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Abstract: Most of the cancer growth models have described the exponential growth patterns at 

the very initial stage with low cell population density.  Eventually, decreasing the tumor growth 

rate at higher cell population densities because of  deficiency in resources such as space and 

nutrients. However, recent studies at clinical and preclinical investigations of cancer initiation or 

reappaearance showed a population dynamics evincing that the growth rate increases as cell 

number increases. Hence, showing behaviour analogous to cooperative mechanism in the 

ecosystem and ecological effect called Allee effect. Based on these observations with two 

arguments i.e. change in initial population and growth rate. In this paper, the novel mathematical 

model of tumor growth kinetics with Allee effect under fuzzy environment is proposed.  In this 

model the Generalized Hukuhara derivative approach is utilized to solve the fuzzy differential 

equations. Moreover, it is showen that the change in initial value and growth rate affects the cell 

density with the Allee effect under the fuzzy environment. Finally the superiority of model has 

been showen with the help of numerical simulation.  

Keywords: Tumor growth modeling, Allee effect, Fuzzy differential equation, Population 

dynamics. 

1. Introduction 

Relating cancer to the ecological and evolutionary process, in a stable ecosystem (healthy 

body), if one of the species (cells) getaway from ecological restraints (immune system) and 

proliferates speedily, hence destroying the stability, precipitating the extinction of neighbouring  
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species and therefore, collapse the ecosystem (disturbs body’s balance, cause the death of 

healthy cells and made the body like acidic) called cancer [1, 2]. The tumor growth cell 

mechanism depends upon how potentially cells are capable of availing the facilities and how 

profitably they construct a mechanism to escape the identification and extinction by the defense 

system of the body [3]. Kirill et. al. [4] highlighted the four prime characteristic features 

explaining why the cancer is burdensome to cure as 1) Limited information of cellular and tissue 

level process. 2) Facing challenge to identify and hit cancer cells as they are clone to normal 

cells. 3) Due to the rapid evolution of cancer cells, it is very hard to overcome the tumor 

suppressor mechanism. 4) The clonal diversity in heterogeneous makeup thus, permiting for 

cancer reappearance after remission frequently.  

The application of evolutionary modeling to cancer growth has yielded significant results. 

Despite widespread recognition of cancer as an evolutionary mechanism, little research has been 

done to characterize cancer's ecological dimensions. Our understanding of ecological processes 

with respect to tumors, in particular, is minimal [4 - 24]. The logistic model and Gompertz model 

have been proved the best fit model in describing the tumor dynamics [25]. An ecological effect 

called as an Allee effect or inverse density dependence is one of the frequent departure from 

logistic growth and Gompertz growth models [26, 27]. 

2. Alley Effect in Tumor Growth 

 Warder Clyde discovered the Allee effect first in 1930. It states that the allele effect is a 

biological occurrence to divulge a high correlation between population size or density and the 

individual mean population fitness. The population with a peak per capita growth rate at low cell 

population density corresponds to a phenomenon called Allee effect. It happens when the growth 

rate per capita rises as the density increases and decreases when a certain level is reached, which 

is often referred to as the threshold. Variations in various parameters, such as social isolation in 

small-scale, inbreeding depression, finding a spouse, predator avoidance of defence and food 

exploitation may all contribute to this effect and the problem of searching indo-individual pairs 

of low population density species is the main cause of this effect [28 - 35]. 

 Ecologists and mathematicians have since studied this effect in many different situations 

in different fields. It is assumed, in most models that the growth of cancers by cell-autonomous 



proliferation, evinced as an increase in cell number exponentially at initial and finally restricted 

by the carrying capacity [36]. However, the Allele effect shows active involvement in tumor 

growth kinetics by describing the cancer growth at low cell population densities deviates from 

the exponential growth path [37, 4, 38]. The impact on tumor growth due to the Allee effect 

through the features of complex models integrating the Allee effect and the implications of the 

presence of such an effect on the option of the most suitable therapy is described [35]. 

  Allee effect can be induced by several factors mentioned above but among them, 

potentially relevant to cancer can be a cooperative interaction mechanism [4]. A  population that 

may increase at a medium population density but decreases if the species count is either too 

small or too large describes strong Allee effect while as a weak Allee Effect represents a 

population that rises at a low population level with a decreased per capita growth rate, although 

the growth rate is still positive [39]. A very recent study identified the possible presence of a 

weak Allee effect in tumor cells. Through a series of in vitro experiments the lower density rate 

of tumor cell growth was tested with two glioblastoma cell lines, where it was observed that the 

growth rate increased with population density when the cell density was low while decreasing at 

higher density. weak Allee effect of cancer cells in cultures probably results from autocrine 

growth factors, diffuse signaling molecules formed and secreted by cells that promote the growth 

and proliferation of other cells [40, 38]. The mathematical model of a tumor with the week alley 

effect demonstrates how the intensity of the Allee effect affects the tumor size [41]. 

3. Fuzzy Theory and Applications 

 The fuzzy mathematical modeling can be used to simulate a variety of real-world 

phenomena where there are certain complexities due to inexactness and vagueness [42 - 45]. 

Firstly, the fuzzy concept in 1956, has introduced by Professor Lotfi Ahmad Zadeh, at the 

University of  Berkeley and the ambiguous and impreciseness are dealt with in fuzzy logic. In 

other words, rather than the standard true/false or 1/0 like Boolean logic, it provides an 

understanding of real-life problems dependent on degrees of fact. The concept of fuzzy is logic 

that is used to designate fuzziness rather than logic that is fuzzy. In oncology, related to tumor 

growth, fuzzy mathematical models have been used by A.M Nasarbadi in 2009 and 2010 in 

which fuzzy differential equations have been solved for tumor growth solutions [46, 47]. 

Mahdieh in 2018 described a full fuzzy mathematical model of tumor growth with the help of 



IPD equations [48]. Souza et. al. [49] surfaced out the dynamics of tumor growth using fuzzy 

theory and fuzzy neotic threshold. Further investigation into fuzzy tumor modeling can be seen 

in [50 - 54]. 

 



4. Algorithm and Architecture of the work 

This work is aimed to check the behavior of tumor growth with the involvement of the 

Allee effect in a fuzzy environment with differentiability concepts (Generalized Hukuhara 

Derivative) in the population growth models. In this work, a fuzzy mathematical model is 

developed in which fuzziness is implemented in different parameters separately and together to 

check the tumor growth behaviour. Three cases are discussed as initial condition as fuzzy, 

coefficient as fuzzy and both as fuzzy in logistic equation with Allee effect in the tumour 

microenvironment. Numerical simulation is given to support this work. The algorithm and 

architecture of the proposed work is showen in Fig.1. 

Preliminaries 

4.1. Fuzzy set 

A fuzzy set �� in ℜ is a set of ordered such that 

 �� = ���, ���(�)�/��ℜ � 

Where ���: ℜ → [0,1] and ���(�) is called the membership function for the fuzzy set and ℜ 

represents the set of real numbers. 

4.2. Triangular fuzzy number 

A fuzzy number that is represented with three points as follows �� = (��, ��, ��), (�� < �� < ��) and whose membership function is given by  

���(�) =

⎩⎪⎨
⎪⎧ 0,             � ≤ ��� − ���� − �� , �� ≤ � ≤ ���� − ��� − �� , �� ≤ � ≤ ��0,            ��ℎ������

 

is called a triangular fuzzy number[55]. 

 



4.3. �-cut  �-cut of triangular fuzzy number �� = (��, ��, ��) is given by  �� = [�� + �(�� − �), �� − �(�� − ��)], ∀� ∈ [0,1] 
4.4. Generalized Hukuhara derivative for fuzzy valued function 

The Generalized Hukuhara derivative for fuzzy valued function �: (�, �) → ℜℱ at the 

point �� is defined as  

�́(��) = lim�→� �(�� + �) ⊖� ��(��)                �                                                                         (1) 

If �́(�� ∈ ℜℱ which can be found from (4), we can say that �(�) is generalized Hukuhara 

derivative at �� 

The main theory is that if �(�) is (i)-gH differentiable at �� then  [�́(��)]� = [�́�(��, �), �́�(��, �)]                                                                               (2) 

And �(�) is (ii)-gH differentiable at �� then [�́(��)]� = [�́�(��, �), �́�(��, �)]                                                                                (3) 

Where the �-cut of �(�) is defined as [��(�, �), ��(�, �)] 

Proof: see the paper [56]. 

4.5. Characterization Theorem for Differential Equation in Fuzzy Environment 

 Consider the fuzzy initial value problem [57] as  ��(�)�� = ���, �(�)�, � ∈ [��, �]                                                                                      (4) 

With initial condition �(��) = �� 



Where �: � × � → � is a continuous fuzzy mapping and �� or the coefficient of the differential 

equation or both are fuzzy numbers. The interval may be like  [0, �] for some � > 0 or � =[0, ∞) 

Theorem: if �: � × � → � is a continuous fuzzy function such that there exists � >
0suchthat��(�, �), �(�, �)� ≤ ��(�, �)∀� ∈ �, �, � ∈ �. Then equation 1,2,3 has two different 

solutions namely (i)-gH differentiable solution and (ii)-gH differentiable solution on �. 

Proof: See paper [58] 

The parametric form of derivative of a fuzzy valued function is two types when the function is 

(i)-gH differentiable and (ii)-gH differentiable [59]. 

5. Crisp model Theory 

 Population evolution (cancer cells) are best described by Logistic population evolutionary 

models with the Allee effect as: ���� = �� �1 − ��� (� − �)                                                             (5) 

With initial condition �(��) = �� 

Where � is the number of cells, � is the total growth rate, � is carrying capacity, � is a 

time of occurrence and � is an Allee threshold. It is assumed that at time = 0, � = 10� i.e. one 

billion cells. It is also assumed that  � <  � , � �1 − ��� is per capita logistic growth rate and � �1 − ��� (� − �) is modified per capita growth rate. However, in the presence of the Allee 

effect, the per capita growth decreases below a given population size and can be negative below 

the Allee threshold (�) which eventually may extinct. 

6. Proposed model of Tumor Growth in Fuzzy Environment 

If we consider now equation (5) in the fuzzy environment then three cases arise in (5) as: 

a) Fuzziness in the initial condition 



 The transformed model using  differentiability concept, when  �(�) is (i)-gH 

Differentiable in equation (5) ���(�, �)�� = ����(�, �) �1 − ��� (�, �)� (��(�, �) − �) 

 ���(�, �)�� = ����(�, �) �1 − ��� (�, �)� (��(�, �) − �) 

 

 With initial conditions ��(��, �) = ���(�) and ��(�� , �) = ���(�) 

The transformed model using  differentiability concept, when  �(�) is (ii)-gH 

Differentiable in equation (5) ���(�, �)�� = ����(�, �) �1 − ��� (�, �)� (��(�, �) − �) ���(�, �)�� = ����(�, �) �1 − ��� (�, �)� (��(�, �) − �) 

 With initial conditions ��(��, �) = ���(�) and ��(�� , �) = ���(�) 

 

b) Fuzziness in coefficient 

 The transformed model using differentiability concept, when  �(�) is (i)-gH 

Differentiable in equation (5) ���(�, �)�� = ��(�)��(�, �) �1 − ��� (�, �)� (��(�, �) − �) 

 ���(�, �)�� = ��(�)��(�, �) �1 − ��� (�, �)� (��(�, �) − �) 

 

 With initial conditions ��(��, �) = �� and ��(�� , �) = �� 

 The transformed model using  differentiability concept, when  �(�) is (ii)-gH 

Differentiable in equation (5) 



���(�, �)�� = ��(�)��(�, �) �1 − ��� (�, �)� (��(�, �) − �) ���(�, �)�� = ��(�)��(�, �) �1 − ��� (�, �)� (��(�, �) − �) 

 With initial conditions ��(��, �) = �� and ��(�� , �) = �� 

c) Fuzziness in both initial condition and coefficient 

 The transformed model using  differentiability concept, when  �(�) is (i)-gH 

Differentiable in equation (5) ���(�, �)�� = ��(�)��(�, �) �1 − ��� (�, �)� (��(�, �) − �) ���(�, �)�� = ��(�)��(�, �) �1 − ��� (�, �)� (��(�, �) − �) 

 With initial conditions ��(��, �) = ���(�) and ��(�� , �) = ���(�) 

The transformed model using differentiability concept, when  �(�) is (ii)-gH 

Differentiable in equation (5) ���(�, �)�� = ��(�)��(�, �) �1 − ��� (�, �)� (��(�, �) − �) 

 ���(�, �)�� = ��(�)��(�, �) �1 − ��� (�, �)� (��(�, �) − �) 

 

 With initial conditions ��(��, �) = ���(�) and ��(�� , �) = ���(�) 

7. Numerical simulation 

 Tumor Growth Model including Allee Effect Along with Initial Condition and Coefficients 

are both Fuzzy 

When �(�) is (i)-gH Differentiable, the model transformed using this differentiability 

concept as 



���(�, �)�� = ��(�)��(�, �) �1 − ��� (�, �)� (��(�, �) − �) 

 ���(�, �)�� = ��(�)��(�, �) �1 − ��� (�, �)� (��(�, �) − �) 

 With initial conditions ��(��, �) = ���(�) and ��(�� , �) = ���(�) 

    Take   �(�) = ( 0.46, 0.51, 0.66) � = (0.016, 0.026, 0.031) 

     � = 2, � = 7, � � [0,1000] ���(�, �)�� = (0.016 + 0.01�)��(�, �) �1 − ��
7

(�, �)� (��(�, �) − 2) 

���(�, �)�� = (0.031 − 0.005 �) ��(�, �) �1 − ��
7

(�, �)� (��(�, �) − 2) 

With initial conditions ��(0, �) = 0.46 + 0.05� and ��(0, �) = 0.66 − 0.15� 



 

Fig. 2.  Numerical simulation for both fuzzy initial condition and coefficient when �(�) is (i)-gH 

for tumor growth model with Allee effect. For� = 0, � = 0.3, � = 0.7 the solution ��(�, �) ≤ ��(�, �) for � � [0,180] and for � = 1, both  ��(�, �) = ��(�, �)for all � and finally approaches 

to the unstable solution. This figure depicted a Simultaneous graph of the tumor growth model 

when the Initial value is greater or smaller than the Allee threshold (� = 2) and � = 7. 

When �(�) is (ii)-gH Differentiable, the model transformed using this differentiability 

concept as ���(�, �)�� = ��(�)��(�, �) �1 − ��� (�, �)� (��(�, �) − �) ���(�, �)�� = ��(�)��(�, �) �1 − ��� (�, �)� (��(�, �) − �) 

 With initial conditions ��(��, �) = ���(�) and ��(�� , �) = ���(�) 



 

    Take   �(�) = ( 0.46, 0.51, 0.66) � = (0.016, 0.026, 0.031) 

     � = 2, � = 7, � � [0,1000] ���(�, �)�� = (0.016 + 0.01�)��(�, �) �1 − ��
7

(�, �)� (��(�, �) − 2) 

���(�, �)�� = (0.031 − 0.005 �) ��(�, �) �1 − ��
7

(�, �)� (��(�, �) − 2) 

With initial conditions ��(0, �) = 0.46 + 0.05� and ��(0, �) = 0.66 − 0.15� 

 

Fig. 3.  Numerical simulation for both fuzzy initial condition and coefficient when �(�) is (ii)-

gH for tumor growth model with Allee effect. For � = 0, � = 0.3, � = 0.7 the solution ��(�, �) ≥ ��(�, �) for � � [0,200] and for � = 1, both  ��(�, �) = ��(�, �)for all � and finally 



approaches to the unstable solution. This figure also depicted a Simultaneous graph of the tumor 

growth model when the Initial value is greater or smaller than the Allee threshold(� =
2)��� � = 7. 

8. Comparative Analysis 

 

Fig. 4. demonstrates the comparative analysis of tumor modeling between crisp model and fuzzy 

model (comparison of the graph a and b) and model with or without Allee effect (comparison of 

graph b and c). 

The crisp tumor growth model(graph a) explains the growth dynamics with the 

parameters as fixed which actually may not be but vary due to some reasons such as immune 

response, presence of resources such as nutrients and oxygen, etc. However, to analyze the 

model in a realistic way, fuzzy theory with the concept of membership function plays an 

important role in revealing the tumor growth dynamics properly. By taking the initial number of 

cell population and growth rate fuzzy in tumor shown in (graph b), one could be able to 

understand the behaviour tumor at a particular degree. Hence, target treatment easily. On the 

other side, graph (b and c) shows the mechanism with or without Allee effect under fuzzy 

environment. (graph b) demonstrates that without the Allee effect which is found to be relevant 

in tumor evolution, only tumor behaviour can be analyzed generally. However, the tumor model 

with the Allee effect (graph c) makes it possible to realize the situation at the onset of cancer as 

the initial condition and growth rate greatly affect the cancer dynamics with the Allee effect. The 

Allee effect's probable function brings up a slew of new avenues for comprehending and limiting 

tumor progression. 



9. Results 

 This current work displayed the tumour growth model with Allee effect under fuzzy 

environment using Generalized Hukuhara Derivative method. The result represents the two cases 

simultaneously through both i-gH (fig.2) and ii-gH (fig.3) derivative for different values of � 

(� = 0, 0.3, 0.7 ��� 1). Case I: It is analyzed that for strong Allee effect � = 2, the cell number 

will grow and tends to the carrying capacity � and eventually attaining stability if the initial 

population is greater than the Allee threshold. Case II:  while as, the cell number will decline 

towards 0 and may exhibit extinction. if the initial population is smaller than the Allee threshold. 

Hence, this all increase or decrease in cell number to a certain threshold makes it more 

appropriate to target the tumour treatment at early stages with suitable therapy. 

 The initial population and growth rate are greatly affected by the Allee effect as in the 

case of the higher cell population, there will be potentially high cooperative interaction and vice 

versa changes the growth rate accordingly. Fuzzy membership function clearly describes the 

mechanism of cancer growth with the Allee effect to a certain possibility degree. As in fig.2,3,  

at � = 0.4, there is an increase in a cell population with an initial population greater than Allee 

threshold, and at � = 0.3, there is decreasing trend of cell population with an initial population 

smaller than Allee threshold. 

10. Discussion and Conclusion 

 For a better understanding of cancer dynamics, tumour growth modeling with the Allee 

effect in a fuzzy environment strongly confirms the occurrence of this ecological influence at the 

initiation of cancer. We explore the growth dynamics with the solution of the logistic equation 

using the derivative concept for various initial values and different growth rates. The 

involvement of Allee effect, the initial value and growth rate of the cell population have a 

significant impact on cancer dynamics. Depending on the purported grade function of the input, 

modeling imprecise initial conditions as well as coefficients around the critical with a crisp initial 

value might result in cell extinction to a certain degree. 

 The capacity to calculate and explain the nature of biological models with fuzzy 

parameter values, as well as solve all mathematical outcomes by numerical simulation with fuzzy 

parameters, demonstrates the resilience of the fuzzy from the ecological and mathematical 



perspective. Hence, it may be computed that the model's fuzziness makes the scenario more 

realistic because the parameter value cannot be known accurately. On the other side, in the 

presence of a strong Allee effect the administration of a maximum tolerated dose can be 

preferable to a therapy aiming just to control cancer in that the former can push the number of 

tumour cells below the threshold thus ensuring eradication. Hence, the occurrence of an Allee 

effect is also for the choice of the most appropriate therapy.   

 Fuzzy theory, Allee effect, and Generalized Hukuhara derivative concept successfully 

revealed the behaviour of tumor growth. With this developed model, new insights about tumor 

initiation and treatment are opened up at the true degree of freedom. Involvement of the Allee 

effect under the fuzzy environment in tumor treatment modeling will be the author’s future 

research work. Furthermore, the different derivative concepts could be used to solve the tumor 

model under a fuzzy environment as fuzzy modeling reveals the realistic situation of tumor 

growth with the Allee effect. 
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