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Abstract
Attention-de�cit/hyperactivity disorder (ADHD) is characterized by neurobiological heterogeneity, possibly
explaining why not all patients bene�t from a given treatment. As a means to select the right treatment
(strati�cation), biomarkers may aid in personalizing treatment prescription, thereby increasing remission
rates.

The present study introduces a clinically interpretable and actionable, age- and sex-standardized
biomarker based on individual alpha peak frequency (iAPF) assessed during resting-state
electroencephalography (EEG). The biomarker was developed in a heterogeneous sample (N=4249), and
strati�es patients with a higher iAPF to Methylphenidate (MPH; N=336) and those with a lower iAPF to
Neurofeedback (NFB; N=136), resulting in a predicted gain in normalized remission of 17-30%. Blinded
out-of-sample validation studies for MPH (N=58) and NFB (N=96) corroborated these �ndings, yielding a
predicted gain in strati�ed normalized remission of 36% and 29%, respectively.

These �ndings suggest that acknowledging neurobiological heterogeneity can inform strati�cation of
patients to their individual best treatment and enhance remission rates.

Introduction
Attention-de�cit/hyperactivity disorder (ADHD) is arguably the most common neurodevelopmental
disorder and is characterized by highly heterogeneous impairment pro�les and etiology 1,2. Due to this
heterogeneity and differential modes of treatment action (e.g., psychostimulant vs non-stimulant
medication vs non-pharmacological treatments such as multimodal neurofeedback), even the most
common treatments are only effective in part of the ADHD population 3,4, with real-life remission rates of
31-57% 5. Therefore, individualized treatment recommendation based on biomarkers that predict clinical
response to speci�c therapeutic interventions is desirable, one example being speci�c activity patterns
measured by electroencephalography (EEG) 6. 

Ideally, treatment should be individually adapted to a given patient as envisioned in precision psychiatry.
However, the multidimensionality of psychiatric disorders, in contrast to such clearly delineated problems
as tumor tissue, complicates tailoring treatment to a single person 7. An implementable intermediate step
is treatment strati�cation, which aims to select a treatment from a range of effective treatments for a
given disorder, informed by a biomarker.

As an example, EEG biomarker studies for treatment prediction in major depressive disorder (MDD) have
shown that speci�c EEG patterns or abnormalities are differentially associated with drug-speci�c or drug-
class speci�c antidepressant treatment effects 8–10, as well as rTMS outcome 8–10. Such studies have
also demonstrated sex differences in topographic distribution of EEG activity and yielded sex-speci�c
predictors of MDD treatment response 9,11,12, as well as of Methylphenidate (MPH) response in ADHD 13.
Treatment strati�cation has already been implemented in the treatment of different cancer types 14–16
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and recently also MDD, where strati�cation to different antidepressant medications was informed by pre-
treatment EEG biomarkers, resulting in improved remission rates relative to treatment-as-usual 17.

EEG is one of the most cost-effective and easily deployable methods to measure brain activity and is,
thus, suitable for broad usage in clinical practice. Although several EEG patterns have been proposed for
predicting treatment success in different mental disorders 7,18, in ADHD most biomarker studies have
focused on diagnostic biomarkers, while studies investigating prognostic ADHD biomarkers are still
scarce 19,20.   

The individual alpha peak frequency (iAPF) is the modal frequency at which an individual’s alpha activity
oscillates and is known to index brain maturation 21,22. This EEG pattern has been extensively
investigated and shows promise in predicting outcome to various treatments across different disorders
10,23. A higher mean frequency or a faster alpha peak is often associated with better cognitive
performance, possibly re�ective of faster information processing in thalamocortical pathways 19,20,24,25 
Conversely, many mental disorders such as Alzheimer’s disease, mild cognitive impairment 26, psychosis
and schizophrenia 27,28 and ADHD 29 are characterized by a slowed iAPF, potentially re�ective of reduced
or slowed information �ow between the thalamus and the cortex 19. Furthermore, slow iAPF has been
associated with worse clinical outcome to different treatments such as psychostimulants in ADHD 13,30

and most antidepressant medication in MDD 31, whereas it was found to be related to better clinical
outcome to multimodal neurofeedback (NFB) treatment in ADHD 32 and sertraline in MDD 8.

The current study therefore investigated whether iAPF is able to differentially predict clinical outcome to
two effective ADHD treatments, MPH and NFB. Given the opposite implications reported for these
treatments, we hypothesized that iAPF can help subdivide a heterogeneous population into more
homogeneous subpopulations with relevance to clinical outcome and thus serve as a biomarker
informing treatment strati�cation between medications (e.g. MPH) and NFB.

Across the EEG literature, EEG (pre-) processing, EEG montages and frequency-band de�nitions vary
considerably, which diminishes comparability and reproducibility that might at worst result in different
�ndings 33 (see supplement S1 for more details). We therefore �rst initiated a Biomarker Discovery Phase,
where the most precise iAPF algorithm, i.e. the algorithm yielding the most biologically plausible iAPF,
was determined. This algorithm was validated against a ground truth scenario, in this case relying on the
well-established �nding that iAPF indexes brain-maturation 21,22. This standardization was conducted in
the large heterogeneous psychiatric patient dataset TD-BRAIN+ (N= 4249) since the goal was to explain
variance in clinical data. To enhance biomarker clinical actionability and interpretability for clinicians, the
resulting standardized iAPF EEG processing pipeline was used to develop an optimized iAPF-based
biomarker that is both age- and sex-standardized, in line with reported sex differences in biomarkers 9,34

and effects of brain maturation on iAPF 21,22, and divided into deciles for enhanced interpretability.
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The algorithm that most closely indexes brain-maturation was then ported to the Biomarker Transfer
Phase, where this biomarker was utilized to �nd the best way to stratify patients to MPH (N=336) or NFB
(N=136) according to the previously demonstrated directionality of effects 13,32. Next, in the Biomarker
Validation Phase, both the MPH and NFB prediction were submitted to blinded out-of-sample validations,
by means of blinded prediction of remission on external datasets (N=58 and N=96 respectively), with
accuracy veri�ed by a third person not involved in the EEG analysis.

Finally, in an exploratory phase to test performance of the biomarker to another commonly prescribed
form of pharmacotherapy for ADHD (i.e., noradrenergic medications), the predictive value of the
biomarker to Atomoxetine (ATX; n=47) and Guanfacine (GUAN; n=55) was examined.  

In order to maximize clinical utility of this strati�cation biomarker, we focused on remission as primary
outcome, it representing the most clinically relevant measure 35,36, and conducted biomarker analyses
separately for males and females in accordance with previous reports of sex differences 9,34.

Results
Datasets

Table 1 provides a summary of the basic demographic information of all datasets. 

Full datasets sample size re�ects N of people who were enrolled. Sample size included in analysis re�ects
N of people with complete baseline data who �nished treatment (except for TD-BRAIN+, where only
baseline data but no clinical data was used). In the TD-BRAIN+ dataset the full age range was used for
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age-standardization while an age range of 6-18 years was used for the correlation analyses. Sample size
of this age range was 1715 (1253 male); mean age was 11.8 (SD: 3.1).

* NFB treatment augmented with advice on sleep hygiene & coaching

MPH = Methylphenidate, NFB = Neurofeedback, GUAN = Guanfacine, ATX = Atomoxetine, SD = Standard
Deviation, NA = not applicable, since no treatment effects were assessed in the discovery dataset   

Biomarker Discovery Phase

Figure 1 visualizes the individual steps of the biomarker development. 

In short, a total of 108 algorithm permutations were tested (Fig. 1.1.). The resulting best permutation
(linked-mastoid reference/eyes closed/5s segments) was selected for further prospective testing of the
biomarker (Fig. 1.2.). Age-standardized of the full TD-BRAIN+ dataset was conducted in GraphPad Prism
(GraphPad Software, La Jolla California USA, www.graphpad.com) for males and females separately
(Fig.1.3.). A linear regression of the resulting age-standardized values (divergence values) yielded a
model with a slope of 0 (β = .000), demonstrating that the curve �tting procedure successfully removed
the age effect seen before (e.g. Fz: R2= .000). For better clinical interpretability, divergence values were
split into deciles. 

For an overview of all correlation and secondary analyses, see supplementary material S3.

Biomarker Transfer Phase: Strati�cation with Brainmarker-1 results in higher likelihood of remission   

In line with the analyses from the biomarker discovery phase, divergence values (i.e. the age-and sex-
standardized iAPF values) were calculated for both transfer datasets. Their distribution across deciles
can be found in supplementary �gure S3. The primary analyses pertained to young males (6-18 yrs.)
based on previous �ndings relating to males only 13,32 and low sample sizes in females.

Figure 2 summarizes the outcome of the transfer phase. The direction of strati�cation was informed by
the previously reported directionality of effects (higher iAPF indicating strati�cation to MPH 13, lower iAPF
indicating strati�cation to NFB 32) and was based on the Fz electrode as primary site based on prior
literature 13 (see supplement S5 for a post-hoc analysis examining strati�cation based on Fz and Oz). A
decile cut-off point of 1-5 for NFB and 6-10 for MPH was chosen a priori, stratifying approximately half of
the patients to each treatment. To test this a priori decision, positive predictive values (PPVs), indicating
remission rates in the patient subsample that would have been strati�ed according to our biomarker were
determined for different decile cut-off points. The chosen cut-off point of decile 5 indeed led to the
highest combined PPV (supplementary table S1). Therefore, the presented biomarker (Brainmarker-1) was
based on this cut-off point, recommending NFB treatment to boys with a relatively lower iAPF in the decile
range 1-5 and MPH to boys with a relatively higher iAPF in deciles 6-10. For additional accuracy
measures of predictions in all datasets, the reader is referred to supplementary table S2. 

http://www.graphpad.com/
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As observed remission rates strongly differed between treatments and PPVs are affected by prevalence
(here: remission rate), we normalized the PPV by dividing it by the observed remission rate in each non-
strati�ed treatment group and subtracting one. The normalized PPV indicated a predicted increase
in remission rate of 17% compared to the observed remission rate if patients had received MPH (PPV=
41%) and of 30% if patients had received NFB (PPV= 62%) as treatment recommendation based on
Brainmarker-1.

In a post-hoc analysis predicting remission with Brainmarker-1 calculated at the occipital site (Oz), no
improvement could be seen for MPH (normalized PPV = +1.7%), however, for NFB the PPV increased to
71.4% (normalized PPV = +51% as compared to +30% in Fz). Despite this improvement for NFB
treatment, Fz remained the primary strati�cation site, as prediction for MPH is only possible with the iAPF
recorded at this location. For the results of strati�cation based on both Fz and Oz locations, we direct the
reader to supplement S5.

‘Out-of-sample’ Validation Phase: Strati�cation biomarker predicts remission in prospective validation
analysis

Next, the biomarker was validated by predicting remission to MPH and multimodal treatment including
NFB (ICAN) study in two independent datasets 37,38, blinded to clinical outcomes and clinical data, based
solely on the subjects’ age, sex and baseline iAPF. Accuracy was veri�ed by a third person not involved in
the EEG analysis (for MPH: authors GM and SKL; and for NFB: author MA). Results are visualized in
Figure 2. 

In line with the previous analyses, we normalized PPVs to improve comparability with the transfer
datasets. The normalized PPV predicted an increase in remission rate of 36% (PPV = 50%) compared to
the observed remission rate if patients had received MPH and of 29% (PPV= 29%) if patients had received
the multimodal treatment based on Brainmarker-1.

Biomarker exploration phase

In a last step, we explored the predictive potential of Brainmarker-1 for ATX and GUAN treatment. When
testing different decile ranges for ATX, a cut-off point of £ decile 6 resulted in the highest normalized PPV
of +27% (PPV= 40%). This seems to point to a similar directionality of effect as was observed for NFB
treatment, while using the cut-off point that was also used for MPH (deciles ³ 6) results in a decline in
remission rate (improvement: -8%). However, when the same decision process as for NFB was applied, i.e.
predicting remission to ATX in individuals with decile scores £5, the resulting improvement was marginal
(PPV = 33%, improvement= +6%). 

For GUAN treatment, a prediction of remission for deciles 6-10, the same that was used for MPH
prediction, resulted in the highest PPV (53%) and normalized PPV (+26%).

Discussion
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In the present study, an iAPF algorithm indexing brain maturation was developed in the Biomarker
Discovery Phase in a large clinical sample (a subset of this EEG database as well as the EEG processing
code is freely available for download at https://brainclinics.com/resources/). Subsequently, this iAPF
was employed to develop an iAPF-based, age- and sex-standardized treatment strati�cation biomarker
(Brainmarker-1), which was found to be capable of differentially informing strati�cation to MPH and NFB
treatment. The results from the Biomarker Transfer Phase indicate that a neurobiologically
heterogeneous sample of ADHD patients can be successfully divided into two more homogeneous sub-
samples characterized by a relatively faster or slower iAPF and a differential response to MPH and NFB. 

Given both MPH and multimodal treatment that includes NFB can be considered effective interventions
for the treatment of ADHD, with remission rates between 31-51% 3,39, employing EEG to stratify to one of
these treatments effectively increases predicted remission rates in the strati�ed group by 17-30%
compared to non-strati�ed remission rates. Crucially, the Biomarker Validation Phase substantiated
Brainmarker-1 through a blinded out-of-sample prediction of remission in two external datasets, based
solely on age, sex and baseline iAPF. Since Brainmarker-1 is based only on basic demographic data and
the resting-state EEG, it can easily be implemented in clinical practice, using an algorithm which
calculates age-and sex-standardized iAPF into deciles and yields a treatment recommendation.

Our results suggest that we can successfully stratify between MPH and NFB treatments, while ATX and
GUAN �ndings are promising but require future replication. Most importantly, the directionality of iAPF
and its association with remission to MPH/GUAN is opposite that of NFB/ATX. This is imperative for the
concept of treatment strati�cation, as its aim is to use a biomarker to inform the best treatment option for
each patient choosing from a range of effective treatments for that disorder, instead of merely
discouraging a particular intervention. 

This differential association of iAPF with remission in response to different treatments might be related
to the branches of the autonomous nervous system (ANS). ADHD has been associated with hypoarousal
of the ANS or a hyperactivity of the parasympathetic nervous system (PNS) 40,41 which is supported by
the �nding that heart rate (HR) is generally lower in children with ADHD, suggestive of higher vagal
tone 30. However, there have also been studies that found an elevated sympathetic nervous system (SNS)
response 34,42 or a hyperactivation of both PNS and SNS 43, pointing to a general ANS imbalance.
Similarly, iAPF has been hypothesized to index �ght or �ight response, with the iAPF acutely speeding-up
in the presence of an acute threat, such as pain 44, or slowing down with chronic stress such as chronic
pain 45,46 or burnout syndrome 47, possibly re�ecting a thalamocortical gating mechanism, counter-
regulating the surplus of pain- or stress-induced innervation 44,45. Moreover, it has been shown that
people with PTSD, a disorder characterized by an overactive SNS, have a generally faster iAPF 48. A
slower iAPF could thus point to a hyperactive PNS while a faster iAPF could re�ect relatively normal PNS
or increased SNS activation.

While MPH acts on noradrenaline to some extent, its main working mechanism seems to be an increase
of synaptic dopamine by inhibiting dopamine re-uptake through inhibition of the dopamine transporter

https://brainclinics.com/resources/
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(DAT). It might, thus, be possible that the mechanism of action of MPH is relatively unrelated to ANS
imbalances and instead brings about its effect by acting on a number of different neurotransmitters
simultaneously 49. This is in line with a recent meta-analysis that reports null effects of ANS imbalances
in ADHD as the most common �nding 40, suggesting a more diverse pathophysiology that goes beyond
ANS abnormalities. A possible explanation for the relationship between MPH and iAPF comes from a
study in healthy subjects, investigating the relationship between iAPF and a functional polymorphism in
the gene encoding catechol-O-methyltransferase (COMT), which plays a role in dopamine metabolism 50.
They found that Valine (Val) allele homozygotes who show increased COMT activity and reduced
dopamine in the prefrontal cortex (PFC) had a signi�cantly lower iAPF compared to subjects with the
methionine allele who have normal PFC dopamine signaling. This could indicate that genetically induced
PFC dopamine receptor functioning might play a role in MPH treatment response. However, a later study
could not replicate this association 51.

Since noradrenaline is the major neurotransmitter in the SNS, ATX, a selective noradrenaline reuptake
inhibitor (SNRI) might act by normalizing PNS hyperactivity in people with a slower iAPF. Interestingly, the
effect for GUAN seems to be opposite that of ATX although it also acts on noradrenaline, however as an
alpha2a adrenergic receptor agonist. Similar differential biomarker �ndings for within-drug classes,
alluding to drug-speci�c effects, have been reported before. For example, the selective serotonin reuptake
inhibitors Escitalopram and Sertraline for treatment of depression that are thought to primarily act on the
serotonergic system, demonstrated differential effects with regard to iAPF and treatment outcome, with
only sertraline responders showing a lower iAPF. Our biomarker �ndings thus, suggest that there might be
relevant functional differences between ATX and GUAN, requiring further study.

The precise working mechanism of NFB is unknown at present. However, speculatively, it has been
hypothesized that NFB might affect sleep-regulating mechanisms 52–54. Since ADHD has been
associated with increased daytime sleepiness 55 and sleepiness is correlated with increased
parasympathetic activity 56, NFB might work by improving sleep and thereby normalizing
parasympathetic activity. On the other hand, Pimenta and colleagues recently emphasized the
multimodal nature of this treatment 5, also evident from the absence of group effects in the double-bind
placebo controlled ICAN study 38 that was used here in the validation phase. Long-term effects of up-to
one year follow-up in the ICAN study demonstrated clinical bene�ts – on the group level – similar to the
MPH arm of the NIMH-MTA study 38. This further suggests that the multimodal approach including
frequent reinforcement as well as sleep hygiene coaching are important factors, pointing again to the
possibility that the relationship between slow iAPF and remission to NFB could be driven by sleep
regulation.

 

While we demonstrated the prognostic value of Brainmarker-1 in two independent and blinded out-of-
sample validations, the present study also had some limitations. Brainmarker-1 presently only pertains to
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males and ages 6-18 years. The reason for this is limited sample size for females in the treatment studies
and clear qualitative sex-speci�c effects 13, as well as a lack of adults for most of the datasets, which
prevented us from investigating strati�cation for these groups (see supplement S4 for a discussion of
results for females). Findings in females might be particularly important since they are usually
underrepresented in ADHD research 57. Likewise, investigating treatment strati�cation in adults with
ADHD would be valuable. 

Since the present study examined multiple treatment datasets from different test locations with different
designs, rating scales, methods, and EEG methodology, testing was not standardized. However, the fact
that the out-of-sample validation was successful demonstrates the strength of the developed biomarker
in spite of those differences. 

Moreover, the transfer NFB sample received NFB treatment augmented with sleep hygiene management
and coaching while the NFB validation dataset received a multimodal NFB or control treatment and sleep
and nutrition counselling. Findings might, therefore, not be directly comparable to standard NFB
monotherapy 32.

While this study already successfully validated MPH and multimodal NFB prediction by means of
Brainmarker-1, a prospective validation study would be valuable that prospectively strati�es patients
between the interventions based on baseline iAPF, similar to the feasibility study of van der Vinne 17 that
successfully tested the biomarker-based strati�cation approach for MDD patients. Since the relationship
between iAPF and MDD treatment outcome has already been established 8,58,59, a next step will involve
expanding Brainmarker-1 that was applied to ADHD samples in the current study into a transdiagnostic
marker, incorporating different pharmacological and non-pharmacological interventions for MDD. 

In summary, the present study introduces a clinically implementable and interpretable treatment
strati�cation biomarker for young males with ADHD and corroborates it in two blinded out-of-sample
validations.

Methods
Datasets – Biomarker Discovery Phase

The large TD-BRAIN+ dataset, comprising patients with various psychiatric disorders was utilized to
determine the optimal parameters of iAPF calculation. Full details of the open access TD-BRAIN dataset
(N=1274) have been published in van Dijk et al. (under review; www.brainclinics.com/resources) with all
data recorded at Research Institute Brainclinics (Brainclinics Foundation, Nijmegen). In the TD-BRAIN+
dataset this was complemented with data from additional clinics (EPI-PIT clinics (Eindhoven & Tilburg;
author JJ), EEG resource (Nijmegen; author RB), Neuroscan (Dordrecht; author PdJ), neuroCare clinics
(Hengelo; Groningen; Munich; Sydney, author RvR)), while EEG caps, ampli�ers, instructions and other
details were identical to van Dijk et al. (under review).



Page 11/23

Datasets - Biomarker Transfer Phase

For iAPF prospective analyses we relied on the following datasets (see Table 1 for overview):
Methylphenidate (iSPOT-A: N=257 13) and Neurofeedback (N=50) 32.

Datasets - Biomarker Validation Phase
 For independent out-of-sample replication analysis, we predicted remission in the MPH/GUAN dataset 37

(Table 1) and the International Collaborative ADHD Neurofeedback (ICAN) study 38.

In the former trial, subjects were blindly randomized to either MPH (N=58) or GUAN (N=55) treatment, with
dosing adjusted based on weight. In the ICAN study (N=96), subjects were blindly randomized to a
multimodal treatment of sleep and nutrition counselling and either theta/beta ratio NFB or a control NFB
treatment (NFB administered based on the pre-recorded EEG).   

Datasets - Biomarker Exploration Phase

Explorative analyses were conducted in Atomoxetine (ACTION 60) and in GUAN from the MPH/GUAN
dataset used in the validation phase for MPH replication 37.

All participants (or their parents or care-takers) gave written informed consent prior to testing.

Data availability 

The TD-BRAIN EEG data is freely available for download at https://brainclinics.com/resources/. Other
data is available from the corresponding author on reasonable request.

Code availability 

The Python code used for processing the EEG and calculating the iAPF is freely available for download at
https://brainclinics.com/resources/. 

EEG data collection and preprocessing 

All EEGs were recorded in a standardized manner as developed by Brain Resource Ltd. (for more details
see 9) apart from the independent MPH/GUAN validation dataset 37.

In short, EEGs were recorded from 26 channels according to the 10-20 electrode international system
(Fp1, Fp2, F7, F3, Fz, F4, F8, FC3, FCz, FC4, T3, C3, Cz, C4, T4, CP3, CPz, CP4, T5, P3, Pz, P4, T6, O1, Oz, O2;
Quikcap, NuAmps). Measurements consisted of 2-minute Eyes Open (EO) and 2-minute Eyes Closed (EC)
recordings. During EO recordings, participants were asked to �xate a dot in the middle of the computer
screen. 

Data was recorded with the ground at AFz, and a sampling rate of 500 Hz and a low-pass �lter with an
attenuation of 40 dB per decade above 100 Hz was employed prior to digitization. Horizontal eye-
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movements were recorded with electrodes placed 1.5 cm lateral to the outer canthus of each eye. Vertical
eye movements were recorded with electrodes placed 3 mm above the middle of the left eyebrow and 1.5
cm below the middle of the left bottom eyelid. Skin resistance was <10 kW for all electrodes. 

Automatic artifact detection and removal were performed using a custom-built Python package 61–64 and
were in accordance with deartifacting as described in 9 and van Dijk et al. (under review), with full code
available online (www.brainclinics.com/resources). 

For the MPH/GUAN validation dataset 37, eyes-closed EEGs were recorded from 40 channels (AF3, AF4,
AFz, C3, C4, CPz, Cz, F10, F3, F4, F7, F8, F9, FCz, FP1, FP2, FPz, FT10, FT7, FT8, FT9, Fz, Iz, O1, O2, Oz,
P10, P3, P4, P7, P8, P9, POz, Pz, T7, T8, TP10, TP7, TP8, TP9) for 5 minutes with a sampling rate of 256
Hz and referenced to linked ears (for further details, see 37,65). Recordings were subsequently matched to
our data, i.e., the 40 channels were reduced to 22 channels matching TD-BRAIN+ set-up (with FC3, FC4,
CP3 and CP4 missing). Artifact rejection for the independent validation dataset was performed in
BrainVision Analyzer Version 2.2.0 (Brain Products GmbH, Gilching, Germany) by semi-automatic removal
of epochs with signal amplitudes >150mV.

iAPF determination

The individual alpha peak frequency was determined by computing the FFT of the preprocessed, artefact-
free data. Frequency resolution varied depending on the segmentation of data (e.g., 0.2 Hz for 5s
segments). Subsequently each individual’s iAPF was determined by identifying the highest peak within
the frequency range of 7 to 13 Hz. 

Biomarker Discovery Phase

Biomarker discovery a priori focused on males and females separately due to previously reported
qualitative sex differences 9,34.

First, datasets with LVA were identi�ed and excluded from further analysis since in cases of absent alpha,
no reliable peak can be determined which would decrease the signal-to-noise ratio for iAPF and weaken
treatment prediction on the group-level. In short, subjects whose alpha power fell below a z-score of -1.96
of the log-transformed average spectral power distribution were discarded (for more details, see
supplement S2).

In order to optimize EEG processing, iAPFs determined with different processing parameters were
correlated with age based on the well-known notion that iAPF indexes brain-maturation, thus validating
against the biologically most plausible alpha peak that will explain most of the variance (i.e., the highest
correlations with age). An upper age threshold of 18 years was chosen a priori, i.e., the age at which iAPF
is assumed to plateau, based on early literature 21 and more recent work that showed the iAPF maturation
effect in a sample aged 6 to 18 years 13. Parameters tested were: a) EEG segment lengths from 2-7s, b)
reference to an AR or a LM montage and c) site (locations Fz, Pz, Oz). All combinations of these
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parameters were applied to determine iAPFs from the EC and EO recordings separately, as well as from
the difference between EC and EO power spectra.

A decision on segment length was made based on 1) the strength of the correlation and 2) the number of
subjects retained for each segment length and averaged across reference (LM and AR), and conditions
(EC, EO, Diff) for all 3 electrode locations (Fz, Pz, Oz) separately. The choice of reference montage was
based on the highest iAPF age correlation for the age range of interest, i.e., subjects below the age of 18. 

Subsequently, the iAPF-age effect was eliminated and resulting values divided into 10 equal-sized bins
(deciles) to improve interpretability. 

In order to validate the use of a clinical instead of a normative dataset, the full curve �tting procedure in
GraphPad prism, speci�ed above, was repeated in a normative dataset 66. Subsequently, in a comparison
of �t both the normative and the clinical curve �t were applied to both the normative and clinical data
separately and the �t was compared.

A secondary analysis, comparing the curve �t of the clinical TD-BRAIN+ dataset with the curve �t speci�c
to a normative dataset 66 in GraphPad prism, indicated that the parameters of the clinical dataset
generalized signi�cantly better (p=0.03) to the normative data than the other way around (p=.21),
suggesting that the clinical data is capable of explaining higher variance.

Biomarker transfer phase

We �rst aimed to align previous �ndings which differed with regard to primary outcome measure
(response vs remission) and subsample (boys aged 6-18 vs boys aged 12-18) 13,32. To increase
comparability and clinical impact, we focused our analyses on males in the age range of 6-18 years and
on remission – de�ned as an item mean of ≤1.00 on the ADHD-RS-IV - as primary clinical outcome 35.

Biomarker validation phase

Finally, Brainmarker-1 was prospectively validated for MPH and multimodal NFB treatment by a blinded
prediction of remission status, solely based on age, sex and baseline EEG in two independent dataset.

Biomarker exploration phase

Analyses for the exploration phase were similar to those in the transfer phase but without a guided
hypothesis. The focus of analysis was also an age range of 6-18 years and remission as clinical
outcome.  

Statistics

First, Spearman correlations between the various iAPFs resulting from different EEG processing
combinations (see supplement S3 and supplementary �gure S2) and age in subjects below 18 years
(N=1671) were calculated. To determine standardized iAPF values independent of age, we derived non-
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linear regression models based on the full TD-BRAIN+ dataset that most closely �t the given data for
each electrode (Fz, Pz, Oz). Different mathematical models following the developmental trajectory of the
iAPF (such as a Log gaussian model, in line with 67) were contrasted against a linear model (null
hypothesis) and individually adjusted for females and males and for each site (channel). Divergence
values representing where the individual’s iAPF lies in relation to other people’s iAPFs, were calculated
from the resulting models by subtracting the model-derived average iAPF for each subject’s age from the
person’s actual iAPF. Correlations between divergence values and age were conducted to con�rm that the
age effect had been eliminated from the data. The resulting divergence values were ranked from low to
high and divided into 10 equal-sized bins (deciles) to increase interpretability by clinicians.

The �nal strati�cation outcome for the transfer phase and strati�cation decision for the exploration
phase were based on the positive predictive values (PPVs) at different decile cut-off points, indicating
remission rate within the subsample of patients that the Brainmarker-1 would have strati�ed to the
respective treatment. Since PPVs are dependent on prevalence (here: observed remission) and remission
rates differed between treatment datasets, we normalized PPVs for better comparability across datasets
by dividing the PPV by the observed remission and subtracting 1.

Curve fitting models were developed in GraphPad Prism version 8.4.0 for MacOS. Spearman correlations
were conducted with Python modules scipy, and numpy.

All other statistical analyses were performed in IBM SPSS Statistics for Macintosh, Version 27.0.
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Figure 1

Biomarker Discovery Phase. (1) Excerpt from heatmaps of the total of 108 algorithm permutations (27
depicted) that were tested and selected based on the highest correlation between age and iAPF in
subjects <18 years (Spearman Correlation ρ; black digits) and the highest retention of data (number of
subjects N; white digits). (2) Spearman Correlation ρ between age (6-18 yrs.) and iAPF (2a) and number
of subjects (2b) for each electrode and segment length (2-7s) for condition EC averaged across reference
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montages (N=1715). (3) Flattening the iAPF-age curve for males (3a) and females (3b) separately at
electrode location Oz. Upper subplots depict non-standardized iAPFs and the optimized Log Gaussian
model �t. Lower subplots depict the age-standardized divergence values and a linear �t through the data.
(4) Example of the derived biomarker (Brainmarker-1) based on the �nal age- and sex-standardized
scores, with deciles 1-5 yielding a recommendation for NFB treatment and deciles 6-10 yielding a
recommendation for MPH.

Figure 2

Predicted remission rate after strati�cation. Normalized PPVs (in blue) for each treatment group depict
predicted gain in remission if patients had been strati�ed according to Brainmarker-1. Light vs. darker
green implicates opposite direction for Brainmarker-1, i.e. light green indicates decile 6-10 (e.g. MPH) and
dark green deciles 1-5 (e.g. NFB). Note that the predicted remission in the blinded validation is highest. 1
iSPOT-A (N=257), 2 NFB dataset (N=50), 3 MPH/GUAN dataset (MPH: N=58, GUAN: N= 55), 4 ICAN
(N=96), 5 ACTION (N=47) MPH= Methylphenidate, NFB = Neurofeedback, ATX=Atomoxetine, GUAN =
Guanfacine
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