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Abstract

Purpose
We aimed to, for the first time, investigate the interplay of simultaneous functional MRI (fMRI) and FDG
PET using a randomized self-control protocol on an integrated PET/MR.

Materials and methods
24 healthy volunteers underwent PET/MR scan 30 to 40 minutes after the injection of FDG. A 22-minute
brain scan was separated into MRI-off (without fMRI pulsing) and MRI-on modes (with fMRI pulsing) with
each one lasting for 11 minutes. We calculated the voxel-wise fMRI metric (ReHo, ALFF, fALFF and DC),
resting networks, relative standardized uptake value ratios (SUVr), Patlak Ki and regional cerebral
metabolic rate of glucose (rCMRGlu) maps. Paired two-sample t-tests were applied to assess the
statistical differences between SUVr, Ki, correlation coefficients of fMRI metrics and rCMRGlu between
MRI-off and MRI-on mode, respectively.

Results
Voxel-wise whole brain SUVr in MRI-off mode and MRI-on mode revealed no statistical difference, while Ki
was significantly elevated in the whole brain (P༜0.05) during fMRI scan. Task-based group ICA revealed
that the most active network components derived from combined MRI-off and MRI-on static PET images
were frontal pole, superior frontal gyrus, middle temporal gyrus and occipital pole. High correlation
coefficients were found among the four-fMRI metrics with rCMRGlu in MRI-off and MRI-on mode (P༜0.05).
The highest correlation coefficients between rCMRGlu and all fMRI metrics were found in the visual
network (R, 0.523 ± 0.057) and default network (R, 0.461 ± 0.099).

Conclusions
Static PET quantitation SUVr as an indicator of the accumulative effect of FDG update post-injection
does not exhibit immediate change between MRI-on and MRI-off modes. Dynamic PET quantitation Ki is
instantly elevated during MRI-on mode due to the additional impact of MRI sequence on imaging
subjects. Network connectivity analysis also demonstrated intermediate modulation of brain function in
MRI-on mode as compared to MRI-off mode.

Introduction
PET with 18F-fluorodeoxyglucose (FDG) has been regarded as the gold-standard technique to quantify
brain energy metabolism. Despite standardized uptake values (SUV) reflecting regional FDG uptake,
intrinsic networks derived from FDG-PET using independent-component analysis (ICA) could reflect long-
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distance metabolic brain connections. Based on this data-driven technique, characteristics of the
metabolic resting state networks (RSN) could be utilized to observe cognitive decline in Alzheimer’s
Disease and amyotrophic lateral sclerosis [1, 2]. Another promising aspect of FDG-PET is to couple
glucose utilization with cerebral blood flow and oxygen consumption. Blood-oxygenation-level dependent
(BOLD) functional magnetic resonance imaging (fMRI) has been commonly used to non-invasively
obtain oxygen metabolism and hemodynamic response related to brain activity [3]. Neurometabolic
coupling between fMRI and FDG PET metrics has provided informative biomarkers for characterizing
focal differences of energy demand in a healthy population and pathology processes such as alcohol
exposure and disorders of consciousness [4–6].

Integrated PET/MR system could simultaneously obtain both fMRI and FDG PET images [7, 8]. With the
advantage of precisely-matched structural localization and consistent physiological states, the combined
system could provide great opportunity for multiparametric analysis of interactions between brain
metabolism and function [9, 10]. With the addition of FDG PET, fMRI showed potential for baseline shifts
in quantifiable metabolism and neuronal signalling [11, 12]. Also, with the fusion of fMRI, FDG PET could
track dynamic task-related haemodynamic and metabolic interactions with higher temporal resolution
[13]. Recently, the integration of the two modalities has proved to be cost-effective for clinical research,
especially in neurodegenerative disorders. Focal alterations between FDG uptake and fMRI metrics
obtained by integrated PET/MR showed potential to reveal signalling hierarchies in hippocampal-cortical
circuits and default mode networks in patients with Alzheimer’s Disease [14–18]. Altered bioenergetic
coupling across gray matter and its relationship with seizure outcomes was also reported in patients with
medial temporal lobe epilepsy [19]. Thus, simultaneous PET/fMRI has become a widely adopted
approach for non-invasive brain metabolic researches.

In order to shorten the time of scan, some clinical research using integrated PET/MR system prefer to run
MRI sequences during the FDG uptake phase (the first 40 minutes after radiotracer administration).
However, the acoustic, thermal and electromagnetic effect imposed by MRI on human brain may result in
physiological inference on quantitative FDG uptake curve. Although it’s been assessed on phantoms that
the stability of PET quantitation was not affected during simultaneous MRI scan, even when aggressive
sequence such as fast spin echo MR sequence was performed [20–22], the impact of MRI sequence
pulsing was found in human studies affecting brain activation including auditory, visual and motor
functional cortex [23–28]. A recent study has shown that the acoustic noise produced by fast switching
gradients could cause a reproducible increase ranged from 3–9% in FDG uptake, limited to the primary
auditory cortex [29]. Therefore, the timing of the fMRI scan is preferred to run during the plateau phase
(30 to 40 minutes after radiotracer administration) of FDG uptake curve in clinical routine. During this
period, most irreversible FDG distribution is considered to be finished with only minimal amount of free
FDG in blood pool. However, few studies have proofed that the impact induced by MRI scan during this
“static” period could be limited to an acceptable range in human brain. Also, whether the possible effect
could influence specific metabolic parameter or neurometabolic coupling limited to focal brain cortex,
network level or whole brain level, are largely unknown.
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Therefore, the principal purpose of this work is to systematically evaluate the impact of simultaneous
fMRI scan on quantification of brain metabolism using an integrated PET/MR system. We designed a
randomized self-control study on healthy volunteers using clinically relevant imaging protocols. We will
focus on the additional effect induced by fMRI sequence pulsing on voxel-wise energy consumption,
spatial distribution of metabolic networks as well as the correlation between regional glucose
metabolism and functional metrics within and across different resting state functional networks.

Materials And Methods

Subjects
All subjects were provided with written informed consent to undergo procedures approved by the Medical
Research Ethics Committee of Xuanwu Hospital, Capital Medical University (Beijing, China). 24 healthy
subjects (Male, 14, Female, 10) with ages of 31 to 66 years were enrolled in this study. Subjects were all
right-handed and free of personal or family history of psychiatric or neurological disease, diabetes, renal-
failure, claustrophobia and other MRI-related exclusion criteria. Prior to the scan, participants were
directed to fast for at least 6 hours before the 18F-FDG injection. Immediately before the scanning began,
all subjects underwent a blood glucose level measurement and all measured values were below 8
mmol/L.

Data Acquisition Protocol
Simultaneous 18F-FDG PET/MR scanning was performed on an integrated PET/MR system (uPMR 790,
United-Imaging Healthcare, Shanghai) equipped with a 24-channel phase-array head coil [20]. Phantom
experiments were initially performed to evaluate the hardware-related effects, the SUV and MRI signal
stability of this integrated system (See Supplementary Materials). The MRI and PET list mode data were
simultaneously acquired 30 to 40 minutes after the injection of 18F-FDG as illustrated in Fig. 1.

The MRI scan started with 5 minutes of scanning for attenuation correction and 3D anatomical
localization followed by a 22-minute experimental scan. Specifically, the first 5 minutes of MRI scanning
consisted of a localizer and an ultra-short echo time MRI sequence for PET attenuation correction, and a
three-dimensional T1 weighted fast-spoiled gradient echo sequence (voxel sizes = 1.0×1.0×1.0 mm3) for
brain segmentation. The following 22-minute experimental scan was separated into MRI-off and MRI-on
modes with each one lasting for 11 minutes. In the MRI-off mode, no MRI sequence was performed. In the
MRI-on mode, a gradient-echo echo-planar pulse sequence (repetition time = 3000 milliseconds, echo
time = 30 milliseconds, flip angle = 90°, number of slices = 43, voxel sizes = 3.0×3.0×3.0 mm3, matrix size 
= 64×64) was performed for resting-state BOLD-fMRI measurements lasting for 10 minutes. In order to
fairly evaluate the impact of BOLD-fMRI on FDG-PET, all subjects were divided randomly in to one of two
groups, who received either protocol A or B. For the protocol A group, the MRI-off mode was performed
ahead of the resting-fMRI, while for the protocol B group, the scan order was reversed (see Fig. 1).



Page 5/17

The PET list mode data had a 511KeV energy drift correction applied to correct the temperature induced
counting loss during MRI scanning [22]. Dynamic data was reconstructed to 10 PET image frames (2
minutes per frame, matrix size = 192×192, field of view (FOV) = 35 cm, voxel size = 1.82×1.82×2.78 mm3)
using the ordered subset-expectation maximization (OSEM) algorithm (3 iterations and 20 subsets with
time-of-flight (TOF) and point-spread function (PSF)). Corrections were applied for random coincidences,
dead-time, scatter and attenuation. Static data was reconstructed using all list mode events obtained
during the 22-minute experimental scan (matrix size = 256 × 256, FOV = 25 cm, slice thickness = 1.4 mm,
OSEM 3 iterations and 20 subsets with TOF and PSF). Whole body clinical PET/MR scan was performed
after the brain scan and the SUV from aorta was used as the reference to normalize blood pool signal in
Patlak Ki calculation [30].

Data Processing

Data Processing for Functional Maps
Post processing for PET and MRI images is summarized in Fig. 2. PET and MRI images were registered
and jointly processed using SPM12 (Statistical Parametric Mapping,
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/).

Generation of Resting-State Functional Metrics from BOLD-
fMRI
The pre-processing of resting-fMRI was performed using the Data Processing and Analysis for Brain
Image (DPABI) tool (http://www.rfmri.org/dpabi) [31]. After slice timing correction, the alignment
correction was applied to reduce the impact of head motion. FMRI images were spatially transformed to
the characteristic T1-weighted structural template. The transformed fMRI images were resampled to 3 × 3
× 3 mm3, and nuisance covariates (24 head motion parameters, cerebrospinal fluid signal, white matter
signal and linear trend) were regressed out. Voxel wise fMRI metric maps were generated, including
regional homogeneity (ReHo), amplitude of low frequency fluctuations (ALFF), fractional amplitude of
low frequency fluctuations (fALFF) and degree centrality (DC), using the DPARSF package inside DPABI.
Eight resting-state networks (including visual, default, dorsal attention, auditory, ventral attention, control,
sensorimotor and limbic network) were generated from the same corrected fMRI images using a group
ICA analysis package (https://www.nitrc.org/projects/gift) and were used to mask out the regions of
interest (ROI).

Calculation of Parametric Images from FDG-PET
After normalization of focal FDG uptake for body weight and injected dose, the relative standardized
uptake value ratios (SUVr) with reference to cerebellum and white matter were calculated respectively. To
quantify the change of SUVr during the time course of MRI-on and MRI-off mode acquisitions, Patlak Ki
was derived from 2 min time frame brain PET image using a population-based input function and
normalization factor from the aorta SUV of whole-body PET image. Analysis of the relative cerebral
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metabolic rate of glucose (rCMRGlu) at each voxel was performed [32]. To allow consistent dynamic
analysis, all PET dynamic images were aligned to the first time-point image and co-registered to the
corresponding T1-weighted image. The voxel-wise Spearman correlation coefficient (R) between rCMRGlu
and fMRI metrics was calculated using the python package Scipy (https://pypi.org/project/scipy/).

ICA Analysis for FDG-PET
Spatial ICA of the pre-processed PET images was performed within the MRI-off and MRI-on subgroups
separately using the GIFT toolbox (http://mialab.mrn.org/software/). The optimal number of components
of the principal component analysis was set to five which was estimated using the GIFT dimensionality
estimation tool. Group ICA was used to derive task-based regional activation treating MRI-on mode as a
paradigm. First, the mixing matrix was estimated, which has a unique partition for each object. The
component graph of each task was calculated by projecting a single task data onto the inverse of the
mixing matrix partition. Task-specific time courses and images were used to make group and inter-group
inferences [33]. Each spatial map was converted to Z-values and activation maps were visualized using
binary masks generated with a threshold of 1.5.

Statistical Analysis
Statistical analysis was performed using DPABI and Statistical Product and Service Solutions (IBM SPSS
version 20). Paired two-sample t-tests were applied to assess the significance of SUV, SUVr, Ki of Patlak
model between MRI-off and MRI-on mode, respectively. The voxel-wise paired t-test between whole brain
SUVr in MRI-off mode and MRI-on mode was performed using DPABI. Comparisons within correlation
coefficients of functional metrics (ReHo, ALFF, fALFF and DC) and rCMRGlu among the eight networks
between MRI-on mode and MRI-off mode were calculated with one-way ANOVA analysis and paired two-
sample t-test, respectively.

Results

MRI Impact on FDG Uptake
Phantom results have verified the system stability for simultaneous PET/fMRI acquisition (Fig. S1 and
Table S1). Static PET images from MRI-off and MRI-on mode produced similar
SUVr(SUVWB/SUVCB)distribution maps (Fig. 3A and 3B). From visual inspection, concordant distributions
were found without focal areas of abnormal hyper- or hypo- metabolism. Voxel-wise paired t-tests
between whole brain SUVr in MRI-off mode and MRI-on mode revealed no statistical difference (P ༜ 0.05),
while Patlak Ki significantly increased when comparing MRI-on mode with MRI-off mode (P༜0.001,
Fig. 3C and 3D). Mean SUVr and Patlak Ki values for whole brain (WB) and different anatomical structure
including grey matter (GM), white matter (WM), cerebellum (CB) and eight functional networks were
calculated (Fig. 4). Mean Patlak Ki significantly increased when comparing MRI-on mode with MRI-off
mode, while mean SUVr showed no statistical difference (P ༜ 0.05). The same measurement using white
matter as a reference tissue was performed and a similar result was confirmed (Fig. S2).
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MRI Impact on Metabolic Network
The most active network components derived from PET static spatial ICA were located in the auditory,
default, visual and language networks (Fig. 5A and 5B). From visual inspection, there was little difference
observed between the component maps calculated from PET image generated during MRI-off and MRI-on
mode. Group ICA which treated fMRI scan as a stimulating paradigm revealed that the most active
network components were frontal pole, superior frontal gyrus, middle temporal gyrus and occipital pole
(Fig. 5C).

Impact of Simultaneous Scan on Neurometabolic Coupling
Spatial correlation maps between rCMRGlu and four fMRI metrics, as well as the results of the correlation
analysis over each of the eight resting-state networks are shown in Fig. 6. Overall, high correlation
coefficients were found among the four-fMRI metrics with rCMRGlu in MRI-off and MRI-on mode (mean R
for ALFF, fALFF, DC and ReHo, 0.195 ± 0.260, 0.296 ± 0.180, 0.287 ± 0.164, 0.413 ± 0.145, P = 0.022). ReHo
provided significantly higher correlation coefficients with rCMRGlu, compared to other metrics (ReHo and
ALFF, P = 0.013, ReHo and fALFF, P༜0.001, ReHo and DC, P = 0.002). No difference was found between
other metrics (ALFF and fALFF, P = 0.144, fALFF and DC, P = 0.686, ALFF and DC, P = 0.080). The highest
correlation coefficients between rCMRGlu and all fMRI metrics were found in the visual network (mean R,
0.523 ± 0.057) and default network (mean R, 0.461 ± 0.099).

Discussion
To the best of our knowledge, this work is the first study systematically assessing the impact of
simultaneous fMRI scan on FDG-PET in human brain with an integrated PET/MR system. Our protocol is
a self-control study design following the recommended clinical routine, where MR sequences were
performed 30 to 40 minutes after the injection of 18F-FDG. It’s commonly considered that FDG-PET data
acquired during this plateau phase of uptake curve mainly represents the neuronal activity occurred
during the preceding early uptake phase. Thus, SUVr for plateau phase is supposed to be steady even
when fMRI scan is synchronously performed. Our results found no difference in neither mean SUVr nor
voxel-wise SUVr compared between MRI-on and MRI-off period, which supported this inference. However,
obvious increase of Patlak Ki was detected in MRI-on period across the whole brain, including grey matter,
white matter, cerebellum and eight specific functional networks. This unspecific global metabolic change
reflects a short-term FDG uptake elevation due to the fMRI scan, but may not in favour of a neuronal
origin, whose activation should mainly locate in grey matter regions. We assume that this phenomenon
may due to other physiological inference, such as temperature-dependent acceleration of metabolic rates.
Thus, with only minor amount of free FDG in blood pool available, fMRI scan in the steady state could
only produce limited and unspecific effect on the trend of FDG elevation, which does not affect the
calculation of SUVr value to statistical significance.
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In the network-wise comparison, when treating fMRI scan as a stimulation task, the effected components
were located in the default, auditory, visual and language networks, which were commonly regarded as
“higher-order” cognitive networks. A previous study reported that 13 meaningful RSNs could be detected
from FDG-PET data acquired 10 minutes to 30 minutes post-injection. Among them, seven networks
could be detected by both modalities, including default mode, left central executive, primary and
secondary visual, sensorimotor, cerebellar, and auditory networks [34]. In our study, the “activated”
networks induced by fMRI scan fundamentally located in these “dually” detected RSNs, which could be
explained by changes of either cerebral blood flow or activity-dependent glucose consumption. As our
data was acquired 30 minutes post-injection, the contribution of a blood flow signal change caused by
the instant injection of FDG could be negligible. In this way, these “activations” observed in our ICA results
should be regarded as comparable elevated glucose consumption, rather than increased cerebral blood
flow or oxygen consumption.

In previous studies, the possible mechanism underlying neurometabolic coupling was explained by
temporally synchronized cerebral blood flow and energy utilization, based on the theory that resting-state
glucose and oxygen metabolism were closely linked [35]. Strong coupling was found in default and visual
networks, while weak correlation was found in limbic and somatomotor network [36]. The highest
correlation between rCMRGlu and fMRI metrics were achieved in ReHo, which was both detected by using
integrated PET/MR or separated PET and MRI devices [3, 36, 37]. Other metrics, such as ALFF or DC,
showed lower association with CMRGlu, maybe strongly affected by venous vasculature or other non-
neuronal factors on signal amplitude [3]. These differences could also be explained by the different
physiological phenomena probed by each metric. ALFF contrast is only due to single voxel signal. ReHo
could be considered as a measurement of short-range FC affected by neighbouring 27 voxels, while DC
measures distant voxels weighted by long-range FC in the whole brain.

Our study reports a synthesis effect of MRI scan on quantitative PET in an integrated system. Among all
possible factors, acoustic MRI noise resulting from echo-planar imaging (EPI) should be regarded as the
main concern. This sequence is normally accompanied by a gradient-shifting noise with sound level
greater than 100dB [28]. Studies have focused on measuring how background acoustic noise influence
the hemodynamic responses in auditory cortex and made efforts to spoil the interference [24]. Reduced
activation in the visual cortex was also reported, which may relate to attention modulation due to
auditory-visual cross-modal neural interaction [28]. Increased activation of working-memory network [27],
as well as suppressed activation in the default-mode network and sensorimotor cortex [25, 26], were
respectively discussed under the presence of BOLD-related noise. “Quieter” fMRI acquisition methods,
such as sparse temporal sampling or interleaved silent steady state, could be applied to a less noisy
background environment for BOLD-fMRI scan [23]. In addition, MR-induced RF power deposition and the
resulting effects on temperature-dependent metabolic rates could also influence FDG uptake, with
maximum relative increases of 26% for uptake models based on metabolism [38]. We speculate that
these above factors synergistically influenced brain metabolism during the static phase of FDG uptake in
our study.
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This work was subject to several limitations. First, we adopted a blood-free approach to estimate the
relative quantification of CMRGlu, which is more tolerable for a universal clinical routine. However, for a
more precise design, absolute quantification of CMRGlu could be calculated by infusion of 18F-FDG and
venous blood sampling [39]. Second, methodologically, ICA and seed-based functional connectivity
(sbFC) are two main approaches for statistical mapping of RSNs derived from FDG-PET. It’s been
discussed that the choice of ICA or sbFC could influence the detectability of RSNs especially when
sample size is limited [40]. Future studies could retest and verify our results by different data analysis
methods on the basis of a larger dataset.
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Figure 1

Schematic diagram of the simultaneous 18F-FDG PET/MR acquisition protocol. 18F-FDG - 18F-2-fluro-D-
deoxy-glucose, UTE - ultra-short echo, 3D-T1W - three dimensional T1 weighted sequence.

Figure 2

Schematic diagram of data processing protocol. The calculation of SUVr, fMRI metrics, metabolic
networks and rCMRGlu maps were illustrated.
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Figure 3

Voxel-wise comparison between MRI-off and MRI-on mode. SUVr and Ki in MRI-off mode (A and C) and
MRI-on mode (B and D) overlaid on three orthogonal views of the brain for a randomly selected subject.
Average SUVr and Ki across subjects superimposed on dorsal (top) and medial (right bottom) surface
views of the cerebrum.
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Figure 4

Comparison between average SUV and Ki in MRI-on mode and MRI-off mode. The mean of SUVr (A and
C) and Ki (B and D) was compared across the whole brain (WB), grey matter (GM), white matter (WM),
cerebellum (CB) and eight major networks for all the subjects scanned in MRI-off and MRI-on modes.
Error bars are standard error. * P value＜0.05; ** P value＜0.01; *** P value＜0.001.



Page 16/17

Figure 5

Comparison between static spatial ICA in MRI-off and MRI-on mode. Major networks from resting PET
SUVr images in MRI-off and MRI-on mode were persevered (A and B). Network activation through group-
ICA of combined MRI-off and MRI-on mode, treating fMRI noise as a stimulating paradigm (C).

Figure 6

Spatial correlation between rCMRGlu and fMRI metrics, ALFF (A), fALFF (B), DC (C), and ReHo (D) in MRI-
on mode. The comparison between the corresponding correlation statistics (averaged across all subjects)
across the eight networks in the MRI-off and MRI-on mode are shown, respectively.
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