1.World Health Organization. Global tuberculosis report 2018. Geneva: World Health Organization; 2018.
2.Ruan SY, Chuang YC, Wang JY, Lin JW, Chien JY, Huang CT, et al. Revisiting tuberculous pleurisy: pleural fluid characteristics and diagnostic yield of mycobacterial culture in an endemic area. Thorax. 2012;67(9):822–7.
3.Porcel JM. Advances in the diagnosis of tuberculous pleuritis. Ann Transl Med. 2016;4(15):282.
4.Haranaga S, Hirai J, Higa F, Miyagi K, Astumi E, Tateyama M, et al. A case of pleural tuberculoma with new pulmonary infiltration during anti-tuberculosis therapy. Kekkaku. 2013;88(11):735–8 (in Japanese).
5.Hwang SM, Rho JY, Yoo SM, Jung HK, Cho SH. Atypical pleural tuberculosis presenting as an isolated pleural tuberculoma. Acta Radiol. 2012;53(1):49–52.
6.Okamoto H, Mochizuki Y, Nakahara Y, Kawamura T, Sasaki S, Morimoto A,et al. A case of pleural tuberculoma with intra-pulmonary invasion during anti-tuberculosis therapy. Kekkaku. 2011;86(8):757–61 ( in Japanese).
7.Takao T, Hanehira T, Zenke Y, Shikama J, Igei H, Inoue E. A case of multiple and metachronous pleural tuberculomas during the course of anti-tuberculous chemotherapy and follow-up of a caseous pneumonia. Nihon Kokyuki Gakkai Zasshi. 2010;48(1):55–9 (in Janpanese).
8.Tang SJ, Xiao HP, Chen G, Liu YD, Fan L, Zhang Q, et al. Clinical, pathological and radiological characteristics of 83 cases of pleural tuberculoma. Zhonghua Jie He He Hu Xi Za Zhi. 2009;32(4):262–5 (in Chinese).
9.Chung CL, Chen CH, Sheu JR, Chen YC, Chang SC. Proinflammatory cytokines, transforming growth factor-beta1, and fibrinolytic enzymes in loculated and free-flowing pleural exudates. Chest. 2005;128(2):690–7.
10.Aleman C, Alegre J, Monasterio J, Segura RM, Armadans L, Angles A, et al. Association between inflammatory mediators and the fibrinolysis system in infectious pleural effusions. Clin Sci (Lond). 2003;105(5):601–7.
11.Philip-Joet F, Alessi MC, Philip-Joet C, Aillaud M, Barriere JR, Arnaud A, et al. Fibrinolytic and inflammatory processes in pleural effusions. Eur Respir J. 1995;8(8):1352–6.
12.Mahmood MQ, Reid D, Ward C, Muller HK, Knight DA, Sohal SS, et al. Transforming growth factor (TGF) beta1 and Smad signalling pathways: A likely key to EMT-associated COPD pathogenesis. Respirology. 2017;22(1):133–40.
13.Zuccarini M, Giuliani P, Buccella S, Di Liberto V, Mudo G, Belluardo N, et al. Modulation of the TGF-beta1-induced epithelial to mesenchymal transition (EMT) mediated by P1 and P2 purine receptors in MDCK cells. Purinergic Signal. 2017;13(4):429–42.
14.Wang Q, Lu W, Yin T, Lu L. Correction to: Calycosin suppresses TGF-beta-induced epithelial-to-mesenchymal transition and migration by upregulating BATF2 to target PAI–1 via the Wnt and PI3K/Akt signaling pathways in colorectal cancer cells. J Exp Clin Cancer Res. 2019;38(1):288.
15.Wang Q, Lu W, Yin T, Lu L. Calycosin suppresses TGF-beta-induced epithelial-to-mesenchymal transition and migration by upregulating BATF2 to target PAI–1 via the Wnt and PI3K/Akt signaling pathways in colorectal cancer cells. J Exp Clin Cancer Res. 2019;38(1):240.
16.World Health Organization. Treatment of tuberculosis: guidelines–4th ed. 2009.
17.The Tuberculosis Coalition for Technical Assistance. International standards for tuberculosis care (ISTC). The Hague: Tuberculosis Coalition for Technical Assistance,2006.
18.Barbas CS, Cukier A, de Varvalho CR, Barbas Filho JV, Light RW. The relationship between pleural fluid findings and the development of pleural thickening in patients with pleural tuberculosis. Chest. 1991;100(5):1264–7.
19.Tseng YL, Chang JM, Liu YS, Cheng L, Chen YY, Wu MH,et al. The Role of Video-Assisted Thoracoscopic Therapeutic Resection for Medically Failed Pulmonary Tuberculosis. Medicine (Baltimore). 2016;95(18):e3511.
20.Subotic D, Yablonskiy P, Sulis G, Cordos I, Petrov D, Centis R, et al. Surgery and pleuro-pulmonary tuberculosis: a scientific literature review. J Thorac Dis. 2016;8(7):E474–485.
21.Giller DB, Giller BD, Giller GV, Shcherbakova GV, Bizhanov AB, Enilenis, et al. Treatment of pulmonary tuberculosis: past and present. Eur J Cardiothorac Surg. 2018;53(5):967–72.
22.Ruiz E, Alegre J, Aleman C, Vizcaya S, Armadans L, Segura RM, et al.
Residual pleural thickening in tuberculous pleuritis. Associated factors]. Arch Bronconeumol. 2000;36(9):506–9 (in Spanish).
23.Kunter E, Ilvan A, Kilic E, Cerrahoglu K, Isitmangil T, Capraz F, et al. The effect of pleural fluid content on the development of pleural thickness. Int J Tuberc Lung Dis. 2002;6(6):516–22.
24.Darooei R, Sanadgol G, Gh-Nataj A, Almasnia M, Darivishi A, Eslaminejad A, et al. Discriminating Tuberculous Pleural Effusion from Malignant Pleural Effusion Based on Routine Pleural Fluid Biomarkers, Using Mathematical Methods. Tanaffos. 2017;16(2):157–65.
25.Haro M, Ruiz Manzano J, Morera J, Gallego M, Manterola JM, Ribas J. Analysis of 90 cases of pleural tuberculosis in relation to adenosine deaminase levels. Med Clin (Barc). 1997;108(12):452–4 (in Spanish).
26.Krenke R, Safianowska A, Paplinska M, Nasilowski J, Dmowska-Sobstyl B, Bogacka-Zatorska E, et al. Pleural fluid adenosine deaminase and interferon gamma as diagnostic tools in tuberculosis pleurisy. J Physiol Pharmacol. 2008;59 Suppl 6:349–60.
27.Gerogianni I, Papala M, Tsopa P, Zigoulis P, Dimoulis A, Kostikas K, et al. Could IFN-gamma predict the development of residual pleural thickening in tuberculous pleurisy? Monaldi Arch Chest Dis. 2008;69(1):18–23.
28.Seiscento M, Vargas FS, Antonangelo L, Acencio MM, Bombarda S, Capelozzi VL, et al. Transforming growth factor beta–1 as a predictor of fibrosis in tuberculous pleurisy. Respirology. 2007;12(5):660–3.
29.Denkinger CM, Kalantri Y, Schumacher SG, Michael JS, Shankar D, Saxena A, et al. Challenges in the development of an immunochromatographic interferon-gamma test for diagnosis of pleural tuberculosis. PLoS One. 2013;8(12):e85447.