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It has been shown that autointerference of viruses limiting their replication leads to the emergence
of a new stable asymptomatic state of the infected organism. This state gives viruses the ability to
superspread and make a main contribution to the epidemic. We assume this to be responsible for
the superspreading in the COVID-19 epidemic.

I. INTRODUCTION

The COVID-19 epidemic has a number of features that
distinguish it from previous influenza epidemics. One of
them is a significant number of superspreaders - asymp-
tomatic carriers of viruses. These carriers feel healthy
and, unlike the sick, have complete freedom of movement.
Therefore, they make a large, if not decisive, contribution
to the spread of viruses. Asymptomatic states are typical
for many other viruses (for example, herpes), but until
now they have never led to the development of epidemics.
According to available data, 20% of those infected with
the COVID-19 virus are responsible for 80% of cases of
infection [1].
Overall, this creates a picture of the COVID-19 epi-

demic in which some people are spreading the virus while
others are sick. Formally, this is manifested in the pres-
ence of two components of the epidemic - asymptomatic
and symptomatic. On this basis, in our previous works,
a two-component model was developed [2-4], describing
the course of the COVID-19 epidemic. It is based on the
very fact of the existence of an asymptomatic state of the
infected, freely spreading the virus. However, in works
[2-4] the nature of such a state was not considered in any
way.
In this article, we analyse the possible reason for the

existence and stability of an equilibrium asymptomatic
state with a constant level of infection. This is the state
of the superspreader. We show that both the very ex-
istence and the stability of this state can be due to the
autointerference of viruses.
The phenomenon of autointerference of a virus of one

species, which is a special case of the interference of sev-
eral species, is well known [5]. This event causes protec-
tion or reduced virus replication in hosts inoculated with
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large virus doses, which in smaller quantities induce dis-
ease and high replication rates. This phenomenon was
described first by Pasteur on the rabies virus in rabbits
but has also been reported for other virus-host systems
such as Influenza B in chick embryos, and yellow fever,
dengue, and Rift Valley fever in mice [6].

We assume that autointerference restricts the replica-
tion of the COVID-19 virus and thereby protects the in-
fected organism from its pathogenic effects. This allows
to stabilize the number of viruses at a level that is safe
for the body, but sufficient for their further spread. It
is this state of the infected that we believe is responsible
for the superspreading.

Since in our work we are talking about the possibil-
ity of the spread of viruses by asymptomatic carriers, we
limit the consideration to only asymptomatic states. In
such conditions, the primary nonspecific immunity plays
the main role, and the body responds elastically to in-
fection. This means that after the elimination of viruses,
specific antibodies are not formed, and the body returns
to its original state. This process is fundamentally dif-
ferent from a symptomatic disease or vaccination, when
adaptive immunity is activated, specific antibodies are
formed, and there is no return to the initial state.

II. EQUILIBRIUM OF NON-INTERACTING

VIRUSES

In this section, we consider the dynamics of infection
in the simplest case of a small number of non-interacting
viruses, investigate the possibility of the existence and
stability of an asymptomatic infected state, and draw a
conclusion about the possible properties of the body’s
immune response to the virus.

To investigate the stability of the virus system in the
human body, let us consider the change in the number
of viruses over time t. It obeys a differential equation of
the general form



2

FIG. 1. Equilibrium states of the system of non-interacting viruses described by the differential equation (1). Here x is the
number of viruses, r(x) = kx is the replication rate of non-interacting viruses, and i(x) is the rate of their elimination under
the influence of nonspecific immunity.

dx

dt
= r(x)− i(x). (1)

Here x is the number of viruses, r(x) is the rate of natural
replication of viruses in the cells of the body, i(x) is the
rate of their elimination under the influence of immunity.
We will consider the evolution of the number of viruses
in an asymptomatic state, when this number is small
enough not to disrupt the normal functioning of cells.

In the case of non-interacting viruses considered here,
when their replication occurs independently, the replica-
tion function r(x) is linear: r(x) = kx, where k = const is
a constant factor. The function of the immune response
i(x) is not known in advance. It depends on the individ-
ual characteristics and the general condition of the body.
In what follows, we will discuss its possible properties.

We restrict the analysis of variants to two possible
forms of the immune function i(x) - convex and concave.
More complex dependences i(x) seem to us unlikely and
are not considered. The equilibrium state of the system
of viruses is the value x at which the right-hand side of

equation (1) vanishes, i.e.,

r(x) = i(x). (2)

The number of roots of this equation and the stability
of the corresponding equilibrium states depend on the
curvature of the immunity function i(x), as well as on
the linear factor k of the replication function r(x) = kx.
In this case, 4 possibilities arise, shown in Fig.1.
If the function i(x) is convex and the replication factor

k is large enough, k > i′(0), then the only equilibrium
state x = 0 is unstable. This case is shown in Fig. 1(a).
This means that nonspecific immunity is not able to stop
the replication of viruses, and the body inevitably goes
into a state of illness. After that, symptoms appear, and
specific immunity comes into play. This process is outside
the scope of our analysis, limited only to asymptomatic
states.
If the function i(x) is convex and the replication factor

k is not large enough, k < i′(0), then the equilibrium
state x = 0 becomes locally stable. This corresponds to a
return of the body to its original state, free from viruses,
without the appearance of any symptoms. This case is
shown in Fig.1(b). Another equilibrium state x = xs,
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FIG. 2. Replication function r(x) for a system of non-interacting viruses (a) and in the presence of interaction between viruses
(b).

corresponding to an asymptomatic carrier of the virus, is
unstable. If the value of x exceeds the critical value xs,
then instead of returning to the virus-free state x = 0,
the number of viruses increases and the transition to the
state of illness occurs.

If the function i(x) is concave and the replication factor
k is not large enough, k < i′(0), then the only equilibrium
state x = 0 is absolutely stable. This state corresponds
to a return of the body to its original state, free from
viruses, without the appearance of any symptoms. This
case is shown in Fig.1(c).

Finally, if the function i(x) is concave and the replica-
tion factor k is large enough, k > i′(0), then the virus-
free state x = 0 becomes unstable. Instead, as shown
in Fig.1(d), a new stable state x = xs appears. In this
state, a person is an asymptomatic carrier of the virus,
i.e., superspreader. Can this combination of factors be
realized?

A necessary condition for this is the concave function
i(x) shown in Fig.1(c,d). With this form of dependence
i(x), the organism after infection always remains asymp-
tomatic. It is either the virus-free state x = 0 or an
asymptomatic carrier state x = xs. However, the absence
of a transition to the symptomatic state of the disease is
contrary to experience - infected people, although not
always, get sick. Consequently, the immune function i(x)
is not concave, but convex, or has a more complex form.

Hence it follows that of the four considered possibili-
ties, only the first two, presented in Fig.1(a,b), are real-
ized. That is why, in the absence of interaction between
viruses, only the virus-free state x = 0 can be stable. It
occurs either directly, without a transition to the symp-
tomatic phase of the disease (b), or after the transition
to the symptomatic phase and switching on the specific
immunity (a, b).

Therefore, without considering the interaction of

viruses, the superspreder state x = xs, although it can
exist, cannot be stable.

FIG. 3. The result of the replication of non-interacting viruses
in the body is symptomatic disease (a). The result of the
replication of interacting viruses is an asymptomatic state -
superspreader (b).

.

III. REPLICATION OF INTERACTING

VIRUSES

Since there is no stable superspreader state in the sys-
tem of non-interacting viruses, it is logical to consider
the interaction between viruses from this point of view.
It is known that under certain conditions, the inter-

action between viruses can slow down or even stop their
replication. In such a system, the replication function
r(x) becomes nonlinear and can vanish at a certain con-
centration of viruses x = xs, as shown in Fig. 2.
Essentially, Fig.2 shows the progress of viral replication

in the absence of any immune response. It follows from
this that the interaction of viruses by itself can stabilize
the infected state.
In immunology, this phenomenon is called viral au-

tointerference. It is important that, due to autoint-
erference, the replication function r(x) can go to zero
even before the onset of symptoms of the disease. This
leads to the possibility of the existence of a stable asymp-
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FIG. 4. Equilibrium states of the system of interacting viruses depending on the relationship between the nonlinear function
of replication r(x) and the function of immunity i(x).

tomatic state in the infected, i.e., stable state of the su-

perspreader. Fig.3 schematically shows the result of repli-
cation of non-interacting (a) and interacting (b) viruses.

In the absence of the interaction (case (a)), viruses
replicate until they begin to affect the normal function-
ing of the organism. This is manifested in symptoms
indicating the onset of the disease.

If there is interaction (case (b)), the replication occurs
until the interaction of the viruses themselves stops the
process. In Fig.3(b), for each of the viruses, the inter-
action area is conditionally shown, which determines the
maximum concentration of viruses x = xs. The larger
the radius of this area, the lower the equilibrium concen-
tration of viruses xs.

Thus, the autointerference of viruses can stabilize the
asymptomatic state of the carrier of the infection - the
superspreader state. However, for this to happen, such a
state must at least exist. Does it always exist? To answer
this question, it is necessary to return to considering the
immune response, determined by the immune function
i(x).

IV. EQUILIBRIUM OF INTERACTING

VIRUSES

In this section, we consider the possible equilibrium
states of the system of interacting viruses, taking into
account the action of immunity.

The interaction of viruses leads to a non-linear replica-
tion function r(x), shown in Fig.2(b). This function has
a maximum and vanishes at some value of x. We will as-
sume that this vanishing occurs at sufficiently small val-
ues of x, even in the asymptomatic region. Otherwise,
the stage of symptomatic disease sets in, and specific
immunity enters action. This leads to irreversible gener-
ation of antibodies and the original equation (1) becomes
inapplicable.

As already shown in the second section, the immune re-
sponse is described by the convex immune function i(x).
Taking this into account, the combined action of the au-
tointerference and immunity leads to three possible vari-
ants corresponding to three different levels of replication
r(x) of interacting viruses. They are shown in Fig. 4.

In the case of sufficiently slow replication, when r(x) <
i(x) for any nonzero value of x (Fig.4(a)), the only equi-
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FIG. 5. Evolution of the equilibrium state of a system of interacting viruses with an increase in viral load v.

librium state is x = 0. This is the virus-free state.

With an increase in the size of the value of the replica-
tion function r(x), along with this equilibrium state, two
more appear, shown in Fig.4(b). The first one is unstable
and the second one is stable. It is this that corresponds
to the stable asymptomatic superspreader state. Thus,
in this case, two states are locally stable: the virus-free
state x = 0 and the superspreader state x = xs.

A further increase in the values of the replication func-
tion r(x) leads to the fact that the virus-free state x = 0
loses its stability, and the only stable state is the state of
the superspreader x = xs. This case is shown in Fig.4(c).

In none of the options is there a transition to the symp-
tomatic state of the disease.

Thus, the autointerference of viruses should lead to
two effects:

1) protection of the body from the transition to the
state of symptomatic disease;

2) appearance of a stable asymptomatic state of the
superspreader.

As can be seen from Fig.4, the first effect (the pro-
tection) manifests itself regardless of the level of replica-
tion r(x), while the second (the appearance of the super-
spreads) requires a sufficiently high level of replication.
The superspreader state is always stable if it exists.

V. EFFECT OF VIRAL LOAD

During an epidemic, both the body as a whole and
its individual cells are under the influence of an external
viral load. If the influx of viruses per unit of time is equal
to v, then this value becomes an additional term on the
right side of the original equation (1) for the dynamics of
the number of viruses:

dx

dt
= r(x)− i(x) + v. (3)

In the presence of the viral load, the equilibrium state
of the system of interacting viruses corresponds to the
vanishing of the right side of this equation:

r(x) + v = i(x). (4)

This can lead to the emergence of an equilibrium state
of the superspreader, even if it was not in the absence of
viral load, at v = 0. This evolution of the equilibrium
state of a system of interacting viruses with an increase
in the viral load v is shown in Fig. 5.
Suppose that in the initial position (a), which corre-

sponds to the absence of an influx of viruses, v = 0, the
only equilibrium state is the virus-free state x = 0. Then,
with the appearance and growth of the viral load v > 0, a
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FIG. 6. Two options for the development of infection: with the participation (a) and without the participation (b) of the
autointerference.

new equilibrium state of the superspreader (b) appears in
the system, which, with a further increase in v becomes
the only equilibrium state (c). The whole process in the
same coordinate system is shown in Fig.5(d).
In an epidemic, the influence of the viral load should

lead to a domino effect: if some of the members of the
population become the superspreaders, then this leads to
an increase in the viral load on the rest, which makes
some of them also superspreaders, etc.

VI. DISCUSSION

Thus, taking into account the autointerference of
viruses at a sufficiently high level of their replication
inevitably leads to the appearance of the superspread-

ers. They are protected from the pathogenic effect of the
virus by the autointerference factor of viruses, which lim-
its their concentration in the body by the limiting value
x = xs. At the same time, this value is sufficient for the
further spread of viruses.
This finding is consistent with the overall picture of

the COVID-19 epidemic, but leaves two questions open:
1) Under what conditions and how does an in-

fection lead to a transition to a state of symp-

tomatic disease? Consideration based on equation (1)
cannot answer this question, since this equation describes
only asymptomatic states.
2) How long can an infected person remain in

a super-spreader state and what happens to him

after that? Based on the analysis carried out on the
basis of equation (1), the state of the superspreader is
always stable and therefore the infected person can stay
in it indefinitely. This contradicts the experience of mon-
itoring the condition of asymptomatic infected, which
shows that the infection eventually clears up. Appar-
ently, Eq.(1) with given functions of replication r(x) and
immune response i(x) by itself is still insufficient for a
correct answer to this question.

In view of the fundamental importance of these two
issues, they deserve a separate discussion.
1) Under what conditions and how does an in-

fection still lead to a transition to a state of symp-

tomatic disease?

Since the autointerference of viruses makes the asymp-
tomatic state of the superspreader the only possible equi-
librium state of viruses in the body, it should be under-
stood why in some cases this does not work.
As can be seen from Fig.6(a), the equilibrium concen-

tration xs is limited by the point of intersection of the
graph of the function r = r(x) with the x-axis. And if this
point is in the asymptomatic area, then the correspond-
ing state of the superspreader is obviously asymptomatic.
The influence of the immunity function i(x) can shift this
point only in the asymptomatic direction of lower values
of x, but cannot transfer it to the symptomatic area of
larger values of x.
At the same time, in a certain part of cases, the transi-

tion to the symptomatic area always occurs. The reason
for this may be that it is in this part of the cases that
the autointerference mechanism does not turn on, and
the unhindered multiplication of viruses occurs, as shown
in Fig.6(b). In this case, a symptomatic disease occurs,
leading to the activation of the adaptive immunity and
the formation of specific antibodies.
In our previously constructed two-component model

[2-4] of the COVID-19 epidemic, infection leads to a tran-
sition to a symptomatic state only with a certain fixed
probability p ∈ [0, 1]. Comparison with the pandemic
data shows that this value is a small parameter, and its
value does not exceed 10−3. In accordance with the pre-
viously said, this may mean that, with a probability of p,
the autointerference of viruses is not turned on and their
replication occurs independently of each other. This re-
sults in a linear function r(x) and a transition to the
stage of symptomatic disease, as shown in Fig.6(b).
We do not know why the autointerference of viruses in

these cases may not be activated. Apparently, this issue
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should become the object of virological research.
2) How long can infected persons remain in the

superspreader state and what happens to them

after that?

Since the state of the superspreader is a stable solution
to equation (1), the infected person can stay in it indef-
initely, which contradicts the experience of monitoring
the state of asymptomatic infected. The reason for the
exit of an infected person from the superspreader state
can only be a change in the type of immune function i(x).
There are two possible reasons for this change.
a) In the course of a decrease in the level of the epi-

demic, the viral load v decreases and, in accordance with
equation (3) and Fig.5, the equilibrium state of the super-
spreader x = xs disappears. After that, the only stable
state is the virus-free state x = 0. It is into this state
that the superspreader state goes.
b) The very immune function i(x) in response to the

presence of the virus in the body gradually increases.
This also leads to the disappearance of the equilibrium
state of the superspreader, as shown in Fig.4(a), and to
the transition to the only stable virus-free state x = 0.
Therefore, in both scenarios, the result of the disap-

pearance of the superspreader state is a transition to the
virus-free state x = 0.
We provide an explanation of the super-spreading

phenomenon based on the putative autointerference of
COVID-19 viruses. However, is it necessary to in-

volve the autointerference of viruses in explaining

this phenomenon? As already mentioned in section 2
and shown in Fig.1(d), the state of the superspreader ex-
ists and can be stable for some special (concave) form
of the immune function i(x). However, in this case, it
remains unclear why the superspreader state is atypical
for other infections against which the same immune func-
tion i(x) acts. This indirectly indicates that the existence
of the superspreaders is not due to the specificity of the
immune function i(x), but to the virus-dependent repli-
cation function r(x). Since the properties of this function
are regulated precisely by the autointerference of viruses,
this justifies the involvement of autointerference in ex-
plaining the phenomenon of the superspreading.
Note, further, that all conclusions based on equation

(1) rely on the independence of the replication function
r(x), related to the properties of the virus, and the im-
mune function i(x), related to the immune state of the
organism. In cases close to the average norm, this is
apparently justified, but with strong deviations from it
towards a decrease in immunity, such a separation may
already be impossible. Then, instead of separate func-
tions r(x) and i(x), one should immediately consider a
single function f(x) = r(x) − i(x). However, the contri-
bution of such states to the epidemic is relatively small,
and therefore they remained beyond the scope of this
work.

CONCLUSIONS

Thus, we have shown that the autointerference of
viruses can be precisely the factor that ensures the exis-
tence and stability of the superspreader state.

At the same time, the very existence of autointerfer-
ence in coronaviruses is not an established fact of virol-
ogy. It seems important and timely to investigate this
factor and its influence on the course of COVID-19 infec-
tion.

In this sense, a comparative analysis of the autointer-
ference of various strains, and first the Chinese strain of
coronavirus, would be productive. The reason for this in-
terest is that it is in China that the epidemic incidence of
COVID-19 is abnormally low. This indirectly indicates
a high degree of stability of the autointerference factor
in the Chinese strain. It is the stable protective effect of
the autointerference of the viruses of the Chinese strain
that could explain the negligible symptomatic incidence
of COVID-19 in China.

Studies of this kind could justify the zero pathogenicity
of the Chinese strain and the possibility of its widespread
use as a universal vaccine. We have already pointed out
this possibility in [2,4].
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Figures

Figure 1

Equilibrium states of the system of non-interacting viruses described by the differential equation (1). Here
x is the number of viruses, r(x) = kx is the replication rate of non-interacting viruses, and i(x) is the rate of
their elimination under the in�uence of nonspeci�c immunity.



Figure 2

Replication function r(x) for a system of non-interacting viruses (a) and in the presence of interaction
between viruses (b).

Figure 3

The result of the replication of non-interacting viruses in the body is symptomatic disease (a). The result
of the replication of interacting viruses is an asymptomatic state - superspreader (b).



Figure 4

Equilibrium states of the system of interacting viruses depending on the relationship between the
nonlinear function of replication r(x) and the function of immunity i(x).



Figure 5

Evolution of the equilibrium state of a system of interacting viruses with an increase in viral load v.



Figure 6

Two options for the development of infection: with the participation (a) and without the participation (b)
of the autointerference.


