[2]. Li, H., et al., Genome-wide identification of heat stress-responsive small RNAs in tall fescue (Festuca arundinacea) by high-throughput sequencing. J Plant Physiol, 2017. 213: p. 157-165.
[3]. Liu, S.C., et al., Small RNA and degradome profiling reveals important roles for microRNAs and their targets in tea plant response to drought stress. Physiol Plant, 2016. 158(4): p. 435-451.
[4]. Ghorecha, V., et al., MicroRNA dynamics in a wild and cultivated species of Convolvulaceae exposed to drought stress. Physiol Mol Biol Plants, 2017. 23(2): p. 291-300.
[5]. Akpinar, B.A., M. Kantar and H. Budak, Root precursors of microRNAs in wild emmer and modern wheats show major differences in response to drought stress. Funct Integr Genomics, 2015. 15(5): p. 587-98.
[6]. Akdogan, G., et al., miRNA-based drought regulation in wheat. Funct Integr Genomics, 2016. 16(3): p. 221-33.
[7]. Jian, H., et al., Identification of Rapeseed MicroRNAs Involved in Early Stage Seed Germination under Salt and Drought Stresses. Front Plant Sci, 2016. 7: p. 658.
[8]. Sobala, A. and G. Hutvagner, Transfer RNA-derived fragments: origins, processing, and functions. Wiley Interdiscip Rev RNA, 2011. 2(6): p. 853-62.
[9]. Gebetsberger, J. and N. Polacek, Slicing tRNAs to boost functional ncRNA diversity. RNA Biol, 2013. 10(12): p. 1798-806.
[10]. Raina, M. and M. Ibba, tRNAs as regulators of biological processes. Front Genet, 2014. 5: p. 171.
[11]. Megel, C., et al., Surveillance and cleavage of eukaryotic tRNAs. Int J Mol Sci, 2015. 16(1): p. 1873-93.
[12]. Haussecker, D., et al., Human tRNA-derived small RNAs in the global regulation of RNA silencing. RNA, 2010. 16(4): p. 673-95.
[13]. Loss-Morais, G., P.M. Waterhouse and R. Margis, Description of plant tRNA-derived RNA fragments (tRFs) associated with argonaute and identification of their putative targets. Biol Direct, 2013. 8: p. 6.
[14]. Li, Z., et al., Extensive terminal and asymmetric processing of small RNAs from rRNAs, snoRNAs, snRNAs, and tRNAs. Nucleic Acids Res, 2012. 40(14): p. 6787-99.
[15]. Jochl, C., et al., Small ncRNA transcriptome analysis from Aspergillus fumigatus suggests a novel mechanism for regulation of protein synthesis. Nucleic Acids Res, 2008. 36(8): p. 2677-89.
[16]. Ivanov, P., et al., Angiogenin-induced tRNA fragments inhibit translation initiation. Mol Cell, 2011. 43(4): p. 613-23.
[17]. Cognat, V., et al., The nuclear and organellar tRNA-derived RNA fragment population in Arabidopsis thaliana is highly dynamic. Nucleic Acids Res, 2017. 45(6): p. 3460-3472.
[18]. Jin, D., et al., Computational investigation of small RNAs in the establishment of root nodules and arbuscular mycorrhiza in leguminous plants. Sci China Life Sci, 2018. 61(6): p. 706-717.
[19]. Yuan, H., et al., Time-Course Comparative Metabolite Profiling under Osmotic Stress in Tolerant and Sensitive Tibetan Hulless Barley. Biomed Res Int, 2018. 2018: p. 9415409.
[20]. Cui, X., et al., CMsearch: simultaneous exploration of protein sequence space and structure space improves not only protein homology detection but also protein structure prediction. Bioinformatics, 2016. 32(12): p. i332-i340.
[21]. Burge, S.W., et al., Rfam 11.0: 10 years of RNA families. Nucleic Acids Res, 2013. 41(Database issue): p. D226-32.
[22]. Leclercq, M., A.B. Diallo and M. Blanchette, Computational prediction of the localization of microRNAs within their pre-miRNA. Nucleic Acids Res, 2013. 41(15): p. 7200-11.
[23]. Kozomara, A. and S. Griffiths-Jones, miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res, 2014. 42(Database issue): p. D68-73.
[24]. Langmead, B. and S.L. Salzberg, Fast gapped-read alignment with Bowtie 2. Nat Methods, 2012. 9(4): p. 357-9.
[25]. Friedlander, M.R., et al., miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res, 2012. 40(1): p. 37-52.
[26]. Love, M.I., W. Huber and S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol, 2014. 15(12): p. 550.
[27]. Wu, H.J., et al., PsRobot: a web-based plant small RNA meta-analysis toolbox. Nucleic Acids Res, 2012. 40(Web Server issue): p. W22-8.
[28]. Lowe, T.M. and S.R. Eddy, tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res, 1997. 25(5): p. 955-64.
[29]. Cabili, M.N., et al., Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev, 2011. 25(18): p. 1915-27.
[30]. Broin, M., et al., Involvement of CDSP 32, a drought-induced thioredoxin, in the response to oxidative stress in potato plants. FEBS Lett, 2000. 467(2-3): p. 245-8.
[31]. Griffiths, L.M., et al., Dynamic compartmentalization of base excision repair proteins in response to nuclear and mitochondrial oxidative stress. Mol Cell Biol, 2009. 29(3): p. 794-807.
[32]. Asagoshi, K., et al., FEN1 functions in long patch base excision repair under conditions of oxidative stress in vertebrate cells. Mol Cancer Res, 2010. 8(2): p. 204-15.
[33]. Loss-Morais, G., P.M. Waterhouse and R. Margis, Description of plant tRNA-derived RNA fragments (tRFs) associated with argonaute and identification of their putative targets. Biol Direct, 2013. 8: p. 6.
[34]. Kawaji, H., et al., Hidden layers of human small RNAs. BMC Genomics, 2008. 9: p. 157.
[35]. Broin, M., et al., Involvement of CDSP 32, a drought-induced thioredoxin, in the response to oxidative stress in potato plants. FEBS Lett, 2000. 467(2-3): p. 245-8.