1. Fujita, T. and Fujii, H. (2013) Efficient isolation of specific genomic regions and identification of associated proteins by engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) using CRISPR. Biochem. Biophys. Res. Commun., 439, 132-136.
2. Bogdanove, A.J. and Voytas, D.F. (2011) TAL effectors: customizable proteins for DNA targeting. Science, 333, 1843-1846.
3. Harrison, M.M., Jenkins, B.V., O'Connor-Giles, K.M. and Wildonger, J. (2014) A CRISPR view of development. Genes Dev., 28, 1859-1872.
4. Wright, A.V., Nuñez, J.K. and Doudna, J.A. (2016) Biology and applications of CRISPR systems: harnessing nature's toolbox for genome engineering. Cell, 164, 29-44.
5. Xu, X. and Qi, L.S. (2018) A CRISPR-dCas Toolbox for Genetic Engineering and Synthetic Biology. J. Mol. Biol., 431, 34-47.
6. Fujita, T. and Fujii, H. (2019) Purification of specific DNA species using the CRISPR system. Biology Methods & Protocols, 4, bpz008.
7. Fujita, T., Yuno, M. and Fujii, H. (2016) Efficient sequence-specific isolation of DNA fragments and chromatin by in vitro enChIP technology using recombinant CRISPR ribonucleoproteins. Genes Cells, 21, 370-377.
8. Shamsi, F., Xue, R., Huang, T.L., Lundh, M., Liu, Y., Leiria, L.O., Lynes, M.D., Kempf, E., Wang, C.-H., Sugimoto, S. et al. (2020) FGF6 and FGF9 regulate UCP1 expression independent of brown adipogenesis. Nat. Commun., 11, 1421.
9. Fujita, T., Yuno, M., Okuzaki, D., Ohki, R. and Fujii, H. (2015) Identification of non-coding RNAs associated with telomeres using a combination of enChIP and RNA sequencing. PLoS One, 10, e0123387.
10. Zhang, Y., Hu, J.-F., Wang, H., Cui, J., Gao, S., Hoffman, A.R. and Li, W. (2017) CRISPR Cas9-guided chromatin immunoprecipitation identifies miR483 as an epigenetic modulator of IGF2 imprinting in tumors. Oncotarget, 8, 34177-34190.
11. Fujita, T., Yuno, M., Suzuki, Y., Sugano, S. and Fujii, H. (2017) Identification of physical interactions between genomic regions by enChIP-Seq. Genes Cells, 22, 506-520.
12. Seo, W., Shimizu, K., Kojo, S., Okeke, A., Kohwi-Shigematsu, T., Fujii, S.-i. and Taniuchi, I. (2020) Runx-mediated regulation of CCL5 via antagonizing two enhancers influences immune cell function and anti-tumor immunity. Nat. Commun., 11, 1562.
13. Fujita, T. and Fujii, H. (2014) Identification of proteins associated with an IFNγ-responsive promoter by a retroviral expression system for enChIP using CRISPR. PLoS One, 9, e103084.
14. Fujita, T., Kitaura, F., Oji, A., Tanigawa, N., Yuno, M., Ikawa, M., Taniuchi, I. and Fujii, H. (2018) Transgenic mouse lines expressing the 3xFLAG-dCas9 protein for enChIP analysis. Genes Cells, 23, 318-325.
15. DuBridge, R.B., Tang, P., HC, H., Leong, P.M., Miller, J.H. and Calos, M.P. (1987) Analysis of mutation in human cells by using an Epstein-Barr virus shttle system. Mol Cell Biol., 7, 379-387.
16. Rasheed, S., Nelson-Rees, W.A., Toth, E.M., Arnstein, P. and Gardner, M.B. (1974) Characterization of a newly derived human sarcoma cell line (HT-1080). Cancer, 33, 1027-1033.
17. Miller, A.D. and Buttimore, C. (1986) Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production. Mol Cell Biol. , 6, 2895-2902.
18. Morita, S., Kojima, T. and Kitamura, T. (2000) Plat-E: and efficient and stable system for transient packaging of retroviruses. Gene Ther., 7, 1063-1066.