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Abstract
Textile industry is one of the most polluting industries due to the large quantities of dyeing wastewater it
generates and discharges. Herein, we report an eco-friendly and sustainable circular coloration
technology based on cationic polyelectrolyte complex to realise salt-free, zero-e�uent-discharge circular
dyeing for cotton fabrics with a recyclable dyebath by using a typical cationic polyelectrolyte
polyhexamethylene biguanide (PHMB) bonded with anionic dyes. The cotton fabrics were �rst treated
with PHMB and then dyed with three commercial acid dyes. Colour measurements show that the colour
strength is controllable by adjustment of concentrations of both PHMB and the dyebath. The dyed fabric
samples were found to have good/excellent colour levelness (< 0.49), and the colour fastness (Grade 3 ~ 
5) was basically satisfactory and acceptable. The dyebath was proved to be recyclable for circular dyeing
occurring at room temperature, which greatly reduces consumption of both water and heat energy for
textile dyeing. Meanwhile, the dyed fabrics showed antimicrobial activity, particularly for the gram-
positive S. aureus, which may help reduce the healthcare-associated infections that transmit through
textiles. These results suggest that cationic polyelectrolyte-based circular dyeing could provide a
promising and practicable strategy to address the pollution issue caused by wastewater generated in
dyeing process in the textile industry.

Introduction
The dyeing of textiles is widely considered as one of the most polluting industry sectors due to the
volume and composition of e�uents it discharges (Khatri et al. 2015). Apart from a variety of synthetic
dyestuffs, textile dyeing also consumes huge volumes of water, energy, and auxiliaries, e.g., salts,
electrolytes, acids, alkali/bases, levelling agents, penetrating agents and dispersing agents, which can
and does lead to large e�uent discharge and causes serious environmental burden and health issues
(Burkinshaw and Salihu 2019; Ozturk et al. 2020). It has been reported that the annual consumption of
reactive dyes for cellulosic �bres dyeing exceeds 400, 000 tons, and up to 50% of that is discharged into
the environment in the form of unutilised or hydrolysed dye, resulting in highly polluting e�uents with
high oxygen demand and salt load (Xie et al. 2016; Nallathambi and Venkateshwarapuram 2017; Mu et
al. 2019). The presence of dyes in aquatic environment is not only aesthetically undesirable but it also
causes toxic and carcinogenic effects on living organisms, thereby severely threating the aquatic
ecological environment (Zhao et al. 2020).

In order to eliminate e�uents and reuse water, numerous studies have been conducted to develop a wide
variety of techniques and methodologies for removal of dye from wastewater (Dasgupta et al. 2015;
Wang et al. 2021). Examples include adsorption by adsorbents, oxidation, photocatalytic degradation,
biological treatment, ozonation, electrochemical treatment, membrane �ltration and chemical
coagulation/�occulation, etc. (Cai et al. 2021; Ahmad et al. 2015; Vikrant et al. 2018; Yagub et al. 2014;
Furlan et al. 2010). Among them, chemical coagulation and �occulation have been widely employed for
pretreatment of dyeing wastewater by using cationic polyelectrolyte complex due to its low capital cost
and the tailorability (Wilts et al. 2018; Sun et al. 2016). Cationic polyelectrolytes for coagulation and
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�occulation such as cationic polyacrylamides, chitosan and poly(diallyldimethyl ammonium chloride,
PDDA) are water-soluble polymers with positively charged moieties on each repeating unit which allow
interaction with anionic dye molecules (Meka et al. 2017; Song et al. 2018). Cationic polyelectrolytes have
the tendency to form polyelectrolyte complexes with negatively charged ions predominated by the
electrostatic interactions, leading to phase separation and formation of stable and insoluble precipitation
in most common solvents (Zahrim et al. 2011). Meanwhile, it is the theoretical basis for the
spectrophotometric method to quantify quaternary ammonium compounds using a low-molecular
anionic dye such as bromophenol blue (Auerbach 1943; Sakai 1983). The anions of aqueous salts of
bromophenol blue initially reacts with cationic polyelectrolytes via ion-ion bonding at ambient
temperature to form a stable and water-insoluble dye, which is then extracted by chlorinated solvents and
thus spectrophotometrically determined (Nand and Ellwood 2018).

On the other hand, cationic polyelectrolytes also �nd wide applications as cationic agents such as
chitosan and PDDA in cationisation of cellulosic �bres to improve dyeability and reactivity by changing
the �bre surface charge and thus enhancing dye adsorption (Fang et al. 2015; Correia et al. 2020).
Therefore, utilisation of reactive dyes is enhanced while the use of organic salts is reduced or eliminated,
thereby contributing to alleviation of pollution resulting from e�uent discharge (Arivithamani and Giri
Dev 2018; Ma et al. 2020). For example, Dong and coworkers (2020) successfully grafted 2-(N, N-
dimethylamino) ethyl methacrylate on the surface of cotton fabrics, and the dyeing showed excellent
colour strength, dye uptake, �xation yield and levelness in a low-salt dyeing process by using reactive dye.
Acharya et al. (2014) utilised a typical cationic agent, i.e., (3-chloro-2-hydroxylpropyl)trimethylammonium
chloride (CHPTAC), to treat cotton fabrics by the exhaustion method, and found that the colour strength
and dye uptake with reactive dyes in salt-free dyeing was greatly increased. Fang and colleagues (2013)
cationised cotton fabric with the cationic agent acrylamide and improved utilisation of the reactive dyes
in salt-free dyeing. Compared with the traditional dyeing process, the dyeing mechanism for cationised
cotton fabric with reactive dyes remains unchanged, and it still involves diffusion, penetration, and
adsorption of dye molecules onto the �bre. In essence, cationisation of cellulosic �bres functions as
inorganic salts (sodium sulphate or sodium chloride) used in traditional cotton dyeing process to
promote dye adsorption by reducing the charge repulsion. Actually, even though the researchers claimed
that salt-free dyeing process with reactive dyes was performed for the dyeing of cationised cotton fabrics,
they still utilised another inorganic salt—sodium carbonate to enhance the dye �xation (Acharya et al.
2014; Fang et al. 2013). Moreover, it is impossible to realise zero discharge of dye wastewater and 100%
utilization of dyes via cationic modi�cation of cotton fabric. The dyebath after dyeing is non-recyclable
and needs to be discharged into the environment. Consequently, it is essential to develop an ecologically
sustainable and economical dyeing technology to address the pollution issue associated with e�uent
discharge in textile dyeing.

Additionally, another widespread application of cationic polyelectrolytes in textile industry is used as
antimicrobial agents such as polyhexamethylene biguanide (PHMB) due to its high biocidal ability,
hypotoxicity and reasonable cost (Simoncic and Tomsic 2010; Wang and Kan 2020). Blackburn and
coworkers (2006) demonstrated that the adsorption mechanism of PHMB on cellulosic �bre follows the
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Langmuir isotherms at low concentrations with the formation of monomolecular layer, whereas at higher
concentrations it shows the characteristics of the Freundlich isotherms, leading to stacking of multilayer
PHMB molecules via electrostatic interaction and hydrogen bond. Moreover, owing to the small molecule
diameter (22 Å), PHMB molecules can diffuse into the inner pores of the cellulose �bres (80 Å) (Wågberg
and Hägglund 2001; Blackburn et al. 2006). This could be responsible for the strong a�nity of PHMB
molecules to cellulosic �bres and the good durable properties of PHMB treated cellulosic fabrics in
resistance to abrasion during wearing and household washing (Cao et al. 2020; Chen-Yu et al. 2007).
Bhaskara et al. (2021) studied the kinetics of adsorption and desorption of PHMB on cotton fabrics and
concluded that nearly zero desorption PHMB was observed from the surface of cotton fabrics at low
concentrations. The underlying reason may consist in both the electrostatic interaction and diffusion of
PHMB molecules into the inner cores of cellulose �bres.

Based on our previous �ndings (Wang and Kan 2020; Wang et al. 2021), we are motivated to develop an
environment-friendly dyeing method with recyclable dyebath and zero e�uent discharge (Fig. 1),
considering the stable and insoluble precipitation stoichiometrically formed between anionic dyes and
cationic polyelectrolytes at room temperature. The dyeing heavily depends on the stoichiometric reaction
predominated by electrostatic force between positively charged polyelectrolytes and negatively charged
dye molecules and can occur at room temperature without addition of inorganic salts, which enables the
dyebath to be completely recyclable without being discharged into the environment. As shown in Fig. 1,
the cellulosic fabric is initially treated with cationic polyelectrolytes and then dyed with anionic dyes at
room temperature; after �rst dyeing, the dyebath is recycled for the second and/or third dyeing. The
dyebath is replenished for circular dyeing if concentration of dyebath becomes too low after serial
dyeings.

This study aims to explore feasibility and applicability of the above proposed proof-of-concept. The
representative antimicrobial agent PHMB was selected as the model cationic polyelectrolyte to treat
cotton fabrics, which were then dyed with three commercial anionic acid dyes commonly used to dye
wool and silk that contain many cationic sites (protonated -NH2 groups). The dyed fabric samples were
evaluated by a series of analytical techniques in terms of colour strength, colour levelness and dyebath
recyclability for circular dyeing.

Experimental

Materials
Desized and scoured plain-woven 100% cotton fabric (fabric weight 175 g/m2) was used for this study.
Polyhexamethylene biguanide (PHMB) was procured from Breakthrough Textiles Co., Ltd (Taipei City,
Taiwan) as a 20% w/v aqueous solution. C13-oxoalcoholethoxylates (7EO) used as nonionic detergent
was supplied by SDC Enterprises Limited, Holm�rth, UK. Three model anionic dyes C.I. Acid Red 127, C.I.
Acid Blue 83 and C.I. Acid Black 172 were obtained from Shanghai Anoky Group Co., Ltd. (China).
Chemical structures of PHMB and the three anionic acid dyes are given in Fig. 2.
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PHMB coated onto cotton fabrics
Cotton fabric specimens (20×30cm) were initially exhausted in prediluted PHMB solutions (0.2% and
0.4% w/v) for 5 minutes to achieve uniform deposition, and then padded in a laboratory-scale horizontal
roller with a wet uptake of 80%. Afterwards, the samples were dried at 90 oC for 2 minutes, followed by
curing for 1 minute at 140 oC. The specimens prepared with PHMB solutions of 0.2% and 0.4% (w/v) were
labelled as PH02 and PH04, respectively.

Dyeing
The dyebath (300 mg/L, 500 mg/L) of three model acid dyes was prepared before dyeing. PHMB-coated
cotton fabrics (PH02, PH04) were directly dipped in the dyebath (liquor ratio 50:1) at ambient temperature
for 1 hour. Then, the dyed fabrics were withdrawn and washed with copious running water to remove the
un�xed dyes. Afterwards, the dyed cotton fabrics were dried in air. Su�xes − 300 and − 500, related to
300 mg/L and 500 mg/L dye concentration respectively, distinguish the PH02 and PH04 samples in the
following discussion, i.e., PH02-300, PH02-500, PH04-300, and PH04-500.

Recycled dyebath for circular dyeing
To validate the reusability of recycled dyebath (circulating dyeing), the 500 mg/L dyebath of three acid
dyes after �rst dyeing of PH02 was collected and reused for circular dyeing (Fig. 1). The samples were
named PH02-1, PH02-2 and PH02-3 for �rst, second and third dyeing processes (with the same bath) in
Fig. 1, respectively. After the third dyeing, the dyebath was replenished to maintain original concentration
for circular dyeing, i.e., PH02-4. The conditions for dyeing remained unchanged, and the concentration of
dyebath was spectrophotometrically determined after each dyeing.

Fourier transform infrared (FTIR) analysis
FTIR analysis was carried out to validate the presence of PHMB on the cotton fabrics after being treated
with PHMB by using Spectrum 100 FT-IR Spectrometer (Perkin Elmer, USA).

Dye uptake
A calibration curve of each dye was established in advance. After dyeing, the concentration of residual
dyebath was determined by using a UV-visible double-beam spectrophotometer (UH5300, Hitachi, Tokyo,
Japan) at λmax of each dye. The dye uptake was calculated according to Eq. (1).

Dye uptake(%) = (1-C 1 /C 0 ) × 100 (1)

Where C0 and C1 are the dyebath concentrations before and after dyeing, respectively.

Colour strength evaluation
The colour strength, or colour yield of the dyed fabrics, i.e., so-called K/S value, was evaluated by using a
spectrophotometer (GretagMacbeth Color Eye 7000A) based on the Kubelka-Munk equation (Eq. (2)),
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where K, S, and R denote the absorption coe�cient, the scattering coe�cient, and the re�ectance value of
the coloured samples, respectively. The testing was conducted and averaged at three different locations
on the surface of each specimen after it was folded twice.

K/S = (1-R) 2 /2R (2)

Colour levelness properties
The relative unlevelness index (RUI), developed by Chong et al. (1992), is the most frequently used
method to evaluate the colour levelness of dyed fabrics. By this method, the lower the RUI value, the
better the colour levelness is. It means excellent visual levelness if RUI value is less than 0.2; the colour
levelness is regarded as good if RUI ranges from 0.2 to 0.49; the rating of visual levelness is poor if RUI
ranges from 0.5 to 1.0; while bad visual levelness is graded if RUI value exceeds 1.0.

Fastness assessment
Colour fastness to rubbing of the dyed samples were examined in accordance with AATCC TM8-2016e,
and the colour fastness to laundering was evaluated by the standard method of AATCC TM61-2013 (Test
No. 1A) with a slight amendment by using the nonionic detergent C13-oxo alcohol ethoxylates in place of
the proposed anionic detergent in order to minimize the potential impacts.

Antimicrobial activity evaluation
The antimicrobial behaviour of fabric samples against the gram-positive Staphylococcus aureus (S.
aureus) and the gram-negative Klebsiella pneumoniae (K. pneumoniae) before and after dyeing with acid
dyes were qualitatively evaluated by using AATCC TM 147–201, as reported in previous publication
(Wang and Kan 2020). The average width of the inhibition zone was obtained according to Eq. (3).

W = (T-D)/2 (3)

Where W, T, and D represent the width of inhibition zone in mm, the total diameter of the specimen and
inhibition zone in mm, and the diameter of the specimen in mm, respectively.

Results And Discussion

Surface analysis
The change in chemical structure of surface of cellulosic �bres after being coated with PHMB was
assessed by FTIR analysis. As expected, a strong absorbance with a sharp peak at 1543 cm− 1 is
observed in Fig. 3(a). This is attributed to the characteristic absorption of imine group (–C = N–) of PHMB
molecule (Gao et al. 2011). The wide double absorption bands at 3175 cm− 1 and 3304 cm− 1 are due to
stretching vibration of amine groups (–NH– and –NH2–), whereas another double peak observed at 2856

cm− 1 and 2930 cm− 1 results from the asymmetrical and symmetrical stretching vibration of –CH2 group
(Worsley et al. 2019). Compared with the control sample, i.e., untreated cotton fabric, the characteristic
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absorption band at 1544 cm− 1 and the double peak at 2850 cm− 1 and 2917 cm− 1 are observed on the
samples after being treated with PHMB, indicating the existence of PHMB after coating on the surface of
fabric samples. Moreover, the band shift of PHMB results from electrostatic attraction between PHMB
and cellulose molecules.

Cellulosic fabrics are generally dyed with reactive dye and direct dyes, whereas acid dyes are commonly
used to dye wool and silk that contain many cationic sites (protonated –NH2 groups) by hydrogen
bonding, Van der Waals’ forces or ionic bonding. Therefore, dyeing of cotton fabrics with acid dyes
provide further evidence that PHMB was successfully coated onto the fabrics (Fig. 3b). Moreover, the
colour shade not only depends on concentration of PHMB for treating cellulosic �bres, but also relates to
concentration of the dyebath. The reason could be the stoichiometric reaction between anionic dye
molecules and cationic polyelectrolyte, which suggests that the colour shade is controllable. Figure 3c
displays the underlying dyeing mechanism between anionic dye molecules and cationic polyelectrolyte,
which markedly differs from the traditional cotton dyeing methods involving diffusion, penetration, and
adsorption of dye molecules. The stoichiometric reaction between anionic dye molecules and cationic
polyelectrolyte makes it possible to reuse the dyebath for circular dyeing, thereby achieving zero e�uent
discharge. Furthermore, this reaction can occur at room temperature, which implies that heat energy is
not a necessity for textile dyeing.

Colour measurement of dyed samples
The re�ectance value of a colour depends on its ability to re�ect the visible light, which means that the
re�ectance value varies inversely with the colour strength. Figure 4 shows the re�ectance values of PHMB
modi�ed cellulosic �bres dyed with three model acid dyes. Clearly, a similar tendency was obtained in the
re�ectance curves of dyed samples for each dye, and there is not any band shift, which means that the
colour shade for all the three acid dyes remained unchanged. The lowest re�ectance value for acid red is
510 nm, while values for acid blue and acid black are 590 nm and 580 nm, respectively.

For C.I. Acid Red 127 (Fig. 4(a, b)), the sample PH02-300 presents the maximum re�ectance value, which
indicates that PH02-300 is the lightest in terms of colour depth. As concentration of the dyebath grew
from 300 mg/L to 500 mg/L, re�ectance value of the sample (PH02-500) declined. Similar trends are also
observed in PH04-300 and PH04-500 samples, which indicates that the re�ectance is dependent on
dyebath concentration. Compared to PH02-300, PH04-300 has a lower re�ectance value, whereas this
value for PH04-300 is higher than that of PH04-500. This demonstrates that the value of re�ectance
varies inversely with the concentration of PHMB attached on the cotton fabric. Similar results were also
achieved in C.I. Acid Blue 83 (Fig. 4(c, d)) and C.I. Acid Black 172 (Fig. 4(e, f)).

Colour strength of dyed samples can be calculated from the re�ectance curves, according to Eq. (1).
Table 1 shows the maximum K/S value for each sample, which corresponds to the minimum re�ectance
value. A higher K/S value means the more dye bonded with the cationic polyelectrolyte. Clearly, for all the
samples, the value of K/S shows a positive relationship with dyebath concentration; it increases with an
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increase in the concentration of dyebath from 300 mg/L to 500 mg/L, which suggests that the sample
dyed with 500 mg/L dyebath had a darker shade than that dyed with 300 mg/L dyebath. This could be
due to the fact that a higher concentration of dyebath offers more anionic dye molecules that bond with
cationic sites. Comparing PH02 and PH04, the latter presented a higher K/S value for the same
concentration of dyebath, indicating that the colour strength is positively associated with the content of
cationic polyelectrolytes coated onto cellulosic �bres. These results agree with those observed in Fig. 3b.

Table 1
Colour strength (K/S value) of PHMB treated cotton fabrics after dyeing

with three acid dyes at different concentrations
Samples

Dyebath

PH02-300 PH02-500 PH04-300 PH04-500

C.I. Acid Red 127 1.86 2.29 2.40 2.67

C.I. Acid Black 172 2.49 3.13 3.34 3.63

C.I. Acid Blue 83 2.44 2.67 3.03 3.34

Next, we evaluated the colour levelness which is commonly used for describing the dyeing quality by
using the relative unlevelness index (RUI). Table 2 displays that all the dyed fabric samples with acid dyes
show good and excellent visual uniformity, which suggests that the nonuniformity of colour shade is
imperceptible to the naked eye and is merely detectable by specialised equipment under close inspection.
Actually, since dyeing principally occurs between acid dye molecules and the cationic polyelectrolyte
PHMB, evenness of deposition of PHMB on the cellulosic fabric is of high importance and dominates the
levelness of the dyed fabrics. At high concentration, PHMB molecules may form multilayer adsorption via
layer-by-layer assembly on the surface of cellulosic �bres (Blackburn et al. 2006), which may impede
bonding of dye molecules resulting from steric hindrance effect and lead to colour unlevelness.
Meanwhile, this explains why we used low concentrations of PHMB to modify cellulosic fabric via
exhaustion, the purpose of which is to deposit PHMB uniformly onto the cellulosic �bres.
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Table 2
RUI value of cotton fabrics coated with PHMB after dyeing with

three acid dyes at different concentrations
Sample RUI Rating

C.I. Acid Red 127 PH02-300 0.27 Good levelness

PH04-300 0.23 Good levelness

PH02-500 0.17 Excellent levelness

PH04-500 0.19 Excellent levelness

C.I. Acid Black 172 PH02-300 0.06 Excellent levelness

PH04-300 0.49 Good levelness

PH02-500 0.25 Good levelness

PH04-500 0.127 Excellent levelness

C.I. Acid Blue 83 PH02-300 0.13 Excellent levelness

PH04-300 0.28 Good levelness

PH02-500 0.05 Excellent levelness

PH04-500 0.29 Good levelness

Recycled dyebath for circular dyeing
Based on the above discussion, we investigated reusability of the dyebath for the proposed circular
dyeing in the following experiments. Contents of the dyebath of 500 mg/L after �rst dyeing of PH02 were
reused for second and third dyeing and were then replenished for the next round of dyeing.
Spectrophotometric method was employed to determine the concentration of dyebath after dyeing and
the corresponding dye uptake. Figure 5(a) exhibits that the maximum absorption peaks are at 500 nm
and 569.8 nm, respectively, for C.I. Acid Red 127 and C.I. Acid Black 172, while C.I. Acid Blue 83 shows
double absorption peaks in visible spectra, i.e., 590 nm and 630 nm. Based on the maximum absorption,
standard calibration curves of the three dyestuffs were established according to the Beer-Lambert’s law,
all of which show high correlation (R2 > 0.99) Fig. 5(b).

Figure 5(c) shows colour strength (K/S value) obtained in circular dyeing of PH02 in 500 mg/L dyebath.
Clearly, for three acid dyes, there was a slight decrease in colour strength after the second and third
dyeing using the recycled dyebath. This could be related to the decrease in concentration of dyebath after
dyeing. After �rst dyeing, the dye uptake for C.I. Acid Black 172, C.I. Acid Red 127, and C.I. Acid Blue 83
was around 16%, 21%, and 25%, respectively (Fig. 5d). This implies that the dyebath concentration was
reduced to 420 mg/L,395 mg/L, and 375 mg/L, respectively, from the original 500 mg/L after �rst dyeing.
These dyebaths were collected for circular dyeing, and dye uptake increased to 40%, 45% and 57% for C.I.
Acid Black 172, C.I. Acid Red 127 and C.I. Acid Blue 83, respectively, after using the dyebath thrice.
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Accordingly, concentration of dyebath declined to 300 mg/L, 275 mg/L and 215 mg/L for C.I. Acid Black
172, C.I. Acid Red 127 and C.I. Acid Blue 83, respectively. Then, the dyebath was replenished to maintain
the concentration at 500 mg/L for the next round of dyeing, i.e., PH02-4, the fourth dyeing (Fig. 5c). For
three acid dyes, there is no signi�cant difference between colour strength in the circular dyeing and the
K/S value of PH02-4 was very close to that of PH02-1, PH02-2 and PH02-3, which demonstrates that the
dyebath is recyclable.

Fastness properties
Colour fastness is a term used for measuring and describing ability of the colour to withstand fading and
staining when in use. In the present study, we investigate two of the most representative colour fastness
measures, i.e., rubbing fastness and washing fastness (Table 3). Regarding the rubbing fastness, clearly,
all the fabric samples showed excellent fastness to dry rubbing, reaching Grade 5. However, it was found
that the wet rubbing fastness was slightly poorer, with the Grade above 3. For the fastness to laundering,
it denotes the resistance of coloured fabrics against colour fading during household washing. In the
present study, the colour change and staining of dyed fabrics after laundering were evaluated. Clearly,
colours of all samples show a slight variation after washing, with Grade rating of above 4, while the
colour staining was of rating 5. This demonstrates that the dyed samples have satisfactory and
acceptable colour fastness properties, which implies that cationic polyelectrolyte-based dyeing strategy
could be a practicable alternative and circular dyeing without e�uent discharge is feasible. This may help
mitigate the pollution caused by textile dyeing wastewater.

Table 3
Colour fastness of PHMB treated cotton fabrics after dyeing with three acid dyes

Dyebath (mg/L)

Colour fastness

Acid Red Acid Black Acid Blue

300 500 300 500 300 500

Rubbing fastness PH02 Dye 5 5 5 5 5 5

Wet 3–4 3–4 3–4 3–4 3–4 3–4

PH04 Dye 5 5 5 5 5 5

Wet 3–4 3–4 3–4 3 3–4 3–4

Wash fastness Colour change PH02 4 4 4 4 4 4

PH04 4 4 4 4 4 4

Colour staining PH02 5 5 5 5 5 5

PH04 5 5 5 5 5 5

Antimicrobial e�cacy
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Next, the antimicrobial activities of cotton fabrics coated with PHMB were qualitatively evaluated after
dyeing with acid dyes against two selected model bacteria, i.e., S. aureus and K. pneumoniae, as shown in
Fig. 6. Table 4 presents the inhibition zone (mm). Clearly, the cotton fabrics coated with PHMB exhibit a
stronger inhibition against gram-positive S. aureus, with the inhibition zone going up to 0.58 mm, as
compared with the pristine control sample. By contrast, K. pneumoniae shows an obvious resistance to
PHMB, and the inhibition zone was merely at 0.05 mm, far less than that of S. aureus. After dyeing with
C.I. Acid Blue 83, the inhibition zone against S. aureus was reduced to 0.47 mm, whereas regarding C.I.
Acid Red 127 and C.I. Acid Black 172, the inhibition zone against S. aureus dropped to 0.33 and 0.06,
respectively. Regarding K. pneumoniae, inhibition zone for the three acid dyes declined to zero. Despite
this, the growth of K. pneumoniae traversing the fabric samples was inhibited. This indicates that dyeing
can weaken the antimicrobial activities of PHMB-treated cotton fabrics. The reason is closely associated
with the strong ion-ion bonding between positively charged PHMB molecules and negatively charged dye
molecules, which neutralises PHMB and thus diminishes its bactericidal action.

Table 4
The inhibition zone (mm) of cotton fabrics treated with PHMB after

dyeing with three acid dyes in inhibiting S. aureus (SA) and K.
pneumoniae (KP)

Samples Control PH04 PH04-500

Red Black Blue

Inhibition zone/mm SA 0 0.58 0.33 0.06 0.47

KP 0 0.05 0 0 0

Conclusions
Textile industry discharges large quantities of wastewater generated in dyeing which results in severe
pollution issues since there are substantial quantities of water and chemicals. The studies on
ecologically sustainable and clean dyeing technology have aroused great interest among researchers and
practitioners since the need to cut down generation and discharge of e�uents from textile dyeing has
become an important concern. The present study investigates the applicability and feasibility of cationic
polyelectrolyte-based circular dyeing method using the typical cationic antimicrobial agent PHMB and
anionic acid dyes. FTIR analysis con�rms the presence of PHMB attached onto the surface of cellulosic
�bres, as validated by the dyeing with acid dyes. The colour measurement shows that the colour strength
is not only dependent upon the concentration of dyebath, but also relies on the content of PHMB coated
on the �bres, suggesting the controllability of colour depth. PHMB treated fabric samples after dyeing
have good/excellent colour levelness, and the colour fastness is basically satisfactory and acceptable. It
was found that the dyebath is recyclable for circular dyeing, which implies that cationic polyelectrolyte-
based dyeing method may provide a practicable and promising strategy for ecologically sustainable
dyeing to address the pollution issue of e�uents discharged by the textile industry. Moreover, the dyeing
can occur at room temperature which would greatly reduce consumption of heat energy in textile dyeing.
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Meanwhile, the bacteriostatic ability of dyed fabrics may be conducive to elimination or reduction of
healthcare-associated infections that transmit through textiles. Based on the present study, the pilot-scale
experiments are expected to be conducted to promote the industrial application of cationic electrolyte
complex based circular coloration technology with recyclable dyebath.
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Figures

Figure 1
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(i) Schematic diagram of the proposed recyclable dyeing process based on cationic polyelectrolyte; and
(ii) The dyeing mechanism between anionic dye molecules and cationic polyelectrolyte treated cellulosic
fabric

Figure 2

Chemical structures of C.I. Acid Red 127, C.I. Acid Black 172, C.I. Acid Blue 83 and PHMB
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Figure 3

(a) FTIR spectra of pristine cotton fabric, PHMB, and the cotton fabric treated with PHMB; (b) colour
shades of PHMB treated cotton fabric dyed with C.I. Acid Red 127, C.I. Acid Black 172 and C.I. Acid Blue
83, respectively; and the underlying dyeing mechanism between acid dye molecules and PHMB-coated
cotton fabric (c)
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Figure 4

The re�ectance curves of PHMB treated cellulosic fabrics dyed with C.I. Acid Red 127 (a); C.I. Acid Blue 83
(c); and C.I. Acid Black 172 (e); and the corresponding enlarged maximum adsorption peaks (b, d, f),
respectively
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Figure 5

Absorbance curves of the three model acid dyes in aqueous solution in the range of UV–visible spectrum
(a); the corresponding calibration curves established at maximum absorption peaks (b); (c) displays
colour yields of PHMB treated cotton fabrics after being dyed with recycled dyebaths; and dye uptake of
three model acid dyes after being dyed with recycled dyebaths (d)
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Figure 6

Antimicrobial activities against S. aureus (SA) and K. pneumoniae (KP) of cotton fabrics treated with
PHMB after dyeing with three acid dyes


