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Abstract
Background

Alzheimer’s disease (AD) is the most common cause of dementia characterized by amyloid-β (Aβ)
plaques and tauopathy. Reducing Aβ has been considered a major AD treatment strategy in
pharmacological and non-pharmacological treatments. The impairment in the gamma oscillations, which
play an important role in perception and cognitive function, has been shown in mouse AD models and
human patients. Recently the therapeutic effect of gamma entrainment treatment on the AD mouse
model was reported. Given that ultrasound is an emerging modality of neuromodulation, we investigated
the effect of ultrasound stimulation pulsed at gamma frequency (40Hz) on an AD mouse model. 

Methods

We implanted electroencephalogram (EEG) electrodes and a piezo-ceramic disc ultrasound transducer on
the skull surface of 6-months-old 5XFAD and wild-type control mice (n=12 and 6, respectively). Six 5XFAD
mice were treated with daily two-hour ultrasound stimulation at 40Hz for two weeks, and the other six
mice received sham treatment. Soluble and insoluble Aβ levels in the brain were measured by enzyme-
linked immunosorbent assay. Spontaneous EEG gamma power was computed by wavelet analysis, and
the brain connectivity was examined with phase-locking value and cross-frequency phase-amplitude
coupling.

Results

We found that total Aβ 42 and 40 levels, especially insoluble, in the treatment group decreased compared
to that of the sham treatment group. The reduction in the number of Aβ plaques in PIL also has been
shown. In addition, spontaneous gamma power was increased, and brain connectivity was improved.

Conclusions

These results suggest that the transcranial ultrasound-based gamma-band entrainment technique can be
an effective therapy for AD by reducing the Aβ load and improving brain connectivity

Introduction
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases affecting over
50 million people in the world characterized by cognitive deficits, impaired activities of daily living, and
behavioral disturbance [1]. Two major pathological hallmarks of AD are the presence of extra-cellular
senile plaques made by the accumulation of Aβ and intracellular neurofibrillary tangles from the
deposition of hyper-phosphorylated tau protein [2–4]. In normal conditions, Aβ plaques are degraded by
microglia and astrocyte [5] and the soluble Aβ is removed through the perivascular pathway [6, 7]. The
progressive shift of brain Aβ soluble pools to insoluble and the impairment of plaque clearance function
plays important roles in the onset and progression of AD. Although medications until now have failed to
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prevent aggregation of amyloid ‘plaques’ in AD patients [8, 9], the pharmacological and non-
pharmacological treatments based on the 'amyloid hypothesis' are still major methods of AD treatment,
especially aiming at the reduction of accumulated Aβ [10]. In this study, we investigated the ultrasound-
based gamma-band entrainment technique to reduce brain pathology in an AD mouse model.

The activity of neurons with different frequencies of gamma-band (~ 30-100Hz) oscillation are raised
across multiple brain regions, where they are assumed to play an important role in perception, cognitive
functions, such as attention, learning, memory encoding and retrieval [11, 12]. Gamma oscillations are
produced by synaptic activity between GABAergic inhibitory interneurons and excitatory pyramidal cells
[13–15]. The degeneration of spontaneous gamma synchronization and reduction in spontaneous
gamma power have been typically shown in multiple AD mouse models [16–19] and human patients
[20–22].

Recently, a technique based on gamma-band entrainment was used as a therapeutic treatment for AD.
Iaccarino et al. [23] have shown that optogenetic stimulation and visual stimulation at 40 Hz decreased
Aβ peptides and increased microglia clustering around Aβ plaques in the hippocampus and the visual
cortex of 5xFAD mouse model, respectively. Besides, Martorell et al. [24] also have reported that multi-
sensory gamma stimulation can reduce Aβ plaques and improve cognitive function. However, there is a
lack of studies regarding the therapeutic effects of gamma-band entrainment by ultrasound stimulation
in Alzheimer's disease. Transcranially delivered ultrasound can safely activate central neural circuits and
exert neuroprotective effects on dementia [25–27]. In 2020, Bobola et al. [28] delivered transcranial
focused ultrasound stimulation (tUS) with 2.0 MHz carrier frequency, 40 Hz pulse repetition frequency
into 5XFAD mice for 1 hour per day at one hemispheric brain. They observed a reduction of Aβ plaques
and activation of microglia co-localized with Aβ in the area of the treated brain [28]. Therefore, we
hypothesized that gamma-band entrainment using 40 Hz ultrasound stimulation (US) could reduce Aβ
load and increase spontaneous gamma oscillations and brain connectivity.

Methods

Animals preparation
All animals were housed in a temperature and humidity-controlled room at 20°C ± 2°C, 55% ± 5% under a
12:12 light-dark cycle. We used 6-month-old male 5XFAD mice expressing human Aβ peptide precursor
gene with Swedish, Florida, and London mutations and PS1 with mutations M146L and L286V. All animal
procedures have been approved by the ethics committee (GIST-2020-031), which is fulfilled with
Association for Assessment and Accreditation of Laboratory Animal Care International guidelines.

Surgical preparation, electrode, and transducer implantation
5XFAD mice were anesthetized with 4% isoflurane and maintained with 0.5–1.5% isofluorane in a
stereotaxic frame. Ketofen (0.1 mg/kg) was injected subcutaneously before surgery as an analgesic.
Electrodes for electroencephalogram (EEG) were implanted on the frontal (AP = 1.0 mm; ML = 1.0 mm)
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and parietal (AP = -3.5 mm; ML = 1.0 mm) areas of the skull (Fig. 1a) and connected to a
premanufactured head mount (8402, Pinnacle Technology). A piezo-ceramic disc transducer
(SMD07T03R411, Steiner & Martins Inc.) with two connecting wires was placed on top of the headmount
layer and combined by dental cement (Fig. 1b).

Transcranial Ultrasound Stimulation (tUS) experiment
We used 12 male 5XFAD mice: treatment group (n = 6; Tg/Stim+) mice, sham treatment group (n = 6;
Tg/Stim-), and wild-type mice (n = 6; WT). The tUS was performed every day for two weeks. We used the
piezo-ceramic disc transducer implanted it to a mice head above the EEG electrode layer. The ultrasonic
beam applied tUS at 40Hz (similar with gamma frequency oscillation) with a carrier frequency of 300 kHz
and pulse length of 3 ms, for 200 ms each second, for 10 s followed by 30 s of no ultrasound, for 2 hours
was delivered (Fig. 1c). The width of the ultrasound beam at each depth of brain tissue ranged from 5.5
to 6.0 mm. We used LabView (National Instruments Corporation, Texas, USA) to control the function
generator. The signal generated by the function generator was amplified before it was transferred to the
piezo-ceramic disc transducer. tUS pulsed at 40 Hz successfully induced EEG responses centered at 40
Hz, confirmed by averaging the ~ 1200 time-frequency plots for each mouse during 2 hours of
stimulation (Fig. 1d).

EEG Recordings and Data Analysis
Mice were tethered to the recording system and habituated to the recording environment 24 hours before
the recording (Fig. 1b). EEG of freely moving mice was recorded with a sampling rate at 2 kHz and a low-
pass filter at 100 Hz (8200-K1-SL, Pinnacle Technology) from 00:00 to 08:00. To analyze the EEG data,
we performed offline processing in the customized code for Matlab and Python. Spontaneous gamma
power was examined at 30–80 Hz. Briefly, the signal was filtered by a second-order Butterworth filter with
a higher and lower cut-off adjusted to 2 Hz above and 100 Hz below to remove a DC noise. Spontaneous
gamma power was calculated by computing the power spectral density (PSD) using Welch’s method and
integrating PSD at the given frequency band using the composite Simpson’s rule. The phase locking
value (PLV) was calculated by applying the Hilbert transform with a determined frequency band and
measuring the differences in the instantaneous phase between the frontal and parietal EEG signals. All
analyses were done using a toolbox in MATLAB (Brainstorm, Mathworks). Cross-frequency phase-
amplitude coupling (PAC) was calculated by Gaussian Copula PAC method and denoising.

Mouse brain preparation and enzyme-linked
immunosorbent assay (ELISA)
Mice were deeply anesthetized by isoflurane and then transcardially perfused with phosphate-buffered
saline (PBS). Brains were removed and dissected into two hemispheres. The right hemisphere was
dissected by the brainstem, thalamus, hippocampus, cerebellum, and cortex and stored at -80°C until use.
The cortical and hippocampal regions were dissected and homogenized in 20 mM Tris-HCl (pH 7.6) with
5 mM EDTA and protease inhibitor cocktail (P3100, GenDEPOT). The homogenates were centrifuged at
430,000 g for 20 min at 4°C to separate the soluble and insoluble Aβ. The supernatants were kept at
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-20°C, and the pellet was resuspended in 5 mM guanidine-hydrochloride and 50 mM Tris-HCl (pH 7.6).
After centrifugation at 430,000 g for 20 min at 4°C, the supernatants were saved at -20°C. Total protein
was quantified by BCA assay (23225, Thermo Fisher Scientific). ELISA for soluble and insoluble Aβ was
conducted following the manufacturer's instruction (Aβ42: KHB3441, Aβ40: KHB3481, Thermo Fisher
Scientific).

Histology
The left hemisphere was fixed by 4% paraformaldehyde (PFA) overnight and placed in 30% sucrose
solution until it sinks. The fixed brain tissues were cut in a coronal section (40 µm) with a cryostat
(Leica). The brain sections were rinsed three times with PBS containing 1% Triton X-100 (PBST) for 10
min each in shaking at 120 rpm. Tissues were blocked by 3% normal donkey serum (D9633, Sigma
Aldrich) in 0.5% PBST for 2hr incubation at room temperature. Primary antibodies used for microglia was
rabbit anti-Iba1 (1:1,000, 019-19741, Wako) and the secondary was donkey anti-rabbit IgG (1:500,
A31572, Invitrogen). Aβ deposits were stained by 1 mM Thioflavin S (T1892, Sigma Aldrich). The tissues
were mounted onto a silane-coated slide glass (5116-20F, Muto Pure Chemicals), and the images were
acquired by a confocal microscope (LSM880NLO, Carl Zeiss).

Results
Aβ loads in the cortex and hippocampus region changed after two weeks of transcranial ultrasound
stimulation at 40 Hz

In the pre- and infra limbic cortex (PIL), there was a significant decrease of total Aβ42 level in Tg/Stim + 
comparing with those of WT and Tg/Stim- groups (p < 0.01; Fig. 2a). In sub-fraction analysis, Tg/Stim + 
showed significant reduction in insoluble Aβ42 levels than Tg/Stim- (p < 0.05; Fig. 2a), whereas the
soluble Aβ42 of Tg/Stim + increased. We also observed the decrease of total and soluble Aβ40 levels in
Tg/Stim + group in comparison with Tg/Stim- group, but there was no significant difference (Fig. 2b).

In hippocampus, Aβ levels changed in a similar pattern, but the difference were not significant. Tg/Stim + 
showed a slight decrement of insoluble Aβ42 and Aβ40 levels in hippocampus while the soluble Aβ42
and Aβ40 of Tg/Stim + showed no statistically significant increment in comparison with Tg/Stim- group
(p > 0.05; Fig. 2c-d).

We also examined the number of Aβ plaques and microglia by immunohistochemistry (Fig. 3a). In the
pre- and infra limbic cortex, the numbers of Aβ plaques per unit area were diminished in Tg/Stim + 
compared with those of Tg/Stim-, but there is no significant (p > 0.05; Fig. 3b). Tg/Stim + showed a
significant reduction in the microglia marker Iba1 intensity per unit area in PIL cortex than Tg/Stim- (p < 
0.05; Fig. 3c).

Relative spontaneous gamma power and phase-locking value in electroencephalography changed
after 2 weeks of transcranial ultrasound stimulation at 40 Hz
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We measured the effects of 2 weeks of ultrasound stimulation on the spontaneous gamma power in the
AD mouse model. Power spectral analysis (Welch’s method) was performed with a range of gamma
frequencies (30–80 Hz). The gamma power was then normalized to the total power for relative gamma
power. We performed repeated measure analysis of variance (RM ANOVA) to compare relative
spontaneous gamma power at different time points. The relative gamma power at baseline in WT
showed a significant increase compared with Tg/Stim + and Tg/Stim- (p < 0.05; Fig. 4a). Tg/Stim- showed
a statistically significant decrement comparing with WT in relative gamma power on day 7 and day 14 (p 
< 0.05 and p < 0.01, respectively), on the other hand, the difference between WT and Tg/Stim + was no
significant (p > 0.05; Fig. 4a). We also observed a statistically significant increment of relative gamma
power in Tg/Stim + in comparison with Tg/Stim- group (p < 0.05; Fig. 4a).

Phase-locking value (PLV) was calculated at spontaneous gamma frequency, and the difference of PLV
at day 7 versus baseline and day 14 versus day 7 was evaluated for each group to investigate the change
of synchronization of spontaneous gamma between frontal and parietal. There was an increment in PLV
from baseline to day 7 in WT group, but both Tg/Stim + and Tg/Stim- showed downward trends (Fig. 4b).
In addition, from day 7 to day 14, phase-locking values in Tg/Stim + and WT showed an increasing trend,
whereas those of Tg/Stim- remained in the reducing trend (Fig. 4b).

Cross-frequency phase-amplitude coupling changed after 2
weeks of transcranial ultrasound stimulation at 40 Hz
In phase-amplitude coupling (PAC), a decreased coupling of delta-phase (2–5 Hz; frontal EEG) and
gamma-amplitude (30–80 Hz; parietal EEG) in Tg/Stim + at baseline (middle column) compared to those
of wild type (WT, left column) or the last day of stimulation (Tg/Stim + at day 14, right column) (Fig. 5a
upper panels and 5b). Theta-phase (5–8 Hz; parietal EEG) and gamma-amplitude (80–160 Hz; frontal
EEG) was increased in Tg/Stim + in day 14 compared to those of WT or Tg/Stim + groups at baseline
(Fig. 5a lower panels and 5c).

Discussion
Here we showed 14-day ultrasonic stimulation at 40 Hz gamma frequency decreased Aβ load in pre- and
infra limbic cortex and hippocampus in an animal model of AD. In addition to the molecular and
histologic improvement, we also found neurophysiological evidence of functional improvement, such as
increased spontaneous gamma oscillations, PLV, and PAC throughout the treatment course. To the best
knowledge of ours, this is the first report that ultrasound-based transcranial neuromodulation at gamma
frequency has a therapeutic potential for AD.

Neuromodulation effects of ultrasound stimulation
Recent studies have already shown that ultrasound stimulation exerted neuroprotective effects. In 2018,
Eguchi et al [25] have demonstrated that ultrasound stimulation with a pulse repetition frequency (PRF)
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of 1 kHz could reduce amyloid-β plaque, increase cerebral blood flow (CBF), and affected endothelial
nitric oxide (eNOS) that considered as an important therapeutic target in AD [5]. Additionally, Huang et al.
have reported that LIPUS was effective for improving the density of dendritic spines, altering
electrophysiological properties, and significantly increased the expression level of GluN2A in the
hippocampus [26]. All of these findings provide strong evidence for the beneficial effects of ultrasonic
neuromodulation.

tUS stimulation can entrain gamma band oscillations
Fast-spiking parvalbumin (PV) cells are GABAergic interneurons that express in ~ 40% of inhibitory
interneurons and receive N-methyl-D-aspartate (NMDA) excitatory input from pyramidal cells [17, 29]. The
regulation of FS–PV interneurons through GABAergic inhibitory synaptic activity onto excitatory pyramid
cells generates and fine-tunes gamma oscillations [13–15]. Gamma oscillations in neural networks play
an important role in the performance of a variety of perception, cognitive tasks, including the allocation of
attention and working memory. Previous studies have already shown that the gamma oscillation reduced
in Alzheimer's disease [17, 21]. In 2012, Verrett et al. have reported that the recovery of the gamma activity
by increasing Nav1.1 expression in PV cells followed by the reduction of network hyper-synchronization
and cognitive function loss in the AD animal model [17]. In our study, we observed that transcranial
ultrasound stimulation at 40 Hz could entrain the gamma band oscillations. Relative gamma power
increased significantly after 2 weeks of ultrasound stimulation, whereas non-treatment groups (Tg/Stim-)
showed the significant decrement.

Aβ load decreased by tUS
The total Aβ levels (Aβ42 and Aβ40) in cortical areas and hippocampus reduced in Tg+/Stim + than
Tg+/Stim- after two weeks of transcranial ultrasound stimulation. The decrement of insoluble Aβ42 in
Tg/Stim + showed statistical significance in the cortex but not in the hippocampus, whereas soluble Aβ42
slightly but significantly increased. In terms of the amyloid beta level, therapeutic effects and potentially
harmful changes appeared simultaneously. The relative toxicity of soluble and insoluble amyloid beta is
controversial. Insoluble Aβ fibrils were aggregated from Aβ monomers and oligomers [30], and they can
accumulate to form the amyloid plaques, which are known as pathological hallmarks in Alzheimer's
disease. The aggregation of insoluble fibrils causes neuro-inflammation, which leads to the damages of
neurites and decreases the Aβ clearance [31, 32]. The fibrillar plaques also causally related to the
progressive neuritic abnormalities in amyloid precursor protein (APP) transgenic mice model [33, 34].
Indeed, our histological analysis showed the number of Aβ plaques in PIL reduced in Tg/Stim+, and the
signal intensity of microglia decreased. We thought that the decreased insoluble Aβ could result in the
reduced neuro-inflammation, or vice versa, in spite of increased soluble Aβ. However, amyloid oligomers
are soluble and can spread widely throughout the brain. The soluble oligomers cause hyper-
phosphorylation of the tau protein, which forms the neurofibrillary tangles (NFTs) and leads to neuronal
synaptic dysfunction in Alzheimer's disease [35]. Aβ oligomers also induced the disruption of the neuritic
cytoskeleton and accelerated the cytotoxic effects [36]. Both fibrils and soluble Aβ have found to induce
cell death via different pathways. Oligomers induce cell death via apoptosis, whereas amyloid fibrils lead
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to necrosis-like death [37]. Given that insoluble and soluble Aβ are pathogenic in different mechanisms,
such as neuro-inflammation, synaptotoxicity, tau pathology, we may be able to suggest that the net effect
of the tUS gamma entrainment might be therapeutic because we found a marker of neuro-inflammation
was reduced and functional markers of neurophysiology was improved.

Functional improvement could be achieved by tUS
Recent studies have reported that the loss of EEG synchronization increased in AD patients and
correlated with cognitive dysfunction [20–22]. The gamma-band entrainment technique could improve
cognitive function and memory performance [23, 24]. Because transcranial ultrasound stimulation at 40
Hz could increase spontaneous gamma power, we investigated whether tUS have a functional
improvement in a mouse model. PLV can reflect the functional impairment of connectivity effectively
because only the phase excluding amplitude and frequency is considered. Our results showed a trend of
decrement of PLV in the sham treatment group (Tg/Stim-) during two weeks; on the other hand, the
direction of PLV changes in the treatment group (Tg/Stim+) changed from decrement (day 7-baseline) to
increment (day 14-day 7), although there was no statistical significance. Two weeks of ultrasound
stimulation might have contributed to the recovery of PLV. We also analyzed the cross-frequency phase-
amplitude coupling (PAC) to see how the phase of low-frequency oscillations modulate high-frequency
power, especially the gamma band. The local processing could be fine-tuned or influenced by the
modulation of gamma activity within particular areas by low-frequency oscillation. Recent studies
revealed that theta-phase high-gamma coupling correlates with working memory performance by
manipulating the ordering of information during the working memory process [38, 39]. The impairment of
theta-gamma coupling followed by memory deficits was reported by Goodman et .al in 2018 [40]. In our
study, we observed the reduction of theta-gamma PAC of Tg/Stim + mice comparing with WT group at
baseline. After 2 weeks of tUS stimulation, the theta-gamma coupling in Tg/Stim + in day 14 increased
significantly in comparison with Tg/Stim + at baseline. Delta-gamma coupling also considered as a
biomarker for the evaluation of generalized EEG suppression as well as network activity [41]. Our results
showed an exaggeration of delta-gamma coupling in Tg/Stim + day 14 in comparison with Tg/Stim + at
baseline. Taken together, all of these results support that gamma-band entrainment by tUS stimulation at
40 Hz can normalize PLV and cross-frequency coupling, implying improved brain connectivity and
information processing.

Conclusion
In summary, we conclude that tUS brain stimulation at 40 Hz can be a potential therapeutic modality by
reducing Aβ load and improving brain connectivity. However, understanding the exact mechanism of
these results is beyond the scope of the current study. Further investigation about the neurobiology of
these therapeutic effects is warranted.

Abbreviations
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AD: Alzheimer’s disease; Aβ: amyloid-β; EEG: electroencephalogram; WT: wild type; Tg/Stim+: 5xFAD with
stimulation; Tg/Stim-: 5XFAD sham stimulation; tUS: transcranial ultrasound stimulation; PSD: power
spectral density; PLV: phase locking value; PAC: phase-amplitude coupling; ELISA: enzyme-linked
immunosorbent assay ; PBS: phosphate-buffered saline; PFA: paraformaldehyde; PIL: pre- and infra
limbic; HPC: hippocampus; RM ANOVA: repeated measure analysis of variance; PRF: a pulse repetition
frequency; CBF: cerebral blood flow; eNOS: endothelial nitric oxide; PV: parvalbumin; NMDA: N-methyl-D-
aspartate; NFTs: neurofibrillary tangles
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Figure 1

Experiment protocol. (a) EEG electrode positions for surgical implantation. (b) tUS and EEG record device
setup. (c) Ultrasound parameter protocol. (d) Time-frequency distribution of brain activity generated by
tUS.
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Figure 2

Aβ load in the pre- and infra-limbic cortex and the hippocampus changed after two weeks of ultrasound
stimulation. (a) Aβ42 levels in the pre- and infra-limbic cortex. (b) Aβ40 levels in the pre- and infra-limbic
cortex. (c) Aβ42 levels in the hippocampus. (d) Aβ40 levels in the hippocampus. Black, pink, and red bars
indicate mice groups of wild type (WT), 5xFAD with stimulation (Tg/Stim+), and 5XFAD sham stimulation
(Tg/Stim-), respectively. PIL, pre- and infra-limbic cortex; HPC, hippocampus; *p<0.05, **p< 0.01,
***p<0.001 following paired sample t-test for normally distributed data, † p<0.05 following Mann-Whitney
Rank Sum Test for non-normally distributed data.
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Figure 3

The signal intensity of microglia changed after two weeks of ultrasound stimulation. (a) Representative
images of microglia and Aβ plaque in PIL. (Scale bar = 100 μm). (b) The number of Aβ plaque per unit
area (mm2) in PIL cortex. (c) Iba1 signal intensity per unit area (a.u.) in PIL cortex. Black, pink, and red
bars indicate mice groups of wild type (WT), 5xFAD with stimulation (Tg/Stim+), and 5XFAD sham
stimulation (Tg/Stim-), respectively. PIL, pre- and infra-limbic cortex; *p<0.05, **p< 0.01, ***p<0.001
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following paired sample t-test for normally distributed data, † p<0.05 following Mann-Whitney Rank Sum
Test for non-normally distributed data.

Figure 4

Spontaneous gamma power and phase-locking value increased after two weeks of ultrasound
stimulation. (a) EEG gamma power relative to total power. (b) Change of phase-locking value from
baseline to stimulation day 14. WT, wild type; Tg/Stim+, 5XFAD with stimulation; Tg/Stim-, 5XFAD with
sham stimulation; *p<0.05, **p< 0.01 following two-sample (independent) t-test.
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Figure 5

Cross-frequency phase-amplitude coupling improved after 2 weeks of ultrasound stimulation. (a) Cross-
frequency phase-amplitude coupling (PAC) of the frontal and parietal. Parietal amplitude frequency and
frontal phase frequency coupling (upper row) and frontal amplitude frequency and parietal phase
frequency coupling (bottom row) was plotted. Red rectangles represent the area of interest (ROI). (b-c)
Delta-gamma and theta-gamma PAC. WT, wild type; Tg/Stim+, 5XFAD with stimulation; Tg/Stim-, 5XFAD
with sham stimulation; n.s., no significance; *p<0.05, **p< 0.01 following two-sample (independent) t-test.


