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Abstract

Background: Medical evidence collected from new observational studies can sometimes significantly
alter our understanding of disease incidence and progression. This requires efficient and accurate
calibration of disease models to help quantify the differences between observed cohorts. However, in
model calibration, it is common to encounter overfitting with many model parameters but few
observational outcomes. Additionally, the difficulty in evaluating fitting performance is significant due to
a large degree of outcome variation and expensive computations for even a single simulation run.

Methods: We developed a two-phase calibration procedure to address the above challenges. As a proof-
of-the-concept study, we verified the procedure with a discrete-event-simulation-based study on sex-
specific colorectal neoplasia development. For the study, we estimated eight disease model parameters
that govern colorectal adenoma incidence risk and growth rates at three distinct states: non-advanced,
advanced adenoma, and adenoma becoming cancerous. For the calibration, we defined the likelihood
measure by a relative weighted sum-of-squares difference between the three actual prevalence values
reported in a recent publication and those predicted by a discrete-event colorectal cancer simulation. In
phase | of the calibration procedure, we performed a series of low-dimensional sampling-based grid
searches to identify reasonably good candidate parameter designs. In phase Il, we performed a local
search-based approach to further improve the model fit.

Results: Overall, our two-phase procedure showed better goodness of fit than a straightforward
implementation of the Nelder-Mead algorithm, yielding a 10-fold reduction in calibration error (0.0025 vs.
0.0251 for an all-white mixed-family-history male cohort on the likelihood measure defined above).
Further, the two-phase procedure was more effective in calibrating a validated simulation model for a
female cohort than a male cohort. Finally, in phase Il, performing local search on each of the parameters
sequentially is more effective than searching the entire parameter space simultaneously.

Conclusions: The proposed two-phase calibration procedure is effective for estimating computationally
expensive stochastic dynamic disease models. In addition, initial parameter search range truncation and
sensitivity analysis on various parameters can be computationally cost-effective.

Background

Colorectal cancer (CRC) is the third most commonly diagnosed cancer in the United States [1]. In 2017,
there were roughly 135,000 new CRC cases, with 45% of men and 39% of women younger than 65 at the
age of diagnosis [2]. The disease starts with non-cancerous polyps growing in the walls of the colon and
rectum. Then the disease invades other parts of the body through lymph and blood vessels. The five-year
survival rate is 90% when cancer is confined to the colon and rectum, whereas the five-year survival rate
declines to 12% when CRC has spread to distant locations[3]. Hence, for CRC prevention and treatment, it
is important to detect precancerous polyps early before they evolve to cancerous polyps. Colonoscopy is
the screening test that can most accurately detects polyps. In addition, during colonoscopy, precancerous
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adenomas can be removed, which contributes to CRC incidence reduction. However, colonoscopy is not
universally accepted among the screen-eligible population. And while considered cost-effective, it is the
most costly screening test too. These drawbacks give rise to the need for alternative screening tests,
including stool-based tests (for occult blood with or without DNA mutations), flexible sigmoidoscopy, and
virtual colonoscopy, which are less costly and less invasive. However, these methods are much less
accurate than colonoscopy. The U.S. Preventive Services Task Force recommend these tests for CRC
diagnosis with some distinction; see[4] for more detail.

On the other hand, there is a need to improve the prediction of precancerous polyp progression so that
CRC diagnostic screening and surveillance may be better targeted to those at high-risk for rapid
progression. In clinical practice, patients are further classified by detection of advanced precancerous
polyps, which include adenomas and sessile serrated polyps = 10 mm and adenomas with villous
histology or high-grade dysplasia [5], [6]. Individuals with an advanced adenoma are more likely to
develop another advanced adenoma and CRC, as are persons with multiple non-advanced adenomas (4—
6 mm)[7]. Thus, with improved prediction, we can conduct population-wide surveillance more effectively
and cost-effectively, e.g., having differentiated risk of subsequent risk for advanced neoplasia
(combination of advanced precancerous polyps and CRC).

It is well-established that sex plays an important role in risk for both advanced precancerous polyps and
CRC. More men than women are diagnosed with CRC. While men and women have similar genetic
predispositions in terms of adenoma-carcinoma sequence, there are substantial differences in cancer
incidence between the two sexes [8], e.g., the American Cancer Society reported a 30% higher annual
incidence rate in men than women in the United States [1]. Murphy et al. (2011) [9] found that the rates of
finding cancer were higher for men than women at almost all anatomic subsites, based on data from the
U.S. National Cancer Institute’s Surveillance, Epidemiology, and End Results (SEER). Several studies
suggested that female patients diagnosed with CRC have significantly longer survival rates than male
patients [10], [11]. The sex disparities have been associated with exposure to behavioral risk factors,
including smoking [12], red-meat diet [13], and other lifestyle-related risk factors [14]-[16].

Furthermore, men have a higher prevalence of adenomas than women by a ratio of nearly 2:1. Ferlitsch et
al. (2011)[17] reported that adenomas prevalence was higher among men than women by an absolute
difference of 10%, through a study of more than 44 thousand participants of a national screening
colonoscopy program in Austria. Regula et al. (2006)[18] reported that advanced precancerous polyp was
found with a significantly higher percentage in men than women, from a study of more than 50,000
Polish participants. Brenner et al. (2013)[19] reported that adenoma prevalence (both advanced and non-
advanced) was substantially higher in men than women for different age groups, from an observational
study of more than 3.6 million German participants.

In summary, it is evident that men and women differ in the risk of adenoma progression. However, the
current recommendations on diagnostic screening and surveillance have not taken the sex difference into
account. Thus, our objective here is to quantify age- and sex-specific colorectal adenoma progression
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with a computational model, which will in turn, help to inform the optimal age for each sex to initiate
colonoscopy testing. In this paper, we conduct stochastic modeling of age- and sex-specific dwell
durations at four states (i.e., adenoma before initiation, non-progressive non-advanced adenoma,
progressive non-advanced adenoma, and advanced adenoma). Since clinical data does not provide
necessary information about age- and sex-specific adenoma progression, the above unknown quantities
cannot be directly modeled from clinical data using conventional statistical methods such as regression.
In response, we have adapted a discrete-event simulation model and performed model calibration to
estimate progression parameters against sex-specific prevalence data on key disease stages, i.e., non-
advanced adenoma, advanced adenoma, and adenoma becoming cancerous.

Only a handful number of papers in the current CRC disease modeling literature have reported their model
calibration work in detail. In several studies [20]-[22], the authors conducted model calibration to
estimate unobservable disease progression parameters against benchmark statistics (e.g., national CRC
incidence). More recently, Erenay et al. (2011) [23] developed an individually-based event-driven state
transition simulation that mimics the natural history of metachronous colorectal cancer (MCRC) for a 5-
year period following the treatment of primary CRC. The model comprises five states, namely polyp free,
polyp, MCRC, metastatic-MCRC, and MCRC-related death. The authors estimated six unknown parameters
of the natural history of MCMC through calibrating the simulation mentioned above against two
calibration targets, 5-year MCRC incidence and mortality rate, in principle of least sum-of-squared error of
the two calibration targets. For the calibration, the authors simply ran the simulation model exhaustively
with every possible combination of the unknown parameters and selected those with simulated outputs
matching the benchmark statistics of a well-defined patient cohort, derived from the SEER database.
Rose et al. (2014) [24] proposed an individually-based state transition model consisting of two interacting
submodels: a continuous-time disease-progression submodel and a discrete-time Markov submodel for
surveillance and retreatment. The key components on disease progression are recurring transitions to
unresectability and to the point of symptom onset, either of which is determined by the transition timing
and modeled with an exponential distribution. The author estimated seven unknown parameters of
disease progression through calibrating the simulation mentioned above against seven observable
outcomes, reported by Pietra et al. (1998) [25]. The authors developed an efficient calibration procedure
that consists of several rounds of calibration with increasingly narrowed candidate parameter sets and
against a series of specific calibration targets.

In this research, we adapted the Vanderbilt-NC State (V/NCS) simulation model, which is a discrete-event-
based stochastic model emulating the age- and sex-dependent growth of each adenoma. To calibrate this
computationally expensive simulator, we used a two-phase approach to estimate the values of eight
unknown model parameters over an ample design space. The first phase used sampling to identify
reasonably good candidate parameter designs; whereas the second phase used local search to further
improve the model fitting. We set the sum of squared deviation of the prevalence values as the loss
function to minimize and used benchmark statistics of three disease states (e.g., non-advanced
adenoma, advanced adenoma, and adenoma becoming cancerous) extracted from a German cohort

study by Brenner et al. (2013) [19]. Brenner and colleagues analyzed national screening colonoscopy
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registry data from nearly 3.6 million German participants. To facilitate the calibration, we relied on subject
matter expertise to select both model parameters and target responses for the calibration procedure. To
efficiently adapt the local search idea, we compared two variants of the optimization procedure (more
axial based vs. globally). At the end, we quantified the sex-specific adenoma-carcinoma sequence for
different age groups.

Our approach may be applied to calibrating “black-box” disease models with many unknown input
parameters, wide value ranges, and multiple target outcomes. Our main contributions are 1) development
of an efficient calibration procedure for complex discrete-event disease simulation models; and 2)
quantification of age-dependent sex differences on the adenoma-carcinoma sequence based on
empirical observations.

Methods
Overview of approach

In this study, we used the Vanderbilt-NC State (V/NCS) discrete-event microsimulation model developed
by researchers at Vanderbilt and North Carolina State University [20].

The V/NCS model mimics the natural history of colorectal neoplasia for each hypothetic entity in the
cohort. In addition, the model can be used to evaluate colorectal neoplasia screening strategies. One can
specify the input cohort by sex, birth year, and family history of each simulated entity. Then for each
entity, discrete events are simulated along the adenoma-carcinoma sequence. In the V/NCS model, events
trigger changes at discrete times to the states of each adenoma along the progression pathways and the
hypothetic person as a whole. These events lead to the collection of statistics and the creation of new
events. Events that are relevant to our work include new person creation, natural death, cancer death, non-
advanced adenoma incidence, advanced adenoma incidence, cancer incidence from an adenoma. Other
events in the model include regional cancer, distance cancer, cancer symptomatic, terminal cancer,
colonoscopy, recover from cancer, terminal cancer charge, and age-based utility. For more information,
we refer to Roberts et al. (2007) [20] .

The purpose of this study is to estimate a set of model parameters that specify four quantities of cohort
heterogeneity, which are used to govern the progression of each adenoma created and consequently the
natural history of colorectal neoplasia. These quantities cannot be directly observable in an observational
study and sex-specific estimates of these parameters are not available to simulation models currently
available in the literature. Further, it is somewhat unethical to follow the continued progression of an
adenoma once it is observed in clinical practice. Instead, polypectomy is recommended, and the natural
progression is halted. Therefore, we resorted to calibrating the V/NCS model against prevalence data
from a published study of Brenner et al. (2013)[19]. While the V/NCS model offers sufficient fidelity to the
adenoma-carcinoma sequence and lends flexibility on candidate parameter design selection with a user-
friendly interface, we faced a severe computational burden. It took 40—50 minutes to do one simulation
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run with a cohort size of 10,000 on a regular personal computer. In response, we developed an efficient
two-phase calibration procedure.

Disease Progression Modeling In The V/ncs Model

CRC begins as a non-visible, benign adenoma. Once such an adenoma appears, it transitions to the next
stage, depending on the pathway to cancer it follows. The V/NCS model includes three types of
progression (i.e., pathways to cancer): non-progressive (i.e. #1 in Fig. 1), slowly progressive (#2), and
immediately progressive (#3). The first type is non-progressive. An adenoma of this type has no chance
ever to become cancerous, but can grow as a benign adenoma (i.e., advanced adenoma) to match the
data on the portion of adenomas that can be detected. The second type is progressive. A non-advanced
adenoma of this type can either become an advanced adenoma defined by its histology or become
cancerous directly, with the former being more common. The transition of this type is then modeled as a
competing process between the above two possibilities. The third type of progression is immediately
progressive, which implies that an adenoma with this type immediately progresses to becoming
cancerous upon its initiation. Regardless of the second or third type, as long as an adenoma becomes
cancerous, it follows the usual CRC pathway (i.e., from pre-clinical phase to clinical phase and through
cancer stages).

In the V/NCS model, there are several key assumptions on adenoma incidence and progression. First, to
each individual, the incidence and progression of each adenoma are independent of other adenomas.
Second, both adenoma incidence rate and progression time are influenced by an individualized risk
(Liebsch 2003) [26]. Obviously, family history (i.e., presence of CRC in first-degree relatives) is an
important characteristic affecting the risk. Sex and race, to a lesser degree, also affect the risk. Specific
risks to individuals may further include factors like fibrous diet, lack of exercise, familiar adenomatous
polyposis, and heredity nonpolyposis CRC, but the exact effect of these factors is not known and
therefore not included in the model. The risk is modeled with a JohnsonSB distribution for individuals
with or without family histories. In both cases, the JohnsonSB distribution has a minimum of 0.0 and a
maximum of 1.0, which implies the absolute individual risk on a scale between 0.0 and 1.0. Further, both
distributions are highly positively skewed with a mode close to zero, and a mean of 0.11 for individuals
with family history and a mean of 0.056 for individuals without any family history. These additional
specifications match with the published research findings through a meta-analysis (Johns and Houlston
2001) [27].

In addition to the risk adjustment, the baseline adenoma incidence follows a non-homogenous Poisson
process with the incidence rate modeled by an age-dependent piecewise linear function. The baseline
time taken to progress to an advanced adenoma either from a non-progressive non-advanced adenoma
(i.e., NP_NON) or from a slowly progressive non-advanced adenoma (i.e., P_LNON) follows a JohnsonSB
distribution with a minimum of 0.0 and a maximum of 60.0. The baseline time for advanced adenoma
becoming cancerous also follows a JohnsonSB distribution with a minimum of 0.0 and a maximum of
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60.0. Given that an adenoma does not occur likely before the age of 40, the maximum of 60.0 implies the
longest allowable time for making a transition is 60 years and thus gives sufficient time-lapse during an
individual’s lifetime. For the above three quantities, the actual transition time is further adjusted by the
personal risk.

We list several additional assumptions on adenoma progression and cancer incidence in the V/NCS
model that are only indirectly relevant to our calibration work as follows. First, the distribution of
adenoma to progression type is dependent upon age. As the body repair mechanism deteriorates, the
ability of the body to deal with abnormal cells begins to decline. Thus, it is assumed that the percentage
of progressive adenomas increases as a person's age increases. Second, for immediately progressive
adenomas, they become cancerous as soon as they are initiated. Since these adenomas progress
immediately, it is further assumed that they then only take no more than 10 years until cancer becomes
symptomatic. The actual duration follows a JohnsonSB distribution as well. Third, the time to cancer
incidence follows a JohnsonSB distribution with a mean of 20 years and a mode of 22 years.

V/NCS model assumptions on cancer staging and mortality include (1) regional and distance metastasis
rates are independent processes; (2) pre-clinical cancer stage progression and symptom development are
lesion-specific and independent of personal risk; (3) times to clinical cancer at the regional and distance
stages follow Johnson SB distributions; and (4) rate of progression of death, and potential survival (from
CRC) is determined by cancer stage at the time of symptoms.

V/ncs Model Adaptation For The Calibration

With the V/NCS model platform, one can input a realistic population that matches the U.S. census or a
hypothetic population of any arbitrary size, and enter a specific simulation start year. The simulation can
then trace colorectal neoplasia development of the cohort to a pre-determined end year. One benéeficial
feature of the V/NCS model platform is that it generates a trace statement that summarizes a sequence
of time-stamped events capturing disease development. To process the trace statement, we developed a
procedure to extract all the events that take place in the input population (see Fig. 2). For each individual,
we created a state transition chart to record the time at which his/her events occur. By following each
individual through the simulation duration, one can characterize the health state (i.e., NOV, ADV, and CRC)
of each individual at any specific point. The state NOV includes individuals who have had at least one
P_NON, NP_NON, or at least one adenoma that immediately progresses to cancer, but no advanced
adenoma. The state ADV includes those individuals who have had at least one advanced adenoma but
none has become cancerous. The state CRC includes those individuals who have had cancerous
adenomas or have developed CRC. For each of the five age groups (54-59, 60-64, 65-69, 70—74 and
75-79), we then counted its population at the end of the simulation horizon (i.e., at a particular year) and
calculated the portion of the corresponding population subgroup in each of the three states as the three
corresponding prevalence values.
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To adapt the V/NCS model for our calibration study, we made further specifications on the model
calibration. First, we set an all-white mixed-family-history cohort in the V/NCS model. Second, we set the
base incidence of non-visible adenomas to the same as in the original version of the V/NCS model. Note
that there is no evidence showing significant differences in the division of having family history and not
in an all-white cohort in the US and the Germany cohort studied by Brenner et al. (2014) [28], which is
believed to be predominantly white. Third, we assumed that the time for some non-advanced progressive
adenoma (i.e., P_NON) directly becoming cancerous does not change from the original version of V/NCS
to our work. As it is quite rare for an adenoma to follow this pathway, we did not expect this fixation
affects the sex-based comparative results significantly.

Consequently, our calibration efforts were focused on quantifying the following random variates: (1)
individual risk; (2) if an adenoma created is progressive, its baseline dwell duration in the non-advanced
adenoma state before transitioning to the advanced precancerous polyps state (termed transition time of
P_NON to ADV); (3) if the adenoma created is non-progressive, its baseline dwell duration in the non-
advanced adenoma state before transition to the advanced adenoma state (termed transition time of
NP_NON to ADV); and (4) if the adenoma is in the advanced adenoma state, its baseline dwell duration
before transitioning to the cancerous adenoma state (termed transition time of ADV to CRC). Further, as
stated earlier, each of the above four random variables is modeled with a JohnsonSB distribution. A
JohnsonSB distribution is a four-parameter distribution family where the shape and location of the
distribution are governed by two model parameters 6 and y. The other two parameters, minimum and
maximum, specify the scale. For these four random variates, we assumed the minimum and maximum to
be unchanged with the Germany cohort. Hence, for either sex, we had eight calibration variables, i.e., four
&'s and ys, to estimate based on three system responses, namely sex-specific age-group-aggregate NON,
ADV, and CRC percentages.

A Two-phase Calibration Procedure

We took a two-phase approach for the model calibration. In phase | (a preliminary phase), we performed a
series of low-dimensional searches on subsets of model parameters (i.e., a pair of 6 and y) in an ad-hoc
manner. We conducted these searches progressively against varied calibration targets that are aggregate
over age groups. The purpose was to identify a set of promising values on each model parameter, which
would serve as the multiple starting points (parameter designs) in phase Il. The sequence of these
searches and design inclusion criteria were developed from discussions with a domain expert. In phase |,
we viewed the model calibration task as a nonlinear optimization problem and performed the Nelder-
Mead algorithm (simplex search algorithm), one of the best-known algorithms for multidimensional
unconstrained optimization without derivatives. Given the high-dimensionality of the “black-box”
optimization problem, we explored two variants of the search procedure, namely one-shot globally over
the entire model parameter space and sequentially based on interconnections in subsets of model
parameters. Design of the loss functions was consulted with the domain expert as well. As for our
calibration targets, we used age-specific prevalence data from Brenner et al. [18]. More specifically, we
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used the prevalence of both men and women in five age groups (54-59, 60-64, 65-69, 70-74 and 75—
79).

Phase | (Preliminary Phase) — Identify promising initial
search points for Phase Il.

In our study, it is computational challenging to quantify the joint influence of the eight input model
parameters (calibration variables) on the fifteen age-group-specific system responses. We thus performed
low-dimensional searches on the four pairs of model parameters over respective pre-specified search
ranges. Note that the original version of the V/NCS model was previously calibrated against the SEER
(Surveillance, Epidemiology and End Results Program) data for U.S. populations. We consulted the
domain expert to finalize each search range, which is centered at the previously calibrated value. Through
our preliminary simulation analysis, we observed that in each pair of 6 and y, the prevalence values are a
lot more sensitive to changes in 6 than in y. Thus, we set a larger range for each 6 than the paired y. We
divided the search subspace of (&, yp) with a five-by-five grid and divided each of 64, y;, 8,, vs, 63, y5 With

ten even intervals.

Basically, we followed the adenoma-carcinoma sequence to calibrate the model parameters progressively,
i.e., first adenoma progression propensity, then transition from NON to ADV, and finally transition from
ADV to CRC. In the first step, we performed a grid search on (&, y;) and fixed the other parameter values
as it is first to mimic the adenoma progression risk distribution of the simulated cohort. Our calibration
targets are all three prevalence values over age groups. At the end of this step, we identified promising
(69, vo) values such that all three predicted prevalence values are reasonably close to the observations
(less than 15% relative error). Next, we fixed (&, yp) values to the identified ones and performed
orthogonal sampling in the subspace formed by (64, ;). The use of a sampling-based search as opposed
to a grid search is because multiple promising (&g, ¥;) values were identified and thus using all of them
for ensuing search would be computationally expensive. Our calibration targets are aggregate prevalence
values of NON and ADV over age groups. We then followed the same idea to search in the subspace
formed by (6,, y,) and again used the same calibration targets. We perturbed (6,, y4) first because there

were many more transitions from P_NON to ADV than from NP_NON to ADV. At the end of this step, we
identified promising (64, y;) and (6,, y») designs such that both predicted prevalence values (i.e., at states

NON and ADV) were further closer to the observations (less than 10% relative error). Finally, we fixed (&,
Yo), (61, v1), (65, v») to be the identified values and performed orthogonal sampling in the subspace
formed by (85, y3). Our calibration targets are aggregate prevalence values of NON, ADV, and CRC over
age groups. At the end of this step, we identified promising (8, y3) designs such that all three predicted
prevalence values fall in a close range of the target values (less than 10% relative error on NON, less than
10% relative error on ADV, and less than 5% relative error on CRC).
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For any identified parameter values, we used a built-in interactive visual tool to graph the corresponding
Johnson SB distributions (mainly their shapes and locations) and checked them with our domain expert.
We then discarded some of the parameter designs according to the domain expert’'s suggestions.

Phase 2. Local-Search based Nonlinear Optimization

In this phase, we employed the Nelder-Mead algorithm for gradient-free nonlinear optimization to further
improve the model fitting. We set the parameter designs identified on Phase 1 as the starting points for
the Nelder-Mead algorithm. We used the weighted sum squared of the relative errors on the three
aggregate prevalence values as a similarity measure and the objective function of the unconstrainted
nonlinear optimization problem (i.e., loss function of the calibration variables). Through consulting with
our domain expert, we assigned a larger weight to the set of CRC similarities than to the set of ADV
similarities and the set of NON similarities.

Considering the resultant optimization problem is computationally expensive due to the fact that it takes
a long time to evaluate just one parameter design, we designed two search paths that differ by the search
space chosen along the solution process. In the base case algorithm, we considered an 8-dimensional
search space at any moment of the solution (i.e., all eight model parameters are possible to be varied).
We termed this strategy the “full-space local search strategy.” As an alternative option, we considered four
2-dimensional subspaces progressively (i.e., (6, o) first, then (6;, v4), then (6,, y,), then (63, y3)). We
termed this strategy the “sequential local search strategy.” When we performed Nelder-Mead in one
subspace, other were fixed at the initial values. The above order used in this alternative algorithm
followed the same idea as in phase |. That is, the system responses are more sensitive to (&g, yp), than

(64, v7), than (6,, y,), and finally (8s, y3).

Results

We set the simulated cohort in the V/NCS model to be either a population of 1000 white males or females
with no family history and born in 1949. In this way, we were able to utilize additional parameters
previously made available in the V/NCS model, e.g., mortality rate. We first examined the efficiency of our
two-phase approach in comparison with the straightforward execution of the Nelder-Mead algorithm. For
any implementation of the Nelder-Mead algorithm, we simply called the corresponding Matlab function
and ran it to natural termination with default algorithm parameter settings. To make fair comparisons, we
also set the same two search strategies, i.e., full-space and sequential. We report the comparative results
in Table 1.

Overall, our two-phase approach showed better goodness of fit than the straightforward Nelder-Mead
implementation. For example, both with the sequential search strategy for Nelder-Mead, the two-phase
approach yielded a loss function value of 0.0025 whereas the straightforward calibration with Nelder-
Mead yielded a loss function value of 0.0251 (ten-fold reduction). Furthermore, when comparing the two
local search strategies, the full-space search strategy yielded a lower loss function value than the
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sequential search strategy (male, 0.0025 vs. 0.0056; female, 0.0005 vs. 0.0008). Finally, these preliminary
results suggested that the two-phase procedure was more effective in calibrating the V/NCS model for a
female cohort than a male cohort.

Table 1
Calibration Strategy Comparison

Male Female

Sequential Full-space Sequential Full-space
Direct local search 0.0251 0.0465 0.0230 0.2969
Two-phase approach  0.0025 0.0056 0.0005 0.0008

With the above result, we conclude that our two-phase procedure with the sequential local search strategy
is more effective. We next specified the number of simulation replications to be 10 to ensure the
statistical confidence on stochastic dominance for each comparison. We collected prevalence statistics
for five different age groups in the range of 55 to 79. Table 2 shows the percentage of people with
advanced adenoma for men and women within each of the five age groups. Our results show that the
model with calibrated variables underestimated male advanced adenoma prevalence and overestimated
female advanced adenoma prevalence for younger age groups, whereas it overestimated male advanced
adenoma prevalence and underestimated female advanced adenoma prevalence. On the other hand, the
comparative results on the prevalence of adenomas having become cancerous were just the opposite
except for the age group 55 to 59 years. Overall, our results supported our calibration of the V/NCS
simulation for sex-specific colorectal neoplasia development modeling.
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Table 2
Age-specific Prevalence for Advanced Adenoma and Cancerous Neoplasia

Percentage (%) people with advanced Percentage (%) people with cancerous
adenoma neoplasia
Male Target Female Target Male Target Female Target
55— 6.25 6.6 3.85 3.50 0.73 0.60 0.27 0.30
59
60— 7.63 8.2 498 4.50 0.82 1.00 0.56 0.50
64
65— 10.41 9.2 5.38 5.30 0.85 1.30 1.03 0.70
69
70— 11.31 9.9 5.76 6.40 2.20 1.90 0.92 1.10
74
73— 13.17 10.4 6.71 6.80 2.62 2.50 1.44 1.60
7

Discussion And Conclusions

In this paper, we introduce an efficient and effective two-phase calibration procedure approach to
estimate the natural history of unobservable CRC parameters. This work showcases an essential step in
assessing population-level cost and effectiveness of CRC screening strategies for a population whose
prevalence data were recently acquired. We took into consideration the adenoma-carcinoma sequence to
calibrate the model parameters progressively, i.e., first adenoma progression propensity, then transition
from NON to ADV, and finally transition from ADV to CRC. Moreover, we quantified the sex-specific
adenoma-carcinoma sequence among different age groups based on observations from a large cohort
study. Our results demonstrate that the combined first phase involving a direct local search and nonlinear
optimization methods in the second phase increases the accuracy of model-based parameter estimation.
In addition, the proposed model-based parameter estimation approach is a general procedure that could
be extended to other disease model calibration problems that involve the adaptation of some robust
simulation platform (e.g., the V/NCS).

While we developed an efficient model-based parameter estimation procedure, our study has several
inherent limitations. First, the cost of the simulation is very expensive; therefore, we used a smaller cohort
size, which is not comparable to the cohort studied by Brenner et al. (2014) [28]. Second, it is possible
that when using Nelder-Mead in phase I, the algorithm converged on a local minimum and not a global
minimum. Third, the use of calibration targets estimated from the German cohort may not reflect CRC
natural history characteristics in the U.S., which can be crucial to further cost-effectiveness analysis on
screening strategies for U.S. populations. Fourth, underweighted endpoints implemented in the objective
function may result in biased calibration outputs, thus undermining the validity of our parameter
estimation. Fifth, while the progressive calibration procedure could bring valuable insights into efficient
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calibration for tailored natural history models, due to the limited access to the V/NCS model, some stages
of the calibration procedure were based on empirical evidence and a few hunches.
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CRC Preclinical Pathway. (The three progression types are labeled with #1, #2, and #3 with the three
thicker solid lines on top. The type distribution is dependent upon a personalized risk influenced by
JohnsonSB(61, y1, 0, 1). The three dwell durations are labeled with a, b, and c. The three corresponding
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