Aliakbari, A., Zemb, O., Billon, Y., Barilly, C., Ahn, I., Riquet, J., et al. (2021). Genetic relationships between feed efficiency and gut microbiome in pig lines selected for residual feed intake. J Anim Breed Genet 138, 491–507. doi:10.1111/jbg.12539.
Allen, M. S., Bradford, B. J., and Oba, M. (2009). BOARD-INVITED REVIEW: The hepatic oxidation theory of the control of feed intake and its application to ruminants. Journal of Animal Science 87, 3317–3334. doi:10.2527/jas.2009-1779.
Amadeu, R. R., Cellon, C., Olmstead, J. W., Garcia, A. A. F., Resende, M. F. R., and Muñoz, P. R. (2016). AGHmatrix: R Package to Construct Relationship Matrices for Autotetraploid and Diploid Species: A Blueberry Example. Plant Genome 9. doi:10.3835/plantgenome2016.01.0009.
Andrade, B. G. N., Bressani, F. A., Cuadrat, R. R. C., Tizioto, P. C., Oliveira, P. S. N. D., Mourão, G. B., et al. (2020). The structure of microbial populations in Nelore GIT reveals inter-dependency of methanogens in feces and rumen. 1–10. doi:10.1186/s40104-019-0422-x.
Belkaid, Y., and Hand, T. W. (2014). Role of the Microbiota in Immunity and Inflammation. Cell 157, 121–141. doi:10.1016/j.cell.2014.03.011.
Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., et al. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology 37, 852–857. doi:10.1038/s41587-019-0209-9.
Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., and Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods 13, 581–583. doi:10.1038/nmeth.3869.
Carberry, C. A., Kenny, D. A., Han, S., McCabe, M. S., and Waters, S. M. (2012). Effect of phenotypic residual feed intake and dietary forage content on the rumen microbial community of beef cattle. Applied and environmental microbiology 78, 4949–58. doi:10.1128/AEM.07759-11.
Chang, J., Peng, S., Ciais, P., Saunois, M., Dangal, S., Herrero, M., et al. (2019). Revisiting enteric methane emissions from domestic ruminants and their δ13CCH4 source signature reflecting diet and environmental shifts. doi:10.22022/ESM/06-2019.45.
Chen, X., Zuo, Q., Hai, Y., and Sun, X. J. (2011). Lactulose: An indirect antioxidant ameliorating inflammatory bowel disease by increasing hydrogen production. Medical Hypotheses 76, 325–327. doi:10.1016/j.mehy.2010.09.026.
Cook, J., Oreskes, N., Doran, P. T., Anderegg, W. R. L., Verheggen, B., Maibach, E. W., et al. (2016). Consensus on consensus: A synthesis of consensus estimates on human-caused global warming. Environmental Research Letters 11. doi:10.1088/1748-9326/11/4/048002.
de Oliveira, M. N. V., Jewell, K. A., Freitas, F. S., Benjamin, L. A., Tótola, M. R., Borges, A. C., et al. (2013). Characterizing the microbiota across the gastrointestinal tract of a Brazilian Nelore steer. Veterinary microbiology 164, 307–14. doi:10.1016/j.vetmic.2013.02.013.
Dill-McFarland, K. A., Weimer, P. J., Breaker, J. D., and Suen, G. (2019). Diet Influences Early Microbiota Development in Dairy Calves without Long-Term Impacts on Milk Production. Applied and environmental microbiology 85, 1–12. doi:10.1128/AEM.02141-18.
Donoghue, K. A., Bird-Gardiner, T., Arthur, P. F., Herd, R. M., and Hegarty, R. S. (2016). Repeatability of methane emission measurements in Australian beef cattle. Anim. Prod. Sci. 56, 213. doi:10.1071/AN15573.
Dowd, S. E., Callaway, T. R., Wolcott, R. D., Sun, Y., McKeehan, T., Hagevoort, R. G., et al. (2008). Evaluation of the bacterial diversity in the feces of cattle using 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP). BMC microbiology 8, 125. doi:10.1186/1471-2180-8-125.
Flint, H. J., Duncan, S. H., Scott, K. P., and Louis, P. (2007). Interactions and competition within the microbial community of the human colon: links between diet and health. Environmental microbiology 9, 1101–11. doi:10.1111/j.1462-2920.2007.01281.x.
Gardiner, G. E., Metzler-Zebeli, B. U., and Lawlor, P. G. (2020). Impact of Intestinal Microbiota on Growth and Feed Efficiency in Pigs: A Review. Microorganisms 8, 1886. doi:10.3390/microorganisms8121886.
Gilbert, J. a., and Dupont, C. L. (2011). Microbial Metagenomics: Beyond the Genome. Annual Review of Marine Science 3, 347–371.
Guan, L. L., Nkrumah, J. D., Basarab, J. A., and Moore, S. S. (2008). Linkage of microbial ecology to phenotype: correlation of rumen microbial ecology to cattle’s feed efficiency. FEMS Microbiology Letters 288, 85–91. doi:10.1111/j.1574-6968.2008.01343.x.
Hernandez-Sanabria, E., Goonewardene, L. A., Wang, Z., Durunna, O. N., Moore, S. S., and Guan, L. L. (2012). Impact of Feed Efficiency and Diet on Adaptive Variations in the Bacterial Community in the Rumen Fluid of Cattle. Appl Environ Microbiol 78, 1203–1214. doi:10.1128/AEM.05114-11.
Hespell, R. B. (1992). “The Genera Succinivibrio and Succinimonas,” in The Prokaryotes (New York, NY: Springer New York), 3979–3982. doi:10.1007/978-1-4757-2191-1_60.
Holman, D. B., and Gzyl, K. E. (2019). A meta-analysis of the bovine gastrointestinal tract microbiota. FEMS Microbiology Ecology 95, fiz072. doi:10.1093/femsec/fiz072.
Kageyama, A., and Benno, Y. (2000). Phylogenic and Phenotypic Characterization of Some Eubacterium -Like Isolates from Human Feces: Description of Solobacterium moorei Gen. Nov., Sp. Nov. Microbiology and Immunology 44, 223–227. doi:10.1111/j.1348-0421.2000.tb02487.x.
Kaul, A., Mandal, S., Davidov, O., and Peddada, S. D. (2017). Analysis of microbiome data in the presence of excess zeros. Frontiers in Microbiology 8, 1–10. doi:10.3389/fmicb.2017.02114.
Kittelmann, S., Devente, S. R., Kirk, M. R., Seedorf, H., Dehority, B. A., and Janssen, P. H. (2015). Phylogeny of Intestinal Ciliates, Including Charonina ventriculi, and Comparison of Microscopy and 18S rRNA Gene Pyrosequencing for Rumen Ciliate Community Structure Analysis. Applied and Environmental Microbiology 81, 2433–2444. doi:10.1128/aem.03697-14.
Koch, R. M., Swiger, L. A., Chambers, D., and Gregory, K. E. (1963). Efficiency of Feed Use in Beef Cattle. Journal of Animal Science 22, 486–494. doi:10.2527/jas1963.222486x.
Larsen, N., De Souza, C. B., Krych, L., Cahú, T. B., Wiese, M., Kot, W., et al. (2019). Potential of pectins to beneficially modulate the gut microbiota depends on their structural properties. Frontiers in Microbiology 10, 1–13. doi:10.3389/fmicb.2019.00223.
Lassen, J., and Difford, G. F. (2020). Review: Genetic and genomic selection as a methane mitigation strategy in dairy cattle. Animal 14, s473–s483. doi:10.1017/S1751731120001561.
Lee, E.-H., Moon, K.-E., Kim, T. G., Lee, S.-D., and Cho, K.-S. (2015). Inhibitory effects of sulfur compounds on methane oxidation by a methane-oxidizing consortium. Journal of Bioscience and Bioengineering 120, 670–676. doi:10.1016/j.jbiosc.2015.04.006.
Lee, G.-H., Kumar, S., Lee, J.-H., Chang, D.-H., Kim, D.-S., Choi, S.-H., et al. (2012). Genome Sequence of Oscillibacter ruminantium Strain GH1, Isolated from Rumen of Korean Native Cattle. Journal of Bacteriology 194, 6362–6362. doi:10.1128/JB.01677-12.
Lopes, D. R. G., de Souza Duarte, M., La Reau, A. J., Chaves, I. Z., de Oliveira Mendes, T. A., Detmann, E., et al. (2021). Assessing the relationship between the rumen microbiota and feed efficiency in Nellore steers. J Animal Sci Biotechnol 12, 79. doi:10.1186/s40104-021-00599-7.
Lovley, D. R., Greening, R. C., and Ferry, J. G. (1984). Rapidly growing rumen methanogenic organism that synthesizes coenzyme M and has a high affinity for formate. Appl Environ Microbiol 48, 81–87. doi:10.1128/aem.48.1.81-87.1984.
Mallick, H., Rahnavard, A., McIver, L. J., Ma, S., Zhang, Y., Tickle, T. L., et al. (2021). Multivariable Association Discovery in Population-scale Meta-omics Studies. bioRxiv, 2021.01.20.427420.
Marounek, M., and Duskova, D. (1999). Metabolism of pectin in rumen bacteria Butyrivibrio fibrisolvens and Prevotella ruminicola. Letters in Applied Microbiology 29, 429–433. doi:10.1046/j.1472-765X.1999.00671.x.
McCormack, U. M., Curião, T., Buzoianu, S. G., Prieto, M. L., Ryan, T., Varley, P., et al. (2017). Exploring a possible link between the intestinal microbiota and feed efficiency in pigs. Applied and Environmental Microbiology 83, 1–16. doi:10.1128/AEM.00380-17.
Meale, S. J., Popova, M., Saro, C., Martin, C., Bernard, A., Lagree, M., et al. (2021). Early life dietary intervention in dairy calves results in a long-term reduction in methane emissions. Sci Rep 11, 3003. doi:10.1038/s41598-021-82084-9.
Moss, A. R., Jouany, J. P., and Newbold, J. (2000). Methane production by ruminants: Its contribution to global warming. Animal Research 49, 231–253. doi:10.1051/animres:2000119.
Mudadu, M. A., Porto-Neto, L. R., Mokry, F. B., Tizioto, P. C., Oliveira, P. S. N., Tullio, R. R., et al. (2016). Genomic structure and marker-derived gene networks for growth and meat quality traits of Brazilian Nelore beef cattle. BMC Genomics 17, 235. doi:10.1186/s12864-016-2535-3.
Myer, P. R., Smith, T. P. L., Wells, J. E., Kuehn, L. A., and Freetly, H. C. (2015). Rumen microbiome from steers differing in feed efficiency. PLoS ONE 10, 1–17. doi:10.1371/journal.pone.0129174.
Neumann, A. P., McCormick, C. A., and Suen, G. (2017). Fibrobacter communities in the gastrointestinal tracts of diverse hindgut-fermenting herbivores are distinct from those of the rumen. Environmental microbiology 19, 3768–3783. doi:10.1111/1462-2920.13878.
Noel, S. J., Olijhoek, D. W., Mclean, F., Løvendahl, P., Lund, P., and Højberg, O. (2019). Rumen and Fecal Microbial Community Structure of Holstein and Jersey Dairy Cows as Affected by Breed, Diet, and Residual Feed Intake. Animals 9, 498. doi:10.3390/ani9080498.
O’Herrin, S. M., and Kenealy, W. R. (1993). Glucose and carbon dioxide metabolism by Succinivibrio dextrinosolvens. Applied and Environmental Microbiology 59, 748–755.
Pachauri, R. K., Mayer, L., and Intergovernmental Panel on Climate Change eds. (2015). Climate change 2014: synthesis report. Geneva, Switzerland: Intergovernmental Panel on Climate Change.
Parada Venegas, D., De la Fuente, M. K., Landskron, G., González, M. J., Quera, R., Dijkstra, G., et al. (2019). Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Front. Immunol. 10, 277. doi:10.3389/fimmu.2019.00277.
Parker, B. J., Wearsch, P. A., Veloo, A. C. M., and Rodriguez-Palacios, A. (2020). The Genus Alistipes: Gut Bacteria With Emerging Implications to Inflammation, Cancer, and Mental Health. Front. Immunol. 11, 906. doi:10.3389/fimmu.2020.00906.
Perea, K., Perz, K., Olivo, S. K., Williams, A., Lachman, M., Ishaq, S. L., et al. (2017). Feed efficiency phenotypes in lambs involve changes in ruminal, colonic, and small-intestine-located microbiota1. Journal of Animal Science 95, 2585–2592. doi:10.2527/jas.2016.1222.
Polansky, O., Sekelova, Z., Faldynova, M., Sebkova, A., Sisak, F., and Rychlik, I. (2015). Important Metabolic Pathways and Biological Processes Expressed by Chicken Cecal Microbiota. Appl Environ Microbiol 82, 1569–1576. doi:10.1128/AEM.03473-15.
Popova, M., Guyader, J., Silberberg, M., Seradj, A. R., Saro, C., Bernard, A., et al. (2019). Changes in the Rumen Microbiota of Cows in Response to Dietary Supplementation with Nitrate, Linseed, and Saponin Alone or in Combination. Applied and Environmental Microbiology 85, 1–16. doi:10.1128/AEM.02657-18.
Pszczola, M., Strabel, T., Mucha, S., and Sell-Kubiak, E. (2018). Genome-wide association identifies methane production level relation to genetic control of digestive tract development in dairy cows. Scientific reports 8, 15164. doi:10.1038/s41598-018-33327-9.
Quan, J., Cai, G., Ye, J., Yang, M., Ding, R., Wang, X., et al. (2018). A global comparison of the microbiome compositions of three gut locations in commercial pigs with extreme feed conversion ratios. Scientific Reports 8, 1–10. doi:10.1038/s41598-018-22692-0.
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., et al. (2013). The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research 41, 590–596. doi:10.1093/nar/gks1219.
Ramayo-Caldas, Y., Zingaretti, L., Popova, M., Estellé, J., Bernard, A., Pons, N., et al. (2020). Identification of rumen microbial biomarkers linked to methane emission in Holstein dairy cows. Journal of Animal Breeding and Genetics 137, 49–59. doi:10.1111/jbg.12427.
Roehe, R., Dewhurst, R. J., Duthie, C. A., Rooke, J. A., McKain, N., Ross, D. W., et al. (2016). Bovine Host Genetic Variation Influences Rumen Microbial Methane Production with Best Selection Criterion for Low Methane Emitting and Efficiently Feed Converting Hosts Based on Metagenomic Gene Abundance. PLoS Genetics 12, 1–20. doi:10.1371/journal.pgen.1005846.
Russell, J. B., and Hespell, R. B. (1981). Microbial Rumen Fermentation. Journal of Dairy Science 64, 1153–1169. doi:10.3168/jds.S0022-0302(81)82694-X.
Sahoo, P. K., Kim, K., and Powell, M. A. (2016). Managing Groundwater Nitrate Contamination from Livestock Farms: Implication for Nitrate Management Guidelines. Curr Pollution Rep 2, 178–187. doi:10.1007/s40726-016-0033-5.
Seedorf, H., Kittelmann, S., Henderson, G., and Janssen, P. H. (2014). RIM-DB: a taxonomic framework for community structure analysis of methanogenic archaea from the rumen and other intestinal environments. PeerJ 2, e494. doi:10.7717/peerj.494.
Shi, W., Moon, C. D., Leahy, S. C., Kang, D., Froula, J., Kittelmann, S., et al. (2014). Methane yield phenotypes linked to differential gene expression in the sheep rumen microbiome. 1517–1525. doi:10.1101/gr.168245.113.1.
Solden, L., Lloyd, K., and Wrighton, K. (2016). The bright side of microbial dark matter: lessons learned from the uncultivated majority. Current opinion in microbiology 31, 217–226. doi:10.1016/j.mib.2016.04.020.
Tedelind, S., Westberg, F., Kjerrulf, M., and Vidal, A. (2007). Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: A study with relevance to inflammatory bowel disease. WJG 13, 2826. doi:10.3748/wjg.v13.i20.2826.
Tian, L., Wang, X.-W., Wu, A.-K., Fan, Y., Friedman, J., Dahlin, A., et al. (2020). Deciphering functional redundancy in the human microbiome. Nat Commun 11, 6217. doi:10.1038/s41467-020-19940-1.
Ungerfeld, E. M. (2015). Shifts in metabolic hydrogen sinks in the methanogenesis-inhibited ruminal fermentation: a meta-analysis. Frontiers in Microbiology 6. doi:10.3389/fmicb.2015.00037.
van GYLSWYK, N. O. (1995). Succiniclasticum ruminis gen. nov., sp. nov., a Ruminal Bacterium Converting Succinate to Propionate as the Sole Energy-Yielding Mechanism. International Journal of Systematic Bacteriology 45, 297–300. doi:10.1099/00207713-45-2-297.
VanRaden, P. M. (2008). Efficient Methods to Compute Genomic Predictions. Journal of Dairy Science 91, 4414–4423. doi:10.3168/jds.2007-0980.
Wang, K., Nan, X., Chu, K., Tong, J., Yang, L., Zheng, S., et al. (2018). Shifts of hydrogen metabolism from methanogenesis to propionate production in response to Replacement of forage fiber with non-forage fiber sources in diets in vitro. Frontiers in Microbiology 9, 1–12. doi:10.3389/fmicb.2018.02764.
Waters, J. L., and Ley, R. E. (2019). The human gut bacteria Christensenellaceae are widespread, heritable, and associated with health. BMC Biology 17, 1–11. doi:10.1186/s12915-019-0699-4.
Williams, M., Zalasiewicz, J., Haff, P., Schwägerl, C., Barnosky, A. D., and Ellis, E. C. (2015). The Anthropocene biosphere. The Anthropocene Review 2, 196–219. doi:10.1177/2053019615591020.
Wolin, M. J. (1960). A Theoretical Rumen Fermentation Balance. Journal of Dairy Science 43, 1452–1459. doi:10.3168/jds.S0022-0302(60)90348-9.
Ziyatdinov, A., Vázquez-Santiago, M., Brunel, H., Martinez-Perez, A., Aschard, H., and Soria, J. M. (2018). lme4qtl: linear mixed models with flexible covariance structure for genetic studies of related individuals. BMC Bioinformatics 19, 68. doi:10.1186/s12859-018-2057-x.