 
index to calculate the entropy weight. In the evaluation problems of i evaluation indexes such as X1, X2, … , Xi, and j Pareto optimal solutions, the mth One evaluation index 𝑋𝑚 = {𝑥1, 𝑥2,···, 𝑥𝑗}, 
define the entropy 𝐻𝑚 of 𝑋𝑚 as: 𝐻𝑚 = −𝑘 ∑ 𝑓𝑚𝑛𝑙𝑛𝑓𝑚𝑛𝑗

𝑛=1  (𝑚 = 1,2,··· 𝑖) (15) 
Where: 𝑓𝑚𝑛 = 𝑟𝑚𝑛∑ 𝑟𝑚𝑛𝑗𝑛=1 ；𝑘 = 1𝑙𝑛𝑗 

Among them, rmn is the normalized index, 𝑟𝑚𝑛 = 𝑋𝑚𝑛−𝑚𝑖𝑛(𝑋𝑚)𝑚𝑎𝑥(𝑋𝑚)−𝑚𝑖𝑛(𝑋𝑚); the greater the entropy 

of the index, the smaller the entropy weight, the mth  The entropy weight wm  of each 
performance index is defined as: 𝑤𝑚 = 1 − 𝐻𝑚𝑖 − ∑ 𝐻𝑚𝑖𝑚=1 (16) 

Using the entropy weight to rank the scores of each scheme, a more objective Pareto optimal 
solution can be obtained. 

 

3 Novel SG-Resnet based network for structure generating 

3.1 Structure of the proposed model 

Resnet includes 18 layers, 34 layers, 50 layers, 101 layers and 152 layers. Although the depth 
of the network is an important guarantee for the effect of deep learning, in practice, its depth is 
limited by many aspects: the more the number of network layers, the higher the GPU performance 
requirements, the more memory requirements; the lower the iteration efficiency, the slower the 
convergence speed; the network depth is too deep, and overfitting may occur. Therefore, considering 
the complexity of the problem and the running performance, the construction of SG-Resnet is 



realized on the basis of Resnet18. 
3.1.1 Modified Resnet-18 

The solution in this paper is based on the deep residual network Resnet proposed by He et al. 
19, but its core structural parameters and training strategies are optimized and adjusted to obtain a 
model framework suitable for generating structural parameters of RV reducers. Considering that 
the convolutional layer is more suitable for extracting image features, and the structural 
parameters of the RV reducer are abstract data, the convolutional layers in the long and short 
connections in the Residual Block are replaced with linear transformation layers (nn.Linear). The 
system structure of SG-Resnet is shown in Figure 1. 
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Fig. 1 SG-Resnet network structure diagram 

The structure of Resnet18 is shown in Figure 2. The core of Resnet18 network consists of 2 
conv2_x (2 convolutional layers), 2 conv3_x (2 convolutional layers), 2 conv4_x (2 convolutional 
layers), 2 conv5_x (2 convolutional layers), its purpose is to extract the features of the data. The 
first layer is a 7×7 convolutional connection pooling layer, and the last layer is a 512-dimensional 
fully connected layer, which implements a linear transformation of a specific number of feature 
spaces. 
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Fig. Error! No text of specified style in document. Typical structure of Resnet18 

Multi-objective genetic algorithm (Multi-objective genetic algorithm) has the ability to search 
for optimal solutions globally, and is suitable for dealing with optimization problems of discrete 
variables. The current practice of multi-objective genetic algorithms mainly focuses on multi-



objective optimization algorithms using the concept of Pareto optimal solutions. Among them, the 
second-generation non-dominated sorting genetic algorithm (Non-dominated sorting genetic 
algorithm-II) has the advantages of good solution set distribution, low time complexity, and fast 
convergence speed. 
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Fig.3 Modified mixed population NSGA-2 for internal structure optimization flow chart 
The initial step to solve the optimization problem is to randomly generate the coding population 

according to the design variable range matrix. In the design variables {z1, z2, zg, Z, m}T are discrete 

variables, {b, Dz, dz, B, K1, Dm, Dr, L}T  is a continuous variable. Improved on the basis of the 
evolutionary algorithm library Geatpy. Aiming at the problem that the NSGA-II algorithm can only 
deal with a single type of population, the design variable range matrix is divided into a real number 
independent variable range sub-matrix and an integer independent variable range sub-matrix. The 
mutation stage is processed separately and synthesized into the same population in other stages. At 
the same time, non-dominated sorting considering the crowding distance is introduced to enhance 
the distribution of the population. The flow of the mixed population NSGA-II algorithm is shown 
in Figure 3. 
The specific processing steps for mixed populations are: 
① Initial population generation: The independent variable range matrix is generated from the value 

range of the design variable, and it is divided into two sub-matrices Mi  and Mr  using the 
sequence of continuous variables and discrete variables in the matrix. Use the rand() function 
to generate a real-valued initial population Pr corresponding to the sub-matrix Mr, and use the 



rand() function and rounding method to generate a decimal integer initial population Pi 
corresponding to the sub-matrix Mi. 

② Cross-mixed population: The populations Pi and Pr are both the number of columns as the 
design variable number, the number of rows is the matrix of population size, and the two 
matrices are merged horizontally to form the mixed population Pm . The reorganization of 
chromosomes between individuals is realized by single-point crossover. 

③ Subpopulation mutation: divide the mixed population into subpopulations Pi  and Pr . The 
integer value mutation operator is realized by the mutation of the individual in the matrix Pi, 
and the mutation operation on Pr is completed by the real-valued Gaussian mutation operator. 
The mixed population Pm consists of two matrices. synthesis. 
Since the truncation method 12 only applies to the processing of continuous integer variables, in 

order to solve the problem of processing discrete variables in the MIP problem, this chapter proposes 
a general coding scheme for discrete variables based on the array index as shown in Figure 4. The 
array Zarr  represents nd  possible values of the discrete variable Zd , and the integer 
subpopulation Znum with the value (0,1, ..., nd-1) is the encoding form of the array index. In the 
stage of evaluating the constraints and function values, the discrete subpopulation Zdis is decoded 
by the array index population Znum and the array Zarr.  

Real subpopulation 

Pr

integer subpopulation 

Pi

integer subpopulation 

Znum

Value array of discrete 

variables Zarr

discrete subpopulation 
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Decode Znum
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Fig.4 A universal coding scheme for discrete variables 
Introduce non-dominated sorting considering crowded distance to reduce the computational 

cost and enhance the distribution of the population. Since the calculation efficiency of the Euclidean 
distance is low, the crowded distance is represented by the percentage of the offset calculation target 
value. The crowding distance between two adjacent individuals xi, xj can be defined according to 
the objective function value of the mixed population individuals sorted from small to large: 𝑑𝑐 = 𝑓(𝑥𝑗)−𝑓(𝑥𝑖)𝑓(𝑥)𝑚𝑎𝑥−𝑓(𝑥)𝑚𝑖𝑛 (17) 

In the formula, the objective function value of individual x is f(x), and the smallest and 
largest objective function values in the mixed population are f(x)min and f(x)max. In order to 
select the next generation of individuals, the individual fitness Vfit is updated based on the 
crowding distance. 

Table 1. benchmark simulation of MINLP 

No. SOTA MP-NSGA-II Best gen 

P1 85.500000 85.50002 3417 

P2 7.666566 7.667180 1 

P3 4.579582 4.579589 2034 

P4 2.000000 2.000001 2699 

P5 2.124470 2.124468 6444 

P6 1.076555 1.076625 9994 



P7 99.239635  

P8 3.557464 3.558061 89 

P9 -32217.427 -35270.129 8 

P10 -0.793323 -0.793323 50 

P11 -0.974565 -0.974565 1 

P12 -0.999949 -0.999954 153 

P13 5850.38376 5850.50079 1625 

P14 -75.134168 -75.133805 3864 

The 14 MINLP problems in the literature14 are simulated to evaluate the feasibility of the MP-
NSGA-II algorithm. The existing best comes from ridPSO, ridDE, MDE, MDELS and MDEIHS. 

Table 1 shows 14 minimization target problems, and the mixed population NSGA-II is a 
population size of 1000. The evolution algebra is set to 10000 to show the convergence 
characteristics of the algorithm. The gap between the known optimal and the single-run mixed 
population NSGA-II optimal solution is less than 0.1%, and the 3 known optimal solutions are 
improved: P5(x=1.3748231,y=1), P9(x=[27, 27,27], y=[88,44]), P12(x=[0.90219,0.88775,0.94918, 
0.84872], y=[5,5,4,6]). When the independent variable x2 =0, the existing optimal objective 
function denominator in P7 is 0, this group has not been compared. 

3.3 General procedure of the proposed system 

Resnet includes 18 layers, 34 layers, 50 layers, 101 layers and 152 layers. Although the depth 
of the network is an important guarantee for the effect of deep learning, in practice, its depth is 
limited by many aspects: the more the number of network layers, the The higher the GPU 
performance requirements, the more memory requirements; the lower the iteration efficiency, the 
slower the convergence speed; the network depth is too deep, and overfitting may occur. Therefore, 
considering the complexity of the problem and the running performance, the construction of SG-
Resnet is realized on the basis of Resnet18, and the MP-NSGA-II is a discrete version of NSGA-II. 
The overall process of new type RV reducer design is illustrated in figure 3. (Data 
preparation->Model training ->Model testing). 
 

4 Case studies and results 

4.1 Experiment preparation 

The experimental platform for comparing the Resnet model and other methods proposed in this 
chapter is Windows10 64bit system, Intel core i9-9900 2.6GHz, 16GB RAM, 1TB SSD, NVIDIA 
GTX 1070 8GB. The algorithm is implemented using Pytorch 1.3+CUDA10.1 framework and 
Python 3.6. 

For the RV reducer with integrated structure, the arm bearing adopts integrated bearing. The 
three-dimensional model is shown in Figure 5. Considering the size of the standard parts and the 
parts to be matched, the external dimensions to be determined are S ={yv1, yv2, yv3, yv4, yv5, yv6, yv7, yv8, yh1, yh2, yh3, yh4, yh5, yh6, yh7} , a total of 15 size parameters, 
reducer output speed n2 (rpm), output torque T2 (N∙mm ), the input power P (w), and the number 
of planet wheels np are the original input samples. Corresponding working condition parameters 
of each model of RV reducer C={n2,T2,P,np} There are a large difference within 9 categories, a 
total of 9 types; the difference between the categories is small, a total of 8 types of reducers, the 
simulation of small sample conditions can be fully investigated The generalization ability of the 



model, so as to fully consider the performance of the structure generation algorithm in the case of 
small sample fine-grained model generation. 

4.2 Experimental setup 

SG-Resnet uses the SGD optimizer by default, the optimizer hyperparameter learning 
rate= 1 × 10−6 , Momentum=0.5, the loss function selects the mean square loss function 
(MSELoss), according to the optimization process of Resnet network, the training process of SG-
Resnet is shown in Figure 3. 

In order to prevent overfitting of the function, the dropout method is adopted, and the 
hyperparameter p=0.5. On the one hand, during each training, inactive nodes will appear randomly 
in the network. When different training samples are input to the network, they correspond to 
different network structures, preventing the assimilation of the structure. Drawing on the method of 
image augmentation (data augmentation), transforming the initial data to augment the training set, 
and adding Gaussian noise to the original data can effectively improve the learning ability of the 
system. 
Step1. External dimensions classification (without restrictions) 
Data description 

The integrated structure RV reducer is a new type of high-precision RV reducer proposed by 
this research team. Its structure is shown in Figure 5. The new high-precision RV reducer input 
mechanism intermediate arm bearing adopts an integrated design integrated in the double eccentric 
shaft and cycloid gear coordinate hole full cylindrical roller bearing structure, the output mechanism 
support bearing adopts an integrated design integrated in the planet carrier and Staggered roller 
bearing structure of pin gear shell. 
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Fig.5 RV reducer model with integrated structure 

Jointly carried out industrial development with a cooperative reducer manufacturer, and formed 
an integrated RV reducer structure parameter data set based on the industrial development process. 
Choose RV-6E, RV-20E, RV-40E, RV-80E, RV-110E, RV-160E, RV-320E, RV-450E, a total of 8 
models, each model corresponds to 9 working condition, a total of 72 pairs of data sample. 
Parameter selection of the proposed method 

The improved Resnet model evaluates the accuracy and generalization performance of the 
model through two indicators during the training process: train loss and test loss. Since the 
mechanism to prevent overfitting in the model is fully considered, no verification set is introduced 
(Val).  

In the model training stage, the basic structure of the model can be kept unchanged, and the 



network performance can be optimized by adjusting the batch size when the network weights are 
updated. Set the batch size to 8, 16, 24, and 32, respectively. The 18-layer SG-Resnet iteration loss 
function changes in 7,500 epochs as shown in Figure 2.8. In the figure, epoch is the number of 
traversal training samples, and loss is the value of the loss function. 
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Fig.6 SG-Resnet iterative loss trend 

It can be seen from Figure 6 that during the Mini-Batch Gradient Descent (MBGD) process, 
the general trend is that the larger the batch size, the smaller the loss function oscillation and the 
better the directionality of the gradient descent. The small batch size can bring more random weight 
updates and it is easier to jump out of the local optimal. When the batch size is 16, the system has 
the optimal convergence ability. When the batch size is 24 and 32, respectively, the loss function 
has a cliff-like decline phenomenon. Because it is easy to fall into the local optimal solution, the 
convergence of the loss function value is below 150 The speed is slow. When the batch size is 8, the 
convergence speed is the highest before 4000 epochs, and the convergence ability decreases due to 
excessive fluctuations in the later period. In the study of Keskar et al.20 , this phenomenon was 
theoretically discussed. When the batch size reaches a larger scale, the model tends to converge to 
the steep minimum value of the loss function, and a small difference in the parameter space will 
lead to the validation set, the larger the prediction offset, the smaller the batch size, the smaller the 
relative error on the new data set, and the easier it is to converge to a smooth minimum. 
Model comparison and results 

To validate the performance of the SG-Resnet model, the training sample set, the test sample 
set, and the ratio of the training sample and the test sample all have a greater impact on the accuracy 
and generalization ability of the model. The experiment can be carried out in the following three 
ways, according to these three methods are as follows:  

1) Use different ratio samples for training and testing; 
2) Use the same sample for cross-training and testing; 
3) Use a fixed ratio of samples for training and testing, the results of the experiment; 
① When using samples of different proportions for training and testing, the 18-layer SG-Resnet 
network is uniformly selected, RV-80E is used as the test set, and the remaining part is used as the 
training set, and the network performance is observed experimentally. 
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(a) Test set：RV-80E                       (b) Test set：RV-40E RV-160E 
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(c) Test set：RV-20E RV-80E RV-160E  (d) Test set：RV-20E RV-80E RV-160E RV-450E 

Fig.7 Loss trend of training set and test set with different proportions of samples 

As shown in Figure 7, this SG-Resnet network can converge on the test set when isolating the 
data sets of different types of RV reducers, indicating that the network can correctly predict the size 
parameters of the reducer under unknown conditions, and has strong learning and reasoning ability. 
When the training set: test set=7:1, the loss of the test set in the pre-training period is always higher 
than that of the test set, and the convergence speed increases after 3500 epochs; when the training 
set: test set=6:2, the training samples are reduced, Convergence starts to accelerate after 5000 epochs; 
when training set: test set=5:3, although the loss function drops to about 200 after only 3000 epochs, 
as the iteration proceeds, the test set loss function value does not decrease but increases. The 
phenomenon of over-fitting indicates that for the problem of too few samples, the training sample 
is not enough to cover all the effective size features in the test sample, and the complexity of this 
model is higher than the complexity of the problem itself. When training set: test set=4:4, the model 
converges the slowest, and over-fitting also occurs. 

 

Table Error! No text of specified style in document.. Structure of 18-layer and 34-layer model  

layer name 18-layer 34-layer 

FC1 16-d fc 

Linear2_x [16
16

] × 2 [16
16

] × 3 

Linear3_x [32
32

] × 2 [32
32

] × 4 

Linear4_x [64
64

] × 2 [64
64

] × 6 

Linear5_x [128
128

] × 2 [128
128

] × 3 

FC6 15-d fc 

 

② When using the same sample for cross-training and testing, select 18-layer BP neural 
network, 18-layer and 34-layer SG-Resnet models for comparative experiments. The BP network is 
based on the multilayer feedforward network proposed by McCelland and Rumelhart in 1986. Error 
back propagation algorithm, the batch size is uniformly set to 8. Compared with the 18-layer SG-
Resnet, the BP network has the same parameters except for the lack of the Residual Block structure. 
Table 2 shows the structure of the 18-layer and 34-layer SG-Resnet model. 
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(a)BP  Test set：RV-80E  (b) BP  Test set：RV-20E RV-80E RV-160E RV-450E 
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(c)SG-Resnet18 Test set：RV-80E          (d) SG-Resnet34 Test set：RV-80E 

Fig.8 Loss trend of different network types 

 The results in Figure 8 show that under the same experimental environment (GPU floating-
point computing ability, video memory capacity), the ordinary 18-layer BP network has no residual 
structure, lacks the jump connection of the network, and the early loss function value is higher when 
the training samples are sufficient. And the loss function is very small. When the training sample: 
test sample=7:1, the convergence starts to accelerate at 1300 epochs, but the training sample: test 
sample=4:4, although the convergence is extremely fast, the test set loss When the function value 
reaches about 150, it does not decrease but rises, indicating that the model has low flexibility, 
insufficient generalization ability, and is easy to overfit and lose its prediction credibility; although 
the convergence rate of SG-Resnet18 is low, there is no overfitting. The phenomenon indicates that 
the model accuracy is very high; when the 34-layer SG-Resnet is used, serious over-fitting occurs 
again, indicating that the two deep networks leads to the high complexity of the model. In summary, 
it is necessary to adopt an improved network structure for small sample problems, and SG-Resnet 
with an improved structure still needs to adjust the network depth appropriately according to the 
characteristics of the sample, and reasonably select the dropout probability p and other 
hyperparameters.  

③Through the foregoing experimental conclusions, an 18-layer SG-Resnet network is selected, 
RV-80E is the test set, the batch size is 8, the dropout probability p = 0.7, and the network size is 
appropriately reduced to test the performance of this system. When epoch=72455, the loss function 
values of the training set and the test set are 4.297 and 8.748, respectively. This model obtains the 
analysis results of the consistency between the real structure parameters and the predicted structure 
parameters. 
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(1)   [5, 1088,0.76, 3]        (2)   [10, 885, 1.24, 3]      (3)   [15,784, 1.64, 3] 
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(4)   [20, 719, 2.01, 3]       (5)   [25, 672, 2.35, 3]       (6)  [30, 637, 2.67, 3] 
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      (7)   [40, 584, 3.26, 3]       (8)   [50, 546, 3.81, 3]      (9)  [60, 517, 4.33, 3] 

Fig.9 Experimental results of RV-80E structural parameter prediction 

The results in Figure 9 show that the size parameters predicted by the 9 pairs of working 
conditions of RV-80E differ very little from the actual size parameters, and only the 15th structural 
parameter yh7 has a large difference. The RV-80E is used as a test set. The structure of the RV-80E 
is unknown to this system, indicating that the network system has a certain "structural design 
capability". Combining the structural size parameters generated by SG-Resnet18 and the designers' 
actual design parameters in the database, calculate the correlation parameter values between 
subjective and objective design parameters: Pearson's r, R2 (COD) and adjusted R2. The results 
are shown in Table 3. The correlation parameter values of the three evaluation methods are all higher 
than 0.998, indicating that the proposed SG-Resnet model has high accuracy. 

Table 3. Correlation parameter values of 9 samples of RV-80E 

Eval Spl 1 Spl 2 Spl 3 Spl 4 Spl 5 Spl 6 Spl 7 Spl 8 Spl 9 

Pearson's r 0.99928 0.99932 0.99933 0.99932 0.99933 0.99935 0.99939 0.99946 0.99948 

R2 (COD) 0.99856 0.99863 0.99866 0.99863 0.99866 0.99870 0.99878 0.99892 0.99897 

adjust R2 0.99845 0.99853 0.99855 0.99853 0.99856 0.99860 0.99868 0.99883 0.99889 

 



Step2. 
Internal dimensions optimization (with restrictions): 

The optimization objectives of this paper are transmission efficiency η, volume V and torsional 
stiffness K′ , and the constraint function is geometric constraint and stress constraint, then the 
optimization model is: 

{𝑚𝑖𝑛[−𝜂(𝑋, 𝐶), 𝑉(𝑋, 𝐶), −𝐾′(𝑋, 𝐶)]𝑠. 𝑡.  𝑔(𝑋, 𝐶) ≤ 0     ℎ(𝑋, 𝐶) = 0 (18) 

In the formula, g (X, C) is an inequality constraint; h (X, C) is an equality constraint. 
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Fig.10 the flow chart of building kriging model 
The parameter settings of the mixed population NSGA-II algorithm are shown in figure 10. 

Run this algorithm many times at the same time to verify that the stability of the Pareto optimal 
solution is extremely high. Run the optimization program to get the Pareto frontier as shown in 
Figure 11. It can be seen that the three optimization goals are mutually restricted, and the ideal 
solution needs to be selected from the Pareto frontier solution set. 
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Fig.11 Pareto frontier 

Since the objective functions compete with each other through the structure and size parameters, 
the solution set of the Pareto front end can be compared when the mixed population and the single 



population are used. At the same time, the Pareto front end of the two objectives is used to study the 
coupling relationship between the objective functions of the RV reducer, as the follow-up Pareto 
The basis for selection is that the single population removes the constraints of discrete variables and 
integer variables. The relationship curve is shown in figure 12. Because part of the independent 
variables in the mixed population are discrete variables, the Pareto front end appears discontinuous. 
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Fig.12 Competitive relationship between objective functions 

Figure 12(a), figure 12(b), and figure 12(c) show the competitive relationship between 
transmission efficiency and volume, transmission efficiency and torsional stiffness, volume and 
torsional stiffness, respectively. When volume and torsional stiffness change, it is shown in figure 
12(a) As shown in figure 12(b), the transmission efficiency of 85.2%~85.6% is basically maintained, 
so the coupling level of the remaining objective functions and transmission efficiency is not obvious. 
When the optimization goal tends to reduce the volume, as shown in figure 12(c), it will result in a 
substantial decrease in torsional stiffness; if the torsional stiffness of the reducer is increased, the 
volume will increase. Therefore, based on the design requirements of torsional stiffness and volume, 
the optimization scheme is initially screened as shown in figure 10. 

4.3 Experiment analysis 

1) Torsional stiffness of RV reducer and its testing principle 

Fix one end of the input and output ends of the RV reducer, and apply torque at the other end. 
Due to the internal clearance of the reducer and the elastic deformation of the material, the loading 
end will produce a certain degree of torsion. The rotation applied in this process The ratio of the 
moment value to the generated torsion angle is called the torsional stiffness of the RV reducer. In 
the actual test, the movement of the input end of the tested reducer is usually restricted, and the 
output end is loaded to the rated torque of the reducer, and the corresponding torque and rotation 
angle of a section near the rated torque of the hysteresis curve are calculated. As shown in Figure 
13, b is the torque value near the rated torque, and a is the corner value corresponding to b. The 
formula for calculating the torsional stiffness of the RV reducer is: k = ba (19) 
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Fig.13 Schematic diagram of torsional stiffness calculation 



There are many types of RV reducers, and their rated torque is as small as tens of Nm (for 
example, the rated torque of RV-6E is 58Nm), and as large as several thousand Nm (for example, 
the rated torque of RV-450E is 4410Nm). When using the existing calculation method to design the 
torsional stiffness test instrument, the load torque of several thousand Nm poses a great challenge 
to the load capacity of the entire system and the torsional stiffness of the shafting. Especially in the 
batch test of RV reducer, a large range of reciprocating loading will reduce the detection efficiency 
of the product, and also shortens the service life of the detection device. 
2) Torsional measurement of BAJ-25E 

According to the parameters in Figure 10, an RV reducer is designed (as shown in Figure 14), 
and the torsional stiffness of the RV reducer in different torque ranges are tested using a special RV 
reducer torsional stiffness test device. 

 

Fig.14 RV reducer prototype 

The torsional stiffness test device of RV reducer is shown in Figure 15. During the test, the 
input end of the RV reducer is fixed, the loading device loads its output end, and the torque sensor 
and the rotation angle measuring device obtain the torque and rotation angle values of the output 
end respectively. The upper computer displays the hysteresis curve of the tested reducer in real time. 
The specific loading process of the output terminal is as follows: firstly load to the maximum torque 
value in the positive direction, then the motor reverses, unload the torque to 0 and continue to load 
to the negative maximum value, and finally unload the load to 0 again and load in the forward 
direction until Load to coincide with the curve of the first forward load. In this test, the torsional 
stiffness of the RV reducer are tested four times. The maximum torque values in the four tests were 
1100Nm, 900Nm, 700Nm and 500Nm, respectively. The test results are shown in Figure 16~19. 
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Fig.15 RV reducer stiffness test 



 

Fig.16 Hysteresis curve of 1100Nm 

 

 

Fig.17 Hysteresis curve of 900Nm 

 

Fig.18 Hysteresis curve of 700Nm 

 



 

Fig.19 Hysteresis curve of 500Nm 

It can be seen from the hysteresis curve of the RV reducer that, except near the origin of the 
coordinate, the load torque and torsion angle of the RV reducer in other ranges have a good linear 
relationship, which indicates the torsional stiffness within this range. The amount of change is small. 
It can be seen from the results of the test data analysis that the torsional stiffness of the RV reducer 
increases with the increase of the load torque, and the torsional stiffness changes in different torque 
ranges are roughly the same as the results of the finite element analysis. 
 

5 Conclusions 
Based on the research of the small-sample structure parameter recommendation algorithm, a 

novel NSGA-II and ResNet based model has been proposed according to the structural 
characteristics of the integrated structure RV reducer. The generalization performance and accuracy 
of the proposed model are significantly higher than the Backpropagation model. Compared with the 
actual design parameters of the engineering designers, the correlation of the structural size 
parameters generated by this method can reach 0.998, which verifies the rationality of the design of 
serialized reducers using the parameter recommendation method. 

Through the Eric6 development environment and a series of function interfaces of PyQt5, the 
forward design software of the integrated structure RV reducer is realized, the integration of the RV 
reducer component design and verification function is completed, and the MP-NSGA-II 
optimization module is integrated in the software by utilizing the Geatpy framework. 

In order to realize the practical application of the intelligent structure design method of RV 
reducer, in the future research, the application of multidisciplinary design optimization technology 
in the design of RV reducer will be explored, and the auxiliary design program of RV reducer under 
multiple platforms will be integrated. 
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