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Abstract

Current explosive outbreak of COVID-19 around the world is a complex spatiotemporal process
with hidden interactions between viruses and humans. This study aims at clarifying the transmis-
sion patterns and the driving mechanism that contributed to the COVID-19 epidemics across the
provinces of China. Thus a new dynamical transmission model is established by ordinary differen-
tial system. The model takes into account the hidden circulation of COVID-19 virus among/within
humans, which incorporates the spatial diffusion of infection by parameterizing human mobility.
Theoretical analysis indicates that the basic reproduction number is a unique epidemic threshold,
which can unite infectivity in each region by human mobility, and can totally determine whether
COVID-19 proceeds among multiple regions. By validating the model with real epidemic data in
China, it is found that (1) if without any intervention, COVID-19 would overrun China within
three months, resulting in more than 1.1 billion infections; (2) high frequency of human mobility
can trigger COVID-19 diffusion across each province in China, no matter where the initial infection
locates; (3) travel restrictions and other non-pharmaceutical interventions must be implemented
simultaneously for disease control; and (4) infection sites in central and east (rather than west and
northeast) of China would easily stimulate quick diffusion of COVID-19 in the whole country.

Key words COVID-19, spatiotemporal transmission, human mobility, prevention and control,
reproduction number

1 Introduction

The pandemic coronavirus disease (COVID-19) is caused by a newly discovered coronavirus
called SARS-CoV-2, which can spread from an infected person’s mouth or nose in small liquid
particles when they cough, sneeze, speak, sing or breathe [1]. Such easy transmission routes
coupled with large human mobility quickly result in explosive outbreak across the world. As of
June 10, 2021, this disease has attacked 212 countries, with a total of over 170 million confirmed
cases and over 3.76 million deaths [1]. COVID-19 is disrupting global health, economic, political
and social systems, and is posing comprehensive threats to people around the world.

The ongoing COVID-19 pandemic exhibits a clear time-space evolution. As the first case was
reported in Wuhan, China on 29 December 2019, the disease has spread to all the provinces in
China within a month [2]. By 21 February 2020, it has occurred in 27 countries, and the number of
infected countries quickly increases to over 170 in late March. The infection size rose sharply from
282 to over 5 million during 5 months period. Such fast diffusion and hierarchical structures in time
and place were possibly shaped by human behaviors (e.g., communication, work and movement).
For example, after initial emergence in China, travel-related cases started appearing in other
parts of the world with strong travel links to Wuhan [3]. This pattern along with the special
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characteristics of COVID-19: (1) high pathogenicity and hidden transmission among humans [4],
(2) large asymptomatic patients with infectivity [5], (3) short serial interval [6], and (4) massive
susceptibility [7], make it very difficult to assess the risk and control the infection. Recognizing
the spatiotemporal transmission dynamics can help to forecast epidemic tendency, identify the
potential drivers of transmission and high-risk population, and guide the designing of targeted
interventions in resource limited settings.

Technically speaking, pure statistical model and mapping analysis can quantitatively tell the
infection patterns in time and space. Mathematical frameworks incorporated epidemiology survey
data can further capture the intrinsic variability of spatiotemporal transmission of epidemics, which
are used increasingly in interdisciplinary studies [8]. Focusing on in the COVID-19 pandemic, many
epidemiology-inspired models, including SIR, SIS, and SEIR models, had been built to study the
spreading patterns [9, 10, 11, 12, 13, 14]. By simulating the underlying transmission process, these
studies found that (1) real-time mobility data from Wuhan can well elucidate the transmission
in cities across China (2) various nonpharmaceutical interventions are effective in controlling the
spread of the disease [13, 15, 16, 17, 18]; and (3) mobility networks of air travel can predict the
global diffusion pattern at the early stages of the outbreak, and an unconstrained mobility would
have significantly accelerated the spreading of COVID-19 [19].

This paper goes a further step to provide a new modeling framework with consideration of
human mobility and surveillance data to clarify the hidden dynamics accounting for COVID-
19 spatiotemporal transmission in China. Based on the deterministic compartment model, a
multi-population transmission model of COVID-19 is established by ordinary differential equations
(ODE). Qualitative theory is used to analyze the propagation dynamics of the model, including the
expression of the basic reproduction number and the equilibria, the global stability of the disease-
free and endemic equilibria. Finally, this model is applied to investigate the detailed transmission
patterns of COVID-19 across the provinces in China.

2 Modeling framework

To simulate the spatiotemporal transmission of COVID-19 across different regions, a new meta-
population dynamic model is proposed in this section. Based on the epidemiology features of
COVID-19 and compartmental theory, the following basic assumptions are proposed.

• During the outbreak of COVID-19 infection, humans are divided into susceptible (Si), ex-
posed (Ei), preclinical infectious (Ipi ), subclinical infectious (Isi ), clinical infectious (Ici )
and recovered (Ri) classes. Here Ipi and Isi are inapparent infections, and Ici are ap-
parent infections. The sum of these classes constitute the total population size, that is,
Ni = Si + Ei + Ipi + Isi + Ici + Ri. It is assumed that Ni is a constant, in which birth rate
equals to death rate d. Here the subscript i denote the location of these parameters.

• The infection routes follows susceptible-latent-infected-recovered process. Individuals can be
infected through contact with infectious individuals and then experience an incubation period
1/η. Exposed individuals progress to preclinical infectious (with probability ϕ) and subclini-
cal infectious (with probability 1−ϕ), subclinical infections with mild or no symptoms could
not be easily found and treated, but they can self-recover after time 1/γ. Preclinical infec-
tions before symptom appear progress to become clinical infectious who develop symptoms
after time 1/δ. They receive treatment and are cured successful through time 1/ω.

• When novel coronavirus carried by infected humans invades into a virgin area people there
(local residents and visitors from other region) could be infected with certain probability.
The model takes into account such spatial diffusion by incorporating a migration matrix P ,
in which element Pij denotes the average duration per unit time that the residents in region
i stay in region j. It satisfies Pij ≥ 0 and

∑

j Pij = 1.

Based on the above assumption, the essential features of the model framwork are depicted in Figure
1. Accordingly, the governing equations for simulating the spatiotemporal transmission dynamics
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Figure 1: Flow diagram on COVID-19 transmission with humans mobility among different regions.

of COVID-19 are illustrated as follows:






































































































dSi

dt
= dNi −

n
∑

j=1

λjPijSi

∑n
k=1 Pkj (I

p
k + αIsk + βIck)

∑n
k=1 PkjNk

− dSi,

dEi

dt
=

n
∑

j=1

λjPijSi

∑n
k=1 Pkj (I

p
k + αIsk + βIck)

∑n
k=1 PkjNk

− (η + d)Ei,

dIpi
dt

= ϕηEi − (δ + d)Ipi ,

dIsi
dt

= (1− ϕ)ηEi − (γ + d)Isi ,

dIci
dt

= δIpi − (ω + d)Ici ,

dRi

dt
= γIsi + ωIci − dRi,

(1)

where λj is the specific transmission rate in region j. The interpretation of other model parameters
are presented in Table 1.

Table 1: Description of parameters in the proposed model.
Parameters Definitions Value Source

d Birth/death rates 0.0011 [a]
α Effective transmission rate of subclinical infection variable [b]
β Effective transmission rate of clinical infection variable [b]

1/η Duration of incubation period 4 days [16]
1/δ Time span of humans from preclinical onset to clinical patients 1.5 days [16]
1/ω Duration of treatment and recovery for clinical patients 14 days [16]
1/γ Duration of recovery for subclinical infectious 5 days [16]
φ The probability of exposed individuals progress to preclinical infectious 0.82 [16]
κ Relative coefficient of migration matrix variable [b]

[a] It is estimated from the data in China’s National Bureau of Statistics in 2019.
[b] These parameters are estimated by MCMC method in this study.

3 Basic reproduction number

The basic reproduction number R0, as one of the most important theoretical concepts in epi-
demiology, acts the critical measure of the transmissibility [20]. R0 is interpreted as the average

3



number of secondary cases that are produced by a single primary case in a fully susceptible popu-
lation. In what follows, it is written S = (S1, S2, . . . , Sn)

T
and similarly for E, Ip, Is, Ic,R and N.

The matrices

Ap =







P11 · · · P1n

...
. . .

...
Pn1 · · · Pnn





















λ1
PT

1

PT
1
N

λ2
PT

2

PT
2
N

...

λn
PT

n

PT
n N















and the column vector Pi is the ith column of matrix (Pij)n×n. System (1) can then be written as
the following vectorial notation:



































































































dS

dt
= dN− diag(S) (ApI

p + αApI
s + βApI

c)− dS,

dE

dt
= diag(S) (ApI

p + αApI
s + βApI

c)− (η + d)E,

dIp

dt
= ϕηE− (δ + d) Ip,

dIs

dt
= (1− ϕ) ηE− (γ + d) Is,

dIc

dt
= δIp − (ω + d) Ic

dR

dt
= γIs + ωIc − dR.

(2)

Here for u ∈ Rn, diag(u) denotes the n× n diagonal matrix whose main diagonal is u. It is clear
that

Ω=
{

(S,E, Ip, Is, Ic,R) ∈ R6n
+ |0 ≤ S,E, Ip, Is, Ic,R ≤ N

}

is a compact absorbing and positively invariant set for (2). Direct calculation yields that system
(2) has a disease-free equilibrium, denoted as Q0 =

(

S0,E0, Ip0, Is0, Ic0,R0
)

= (N,0,0,0,0,0) .
The basic reproduction number R0 is calculated by using the theory of next generation matrix

[20]. It is written as R0 = ρ(FV −1), where F is the rate of occurring new infections, and V is
the rate of transferring individuals outside the original group [20]. Here ρ represents the spectral
radius of matrix. Based on the model (1), direct calculation yields that

F =









0 diagNAp αdiagNAp βdiagNAp

0 0 0 0

0 0 0 0

0 0 0 0









,

and

V =









(η + d) I 0 0 0

−ϕηI (δ + d) I 0 0

− (1− ϕ) ηI 0 (γ + d) I 0

0 −δI 0 (ω + d) I









.

where I denote a identity matrix, and 0 is the zero matrix. It follows from the characteristic
equation of FV −1 that the basic reproduction number is given by

R0 = ρ

((

ϕη

(η + d) (δ + d)
+

(1− ϕ) ηα

(η + d) (γ + d)
+

ϕηδβ

(η + d) (δ + d) (ω + d)

)

diagNAp

)

. (3)

The three components of the R0 are separately contributed by the infections preclinical, subclinical,
and clinical states.
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4 Global stability

The results concerning the global dynamics of system (2) is analyzed in the following.

Theorem 4.1. System (2) has a unique endemic equilibrium Q∗.

Proof. It is denoted the expression of endemic equilibrium by S∗,E∗, Ip∗, Is∗ and Ic∗. Based on
the equilibrium definition, letting the right-hand side of system (2) to be zeros and substituting
S∗,E∗, Is∗ and Ic∗ by Ip∗, it is obtained an equation about Ip∗ as

f (Ip∗) = m1I
p∗diag(m2ApI

p∗)
−1

(dI+m2ApI
p∗)− dN,

where

m1 =
(η + d) (δ + d)

ϕη
,m2 = 1 +

α (1− ϕ) (δ + d)

ϕ (γ + d)
+

βδ

ω + d
.

Substituting Ip∗ by 0 and N yields that f (0) = −dN < 0, and

f (N) = m1Ndiag(m2ApN)
−1

[d1+m2ApN]− dN

≥ (δ+d)
φ Ndiag(ApN)

−1
(ApN)− dN = (δ+d)

φ N− dN > 0.

It follows from the zero-point theorem that system (2) has at least one positive equilibrium. Fur-
thermore, due to f ′ (Ip) = m11 > 0, f is an increasing function. Hence there exists a unique
positive endemic equilibrium in the compact set Ω.

Theorem 4.2. If R0 < 1, the disease-free equilibrium Q0 of system (2) is globally asymptotically
stable.

Proof. Since the total number of human population is a constant, the first equation of system (2)
can be ignored. Substituting S by (N−E− Ip − Is − Ic −R), it is obtained

dE

dt
= diag (N−E− Ip − Is − Ic −R) (ApI

p + αApI
s + βApI

c)− (η + d)E

≤ diag(N) (ApI
p + αApI

s + βApI
c)− (η + d)E.

The corresponding comparison system is


























































dĒ

dt
= diag(N)

(

ApĪ
p + αApĪ

s + βApĪ
c
)

− (η + d) Ē,

dĪp

dt
= ϕηĒ− (δ + d) Īp,

dĪs

dt
= (1− ϕ) ηĒ− (γ + d) Īs,

dĪc

dt
= δĪp − (ω + d) Īc.

(4)

It is clear that model (4) is a linear system, and the coefficient matrix of its variables in the right-
hand side is exactly the matrix (F −V ). Hence, when R0 = ρ

(

FV −1
)

< 1, the unique equilibrium
(E, Ip, Is, Ic) = (0,0,0,0) of this linear system (4) is globally asymptotically stable. Since

dE

dt
≤

dĒ

dt
,
dIp

dt
≤

dĪp

dt
,
dIs

dt
≤

dĪs

dt
,
dIc

dt
≤

dĪc

dt
.

According to the comparison theorem, with the same initial conditions, it has E(t) ≤ Ē(t), Ip(t) ≤
Īp(t), Is(t) ≤ Īs(t), and Ic(t) ≤ Īc(t) for any t > 0, yielding that Q0 is globally asymptotically
stable when R0 < 1.
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To establish global stability results of the endemic equilibrium, it is used the graph-theoretic
method as presented in [21] and [22].

Theorem 4.3. If R0 > 1, then, the unique endemic equilibrium Q∗ of system (2) is globally
asymptotically stable in Ω.

Proof. Denote

Di = Si − S∗

i − S∗

i ln
Si

S∗

i

+ Ei − E∗

i − E∗

i ln
Ei

E∗

i

,Dn+i = Ipi − Ip∗i − Ip∗i ln
Ipi
Ip∗i

,

D2n+i = Isi − Is∗i − Is∗i ln
Isi
Is∗i

,D3n+i = Ici − Ic∗i − Ic∗i ln
Ici
Ic∗i

, Ñj =

n
∑

k=1

PkjNk,

where the variable with superscript as star are the expressions of endemic equilibrium in the model.
Using the inequality 1− x+ lnx ≤ 0, for x > 0, direct differentiation yields:

Di
′ =

n
∑

j=1

λjPijS
∗

i ℓj
∗ + dS∗

i −
n
∑

j=1

λjPijSiℓj − dSi −
n
∑

j=1

λjPijS
∗

i
S∗

i

Si
ℓj

∗

− d
S∗

i S
∗

i

Si
+

n
∑

j=1

λjPijS
∗

i ℓj + dS∗

i

+
n
∑

j=1

λjPijSiℓj −
n
∑

j=1

λjPijS
∗

i
Ei

E∗

i

ℓj
∗

−
n
∑

j=1

λjPijSi
E∗

i

Ei
ℓj +

n
∑

j=1

λjPijS
∗

i ℓj
∗

≤
n
∑

j=1

λjPijS
∗

i ℓj
∗ −

n
∑

j=1

λjPijSiℓj −
n
∑

j=1

λjPijS
∗

i
S∗

i

Si
ℓj

∗ +
n
∑

j=1

λjPijS
∗

i ℓj

+
n
∑

j=1

λjPijSi −
n
∑

j=1

λjPijS
∗

i
Ei

E∗

i

ℓj
∗ −

n
∑

j=1

λjPijSi
E∗

i

Ei
ℓj +

n
∑

j=1

λjPijS
∗

i ℓj
∗

=
n
∑

j=1

λjPijS
∗

i ϖ
p
j

(

1−
SiI

p

k

S∗

i
Ip∗

k

−
S∗

i

Si
+

Ip

k

Ip∗

k

)

+
n
∑

j=1

λjPijS
∗

i αϖ
s
j

(

1−
SiI

s
k

S∗

i
Is∗
k

−
S∗

i

Si
+

Is
k

Is∗
k

)

+
n
∑

j=1

λjPijS
∗

i βϖ
c
j

(

1−
SiI

c
k

S∗

i
Ic∗
k

−
S∗

i

Si
+

Ic
k

Ic∗
k

)

+
n
∑

j=1

λjPijS
∗

i ϖ
p
j

(

1 +
SiI

p

k

S∗

i
Ip∗

k

− Ei

E∗

i

−
E∗

i SiI
p

k

EiS∗

i
Ip∗

k

)

+
n
∑

j=1

λjPijS
∗

i αϖ
s
j

(

1 +
SiI

s
k

S∗

i
Is∗
k

− Ei

E∗

i

−
E∗

i SiI
s
k

EiS∗

i
Is∗
k

)

+
n
∑

j=1

λjPijS
∗

i βϖ
c
j

(

1 +
SiI

c
k

S∗

i
Ic∗
k

− Ei

E∗

i

−
E∗

i SiI
c
k

EiS∗

i
Ic∗
k

)

≤
n
∑

j=1

λjPijS
∗

i ϖ
p
j

(

Ip

k

Ip∗

k

− ln
Ip

k

Ip∗

k

+ ln Ei

E∗

i

− Ei

E∗

i

)

+
n
∑

j=1

λjPijS
∗

i αϖ
s
j

(

Is
k

Is∗
k

− ln
Is
k

Is∗
k

+ ln Ei

E∗

i

− Ei

E∗

i

)

+
n
∑

j=1

λjPijS
∗

i βϖ
c
j

(

Ic
k

Ic∗
k

− ln
Ic
k

Ic∗
k

+ ln Ei

E∗

i

− Ei

E∗

i

)

=: ai,n+iGi,n+i + ai,2n+iGi,2n+i + ai,3n+iGi,3n+i.

Here,

ℓj
∗ =

1

Ñj

n
∑

k=1

Pkj

(

Ip∗k + αIs∗k + βIc∗k
)

, ℓj =
1

Ñj

n
∑

k=1

Pkj (I
p
k + αIsk + βIck),

ϖp
j =

1

Ñj

n
∑

k=1

PkjI
p∗
k , ϖs

j =
1

Ñj

n
∑

k=1

PkjI
s∗
k , ϖc

j =
1

Ñj

n
∑

k=1

PkjI
c∗
k .

Similarly,

D′

n+i = ϕηEi − ϕηE∗

i
Ip

i

Ip∗

i

− ϕηEi
Ip∗

i

Ip

i

+ ϕηE∗

i = ϕηE∗

i

(

1−
EiI

p∗

i

E∗

i
Ip

i

−
Ip

i

Ip∗

i

+ Ei

E∗

i

)

≤ ϕηE∗

i

(

Ei

E∗

i

− ln Ei

E∗

i

+ ln
Ip

i

Ip∗

i

−
Ip

i

Ip∗

i

)

=: an+i,iGn+i,i.
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a

+
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Figure 2: Digraph representation of the matrix A of transmission used to determine the coefficients
in the Lyapunov function D.

D′

2n+i = (1− ϕ) ηEi − (1− ϕ) ηE∗

i
Is
i

Is∗
i

− (1− ϕ) ηEi
Is∗
i

Is
i

+ (1− ϕ) ηE∗

i

= (1− ϕ) ηE∗

i

(

1−
EiI

s∗
i

E∗

i
Is
i

−
Is
i

Is∗
i

+ Ei

E∗

i

)

≤ (1− ϕ) ηE∗

i

(

Ei

E∗

i

− ln Ei

E∗

i

+ ln
Is
i

Is∗
i

−
Is
i

Is∗
i

)

=: a2n+i,iG2n+i,i.

D′

3n+i = δIpi − δIp∗i
Ic
i

Ic∗
i

− δIpi
Is∗
i

Is
i

+ δIp∗i = δIp∗i

(

1−
Ip

i
Ic∗
i

Ip∗

i
Ic
i

−
Ic
i

Ic∗
i

+
Ip

i

Ip∗

i

)

≤ δIp∗i

(

Ip

i

Ip∗

i

− ln
Ip

i

Ip∗

i

+ ln
Ic
i

Ic∗
i

−
Ic
i

Ic∗
i

)

=: a3n+i,n+iG3n+i,n+i.

and

ai,n+i =
λjPijS

∗

i

Ñj

n
∑

k=1

PkjI
p∗
k , ai,2n+i =

λjPijS
∗

i α

Ñj

n
∑

k=1

PkjI
s∗
k , ai,3n+i =

λjPijS
∗

i β

Ñj

n
∑

k=1

PkjI
c∗
k ,

as well as an+i,i = ϕηE∗

i , a2n+i,i=(1− ϕ) ηE∗

i , a3n+i,i=δIp∗i . Let A = (aij)n×n with aij > 0 as
defined above and otherwise zero. The corresponding weighted digraph is shown in Figure 2.
Along each of the cycles on the graph, it is verified that

∑

Gij = 0; for instance, Gi,n+i+Gn+i,i =
0, Gj,n+i + Gn+j,j + Gi,n+j + Gn+i,i = 0, and so on. It follows from Theorem 3.5 in [21] that
there exist constants ci such that D =

∑

i ciQi is a Lyapunov function for system (2). Let
c1 = · · · = cn = 1, and

cn+i =

n
∑

j=1

(cjaj,n+i + cjaj,3n+i)

an+i,i
, c2n+i =

n
∑

j=1

cjaj,2n+i

a2n+i,i
, c3n+i =

n
∑

j=1

cjaj,3n+i

a3n+i,n+i
.

Further computation leads to

cn+i =
n
∑

j=1

[

λjPijS
∗

i

ÑjφηE∗

i

(

n
∑

k=1

PkjI
p∗
k + β

n
∑

k=1

PkjI
c∗
k

)]

,

c2n+i =
n
∑

j=1

(

λjPijS
∗

i α

(1−φ)ηE∗

i
Ñj

n
∑

k=1

PkjI
s∗
k

)

, c3n+i =
n
∑

j=1

(

λjPijS
∗

i β

δIp∗

i
Ñj

n
∑

k=1

PkjI
c∗
k

)

.

Hence, with the functions Di and constants ci given above, the expression

D =
n
∑

i=1

ciDi +
n
∑

i=1

cn+iDn+i +
n
∑

i=1

c2n+iD2n+i +
n
∑

i=1

c3n+iD3n+i
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is a Lyapunov function for system (2). Its derivative is

D′ =
n
∑

i=1

ci

(

Si−S∗

i

Si
Si

′ +
Ei−E∗

i

Ei
Ei

′

)

+
n
∑

i=1

cn+i

(

Ip

i
−Ip∗

i

Ip

i

Ipi
′

)

+
n
∑

i=1

c2n+i

(

Is
i −Is∗

i

Is
i

Isi
′

)

+
n
∑

i=1

c3n+i

(

Ic
i −Ic∗

i

Ic
i

Ici
′

)

.

When D′ = 0 in the set
{

R5n
+

}

, one can readily verify that Si = S∗

i , Ei = E∗

i , I
p
i = Ip∗i , Isi =

Is∗i , Ici = Ic∗i . For the left system,

dRi

dt
= γIs∗i + ωIc∗i − dRi. (5)

it is clear that system () has a unique equilibrium Ri = R∗

i , which is global asymptotically stable.
Using LaSalle’s Invariance Principle, it is concluded that the endemic equilibrium Q∗ is global
asymptotically stable in Ω.

5 Application to the outbreak in China

In this section, the proposed model is applied to analyze the spatiotemporal transmission
dynamics of COVID-19 in Chinese provinces. Daily records of human infections were collected
from authoritative data report. The permanent population size in each province were released by
the 2019 National Bureau of Statistics. The daily migration data among provinces is collected
from Baidu migration data (https://qianxi.baidu.com/).

The model is validated by using Markov chain Monte Carlo (MCMC) method to fit the daily
reported cases in 26 provinces (with cases more than 101 from 5 January 2020 to 15 March 2020).
Here 6 parameters (β, α, κ, and the initial values of E, Ic and Ip in HuB) were estimated by
MCMC. Since HuB province is considered to be the infection source, it is assumed that there is no
infections in other provinces at initial time. The transmission rate λi is derived from the effective
reproduction number Rt in province i. Rt represents the number of new morbidity cases caused by
an average morbidity case at time t. Here the Rt in each province is estimated from the time series
of its indigenous cases. Based on Bayesian framework, Rt is calculated by the EpiEstim package
in R language software [23], in which the intergenerational time follows gamma distribution, with
the mean value and standard deviation as 7.5 and 3.4 respectively [24].

The fitting results are shown in Figures 3 and S1 (in Supplementary Information). It is found
that the model performed well in fitting the daily reported incidences, except the data in some
provinces such as HeB, ZJ, HeN, HuN, CQ and GZ. The fitting deviations are possibly due to
the spatiotemporal heterogeneity of transmission parameters and detection efficiency. PRCC co-
efficients are used as global sensitivity to quantify the response of model outputs to the variation
of the estimated parameters. By averaging the daily PRCC coefficients in the operation of fitting
daily incidences, it is found that the output is strongly sensitive to the effective transmission rate
of clinical infection (β) and the relative coefficient of migration matrix (κ), followed by the effec-
tive transmission rate of subclinical infection (α). Yet it seems that in the entire infection process
the output is scarcely sensitive to the initial condition of the model. The reason for the negative
correlation of β and κ with model output is that for given Rt, small values of β and κ mean large
values of transmission rates λ.

In the following simulations of the model, it is set that (1) the initial conditions are E(0) =
50, Ip(0) = Is(0) = Ic(0) = 35 in Figures 4, 5 and S6, and E(0) = Ip(0) = Is(0) = Ic(0) = 20 in
Figures 6 and 7; (2) the impact of human mobility is reflected by the migration matrix P , and its
values are selected from Baidu migration data during 2020 and 2021; and (3) multiple interventions
(including social distancing, quarantine and wearing masks, etc.) are measured by different values
of the effective reproduction number Rt, in which the largest and minimum values are separately
Rt = 3.56 and Rt = 0.59, corresponding to the situations of no intervention (in early infection
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Table 2: Province and its abbreviation in China
Province Hubei Beijing tianjin Hebei Shanxi Liaoning Jilin Heilongjiang

Abbreviation HuB BJ TJ HeB SX LN JL HLJ
Province Shanghai Jiangsu Zhejiang Anhui Fujian Jiangxi Shandong Henan

Abbreviation SH JS ZJ AH FJ JX SD HeN
Province Hunan Guangdong Guangxi Hainan Chongqing Sichuan Guizhou Yunnan

Abbreviation HuN GD GX HaiN CQ SC GZ YN
Province Shaanxi Gansu Qinghai Ningxia Xinjiang Neimenggu Xizang

Abbreviation SaX GS QH NX XJ NMG XZ
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Figure 3: The fitting results of the COVID-19 cases in China. (a) Fitting daily new cases in HuB,
where the light shaded area is the 95% confidence interval (CI) for all 1000 simulations, and the
blue curve is the median of the model output; (b) Relationship between predicted and observed
cases in HuB. (a) Sensitivity of daily cases to the model parameters as indicated by PRCC values.

stage [2020.1.5-2020.1.22] in HuB) and rigorous intervention (in the mid to late stage of infection
[2020.1.23-2020.2.12] in HuB).

Figure 4 show the impacts of intervention on the evolution of COVID-19 in China, with different
initial infection site (i.e., HuB, BJ, SH, GD and XZ). The migration data during 23 January 2021
and 20 March 2021 are integrated into the model for simulating the transmission process under
two modes: few intervention and rigorous intervention. These two modes are reflected by the
choices of the reproduction number, whose values in each province are taken as the means of
the effective reproduction number at the beginning of the outbreak (2020.1.5-2020.1.22) and after
the intervention (2020.1.23-2020.2.12), respectively. For simulating the transmission for 57 days,
the following patterns are observed in Figure 4. First, in case of substituting the early Rt into
the model, the infection burden could increase hundreds of times, in which the numbers of total
infections in China could reach 111.08, 64.61, 66.71, 57.62 and 13.59 million with separate source
of initial infection in HuB, BJ, SH, GD and XZ. Second, in case of substituting the latter Rt into
the model, the above numbers reduce sharply to 228, 288, 215, 232 and 154. Moreover, the regions
around source of initial infection would likely suffer more serious attack, in which the highest attack
rates are: 0.28 in HuB and 0.14 in GZ with source in HuB, 0.20 in TJ and 0.12 in HuB with source
in BJ, 0.10 in JS and 0.09 in AN with source in SH, 0.15 in GZ and 0.09 in HuB with source in
GD, 0.19 in XZ and 0.1 in QH with source in XZ.

Figure 5 shows the ranking of total infections in China with a unique infection source at initial
time and human mobility at the entire process. Here it is assumed that there is no implementation
of intervention, which is realized by setting the reproduction number in each province to be the
value in early infection stage in HuB (equal 3.56). By simulating the transmission process through
57 days, it is found that (1) the initial infection located in HeN, ZJ, SH, JS and AH would caused
the top five numbers of human cases (over 300 million); (2) when the initial infection is located in
XZ, QH, JL, HLJ, XJ, it would lead to smallest infection sizes (around 142-183 million). Moreover,
by simulating the transmission process through 120 days, it is observed that the infection would
reach a saturated state: more than 1.1 billion people could be infected no matter where the infection
initially occurs. In this case, all provinces reach the highest levels of new infections after about
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Figure 4: The accumulative number of cases in each province before and after the intervention,
in case of different locations (HuB, BJ, SH, GD, XZ) of initial infection. The human mobility
information is adopted from the data during 23 January 2021 and 20 March 2021. The transmission
rate λ in Figures (a), (b), (c) and (d), (e), (f) are separately determined by the mean values of
effective reproduction number before and after the intervention.
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two months (see Figure S3), but the attack rate exhibits spatial heterogeneity, in which the area
near the initial infection source usually suffers worse.
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Figure 5: The cumulative number of cases in China with the human mobility data (a) from
January 23, 2021 to March 20, 2021, and (b) from January 23, 2021 to May 20, 2021, in case of
no implementation of social distance. The abscissa is the location that has unique infection source
at initial time. The yellow part is the contribution by the the location with initial infections.

Figure 6 shows the impacts of different conditions of initial infection and human mobility on
the evolution of COVID-19 transmission among the provinces in China, in case of no intervention.
It is observed that more sites with initial infection and more frequency of human mobility would
yield a little faster diffusion of the disease (that is more obvious in early infection period) and a
little earlier arriving of the peak. When the disease starts to spread from January 23, 2021, the
numbers of human cases would reach peak around early April or late March, in case of one initial
infection site(XZ), or two initial infection sites (HeN and GD). However, in case of all size with
initial infection, the peak is arriving basically in the middle of March, regardless of population
mobility. In these four settings, the infection would last for three months, causing similar number
of total infections.
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Figure 6: Time series of daily new cases in each province with different outbreak sites at initial
time and human mobility data from January 23, 2021 to May 20, 2021, in case of no intervention.
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Figure 7 shows the evolution dynamics of COVID-19 in China with different patterns of in-
tervention, in case of only GD as the initial infection site. Here the impacts of intervention and
human mobility are quantified by the basic reproduction number R0 and travel ban, respective-
ly. It is found that (1) slight increase of R0 would cause rapid transmission and high morbidity
around China, (2) travel ban among the provinces in China as early as possible can postpone the
propagation a little bit and possibly reduce total morbidity, and (3) the control effect of travel ban
is not significant (especially for large R0), only when the travel is restricted at first. Specifically,
(1) when R0 = 3.56, 2.5, 2, 1.5, and 1.1, human infections increase rapidly after 14, 29, 56, 72, and
81 days since the introduction of the infection, respectively; (2) when R0 = 3.56, 2.5, and 2, the
number of infections would reach the peak around March 27, May 2, and Jun 7, resulting in total
infections to be 1.1, 1.0, and 0.8 billion (regardless when to start travel ban after outbreak), but
the numbers would reduce vastly to 92.8, 75.9 and 85.7 million if travel ban starts before outbreak;
(3) when R0 = 2, if travel ban is implemented after 1 day, 10 days and 20 days of the break, the
transmission could be postponed 2 day, 5 day, and 18 days (compared with the case without travel
ban), resulting in 735.5 million, 865.6 million and 876.21 million of human infections; and (4) in
case of rigorous intervention (R0 < 1), it is impossible for travel to trigger disease outbreak.
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Figure 7: Time series of daily new cases in China with different timing of travel ban and different
basic reproduction number. Here human mobility information is selected from the data during
January 23, 2021 and July 4, 2021.

6 Discussion

COVID-19 is posing increasing threats to public health around the world. Clear information
about epidemiologic features and transmission patterns of the disease can help to control and
prevent COVID-19 transmission. The present study is an attempt to provide a modeling framework
to infer COVID-19 spatiotemporal transmission patterns by focusing on the COVID-19 outbreak
in 31 provinces of China.

Since the outbreak of COVID-19, many epidemiological models have been proposed and applied
to study the propagation of COVID-19. Focusing on the spatiotemporal transmission, modeling
framework including mathematical model (e.g., ordinary/partial differential equation [9, 10, 11, 12,
15, 16, 19], difference equations [13],) computational model (e.g., agent-based model [17] and next-
generation algorithm [18]), and statistical model (e.g., stochastic model [14] and ArcGIS [25]).
Inspired by existing studies, this paper presented a new mathematical model via ODEs, which
couples the intrinsic transmission dynamics, including the disease evolution in humans among
different states (susceptible, exposed, preclinical infectious, subclinical infectious, clinical infectious
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and recovered), infection action by human-human contact, and human mobility among different
regions. Moreover, the effects of human behavior and control strategy were characterized by model
parameters, which can regulate the the spatiotemporal infectivity and transmissibility. Finally,
MCMC algorithm was employed to estimate the uncertain parameters and then to evaluate the
model. The modeling framework is an update of recent studies. By validating the proposed model
with surveillance data in 31 provinces of China, the spatiotemporal transmission dynamics and the
effects of human mobility and interventions were clarified, which can providing the following clues
for guiding disease control.

First, there is a unique epidemic threshold, denoted by basic reproduction number R0, which
can totally determine whether COVID-19 proceeds among multiple regions. If R0 < 1, no matter
how many infection sources there are, COVID-19 will always die out. Otherwise, the disease will
persist in each region. R0 unites infectivity in each region by human mobility. Such mobility
contributes to transmission in two ways: susceptible persons in other regions could be infected
when traveling to outbreak area, and infected persons may bring COVID-19 virus from outbreak
area to other regions. Particularly, when R0 > 1, no region can escape from infection if there exists
human mobility among them.

Second, the effects of the implemented intervention in China are further evaluated. By using
the proposed model to simulate the spatiotemporal transmission dynamics, it is found that if the
interventions (e.g., social distancing, city lockdown, etc.) had not been implemented in China,
COVID-19 would prevail all around China and the transmission would last about three months,
resulting in over 1.1 billion patients. In this case, more than 78.6% population in China would be
infected by COVID-19 virus, which is over 11,981 times of the total number of reported cases. The
estimated effects of interventions are much more significant than previous results, which claimed
that (1) if without non-pharmaceutical interventions in China, the number of cases was predicted
to be 7.6 million by 29 February 2020 [15], or 37 million by 5 March 2020 [26], or increase the total
infections by 93.7% [27]. The reason for the severity of our estimation could be that this study
highlights the intrinsic spatiotemporal transmission dynamics and the total infection process.

Third, the role of human mobility in COVID-19 transmission is further clarified. Similarly to
previous studies [13, 25, 27], it is verified that human mobility (by travel) can spark new infections
in virgin areas and high frequency of human mobility in reality has driven COVID-19 diffusion
across the 31 provinces of China. The present paper further indicates that the effects of human
mobility in the spatiotemporal transmission of COVID-19 is more prominent in two cases: early
stage of infection and when R0 is a little bigger than one. If without intervention inside region,
then human mobility would accelerate disease propagation across different regions, but it could not
modify the number of total infections, unless travel is banned at the very beginning of infection.
Hence, regional human migration plays as a trigger in the preliminary stage of infection, and then
locally contracted infection dominates the following transmission process. The results demonstrate
that non-pharmaceutical intervention is the core strategy, and travel ban at the same time can
slow down the process and suppress incidence rate.

Fourth, the transmission patterns of COVID-19 in the whole country are further inferred.
The initial infection located in central and east of China (HeN, ZJ, SH, JS and AH) would easily
stimulate quick outbreak and large infection, but adverse consequence is observed if initial infection
is located in west and northeast of China (XJ, HLJ, QH, XZ, GS, NMG, and YN), in that there
exists less population flow. Yet if without any intervention, the transmission would continue three
months, and then no matter where the outbreak occurs and how many sits do initial infection
locates, the infections of COVID-19 would reach a saturation level, and more than 87% people in
China would be infected.

In view of current situation of COVID-19 pandemic, China is facing high risk of sporadic
outbreaks due to imported infections and is making great efforts for prevention. To control this
disease, beside promoting vaccination (that is precisely what China is doing), the present study
suggests that (1) identifying and isolating imported case is the primary mission, which can be
accomplished by monitoring the travellers from foreign countries by tight and thorough surveillance
system; and (2) in case of autochthonous infection, strict non-pharmaceutical interventions must
be taken as soon as possible, including tracking close contacts and quarantine, travel restriction,
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lockdown of high risky community. Indeed, such intervention strategies are exactly as China is
implementing. By doing so, more than 99.99% human infections would has been avoided according
to this study.

Here several limitations need to be clarified. (1) The COVID-19 incidence data was based on
public report information, which may yields data deviation from reality. (2) The biological param-
eters applied in the proposed model were extracted from literature, which may show geographical
disparities. (3) The model did not take into account the potential factors such as the difference
of immunity and infectivity. Nevertheless, the model captures the dynamic evolution of disease in
time and place, and incorporated the biologically intuitive parameterizations. It matches well with
spatiotemporal data by fitting several parameters, lending confidence to the analysis and justifying
the model’s further generalization.

In summary, this paper develops an inference technique to identify COVID-19 transmission
patterns and it is applied to explore the COVID-19 transmission patterns in the provinces of Chi-
na. The proposed model takes into account the essential effects of human mobility and disease
evolution, which allow to capture the hidden spatiotemporal dynamics and internal mechanism
of COVID-19 transmission. The obtained results support the interventions that are being imple-
mented in China.
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