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Abstract
Cellular hydrostatic pressure beyond its normal range can induce the accumulation of reactive oxidative
species (ROS) generated by mitochondria and lead to pathological conditions such as glaucomatous
optic neuropathy. However, little is known about how the mitochondrial electron transfer chain (ETC) is
affected by elevated pressure. Moreover, the protective effects of hydrogen on various pathological
conditions have been observed by reductions in ROS, yet the role of hydrogen in high hydrostatic pressure
(HHP)-induced cell damage remains obscure. The goal of this study was to investigate the effect of HHP
on ETC activity and whether hydrogen exerts protective effects against HHP-induced damage in cultured
neuronal cells. Cultured SH-SY5Y human neuroblastoma cells were exposed to an elevated ambient
hydrostatic pressure of 50 mmHg for a period of 2 to 6 h. HHP impaired the activities of ETC complexes,
and these effects were reversed by hydrogen. Significant increases in apoptotic rates and intracellular
ROS levels were observed in HHP-treated SH-SY5Y cells. Hydrogen significantly inhibited the apoptotic
rates and reduced the levels of ROS. These findings suggest that HHP induces cell damage by causing
ETC dysfunction to increase oxidative stress and that hydrogen may act as a protective agent to alleviate
HHP-induced neuronal injury.

1. Introduction
Hydrostatic pressure is prevalent in all biological environments and determines the normal function of
cells. Disorders in cell environmental hydrostatic pressure are closely associated with diverse
physiological and pathological processes (Chen et al. 2020; Ehrlich et al. 2010; Golebiewska and Scarlata
2015; Hasel et al. 2005; Li et al. 2020; Maki et al. 2021; Wei et al. 2018; Yang et al. 2018). Elevated
intraocular pressure (IOP) is generally considered the most essential risk factor in the pathogenesis of
glaucoma, which leads to glaucomatous optic neuropathy (Kwon et al. 2009). Studies using high
hydrostatic pressure (HHP) have shown that excessive production of reactive oxidative species (ROS)
and oxidative stress are early events in HHP-exposed retinal ganglion cells in vitro (Liu et al. 2007). ROS
are byproducts of electron transfer chain (ETC) and are involved in cellular signaling and excessive levels
of ROS attack nucleic acids, lipids and proteins, resulting in severe cellular damage (Rani et al. 2016).
Mitochondria are the major site of oxygen consumption and ROS production, and are also targets of ROS
attack. Impaired mitochondrial functions, particularly ETC function impairments, may increase electron
escape from the ETC and result in disturbed redox homeostasis, which may further cause oxidative
damage and eventually induce cell death (Liu et al. 2012). Despite the central role of mitochondria in
optic nerve damage during glaucoma pathogenesis and the prominence of HHP as an in vitro model of
IOP, to our knowledge, little is known about the function of mitochondrial ETC under HHP.

Hydrogen (H2) has gained considerable attention as an antioxidant because of its selective antioxidant
properties and ability to penetrate cytomembranes and diffuse into organelles (James et al. 2005).
Previous reports have demonstrated that H2 can selectively quench intracellular free radicals without
interfering with metabolic redox reactions (Ohsawa et al. 2007). Since its discovery, the effects of H2 have
been investigated in a wide range of oxidative stress and inflammation-related diseases (Cardinal et al.
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2010; Shi et al. 2015; Sun et al. 2011; Wang et al. 2011a; Wang et al. 2011b; Zhang et al. 2018; Zheng et
al. 2021). However, no experimental studies have explored the protective effects of H2 against HHP-
induced ROS generation and cellular oxidative damage in neuronal cells.

Herein, we used the human neuroblastoma cell line SH-SY5Y and evaluated the effects of H2 on the cell
damage induced by short-term HHP. We exposed SH-SY5Y cells to 2 h, 4 h and 6 h of 50 mmHg HHP to
mimic the conditions observed in acute glaucoma patients with high IOP (Kwon et al. 2009). Protective
effects of H2 included reversing the HHP-induced compromise in mitochondrial ETC activity and
mitochondrial membrane potential (MMP), reducing intracellular ROS and inhibiting the apoptotic rate.
Our results suggest that mitochondrial ETC impairment plays a key role in HHP-induced cell damage and
that H2 has neuroprotective effects by protecting mitochondrial dysfunction.

2. Materials And Methods

2.1 Cell culture
Cultures of SH-SY5Y human neuroblastoma cells (CRL-2266, ATCC, USA) were maintained in Dulbecco’s
modified Eagle’s medium (DMEM, Corning, USA) supplemented with 10% (v/v) fetal bovine serum
(Biological Industries, Israel) and 1% penicillin/streptomycin at 37°C in a humidified atmosphere with 5%
CO2 (v/v).

2.2 Preparation of H2-rich cell culture medium
H2-rich cell culture medium was prepared as previously described (Yu et al. 2011). Briefly, H2-rich cell
culture medium was freshly prepared by dissolving pure H2 gas (> 99.99%) into serum-free DMEM under
0.1 MPa of pressure to reach a supersaturated level. The H2-rich DMEM was then filtered through a 0.22-
µm syringe membrane filter (Sartorius, Germany).

2.3 HHP stimulation of cultured cells
Elevated stable hydrostatic pressure was achieved by culturing SH-SY5Y cells in a customized pressure
chamber. In brief, the stainless steel pressure chamber was constructed with a gas inlet, a gas outlet and
flow valves to seal the chamber. The chamber was connected to a high-precision digital output pressure
sensor (PAA-33X/80794, Keller, Switzerland) that continuously monitors the pressure levels. The
atmospheric pressure was calibrated to 0 mmHg. The chamber could be pressurized and maintained at a
constant air pressure ranging from 0–5 MPa with a 5% CO2 and 95% air gas mix. A pressure of 50 mmHg
was used to mimic the condition of glaucomatous high IOP (Kwon et al. 2009). Compression to 50
mmHg was attained within 60 sec. The chamber was then placed in a customized water bath at 37°C.
The cells in the normal hydrostatic pressure group were maintained in a normal cell incubator under
normobaric conditions.

2.4 H2 treatment of cultured cells
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H2 treatment of cultured cells was performed by replacing the normal cell culture medium with freshly
prepared H2-rich medium. To keep the concentration of H2 in the medium at a high level, the medium was
changed every 30 min during treatment.

2.5 Isolation of mitochondria
Mitochondria were isolated from SH-SY5Y cells by differential centrifugation methods (Shen et al. 2008).
Briefly, cultured SH-SY5Y cells were collected and suspended in ice-cold hypotonic isolation buffer. After
5–8 min of incubation, the samples were homogenized with a Dounce homogenizer and fractionated by
centrifugation at 1,300 g and 17,000 g.

2.6 Measurement of mitochondrial ETC activity
Activities of complex I (NADH-ubiquinone reductase), complex II (succinate-CoQ oxidoreductase),
complex III (CoQ-cytochrome c reductase) and complex IV (cytochrome c oxidase) were determined
spectrophotometrically in accordance with the previously reported methods (Cao et al. 2014).

2.7 Fluorimetric detection of MMP, hydroxyl free radical
(·OH), total ROS and apoptosis
SH-SY5Y cells were collected and loaded with fluorescence probe JC-1 (Invitrogen, USA), 2-[6-(4’-hydroxy)
phenoxy-3H-xanthen-3-on-9-yl] benzoate (hydroxyphenyl fluorescein, HPF, AAT Bioquest, USA), ROS Brite
670 (AAT Bioquest, Inc., USA) and Annexin V and propidium iodide (PI) (BD Biosciences, USA),
respectively. Cells were then incubated for 30 min at 37°C in the dark and analyzed immediately by flow
cytometry (Novocyte, Agilent, USA). The specific fluorescence signals corresponding to the FITC, PI and
APC channels were collected. A total of 1.2 × 104 events per sample were acquired.

2.8 Statistical analysis
All values are presented as the means with their standard errors. Statistical analysis was performed using
commercial software GraphPad Prism 5 (GraphPad Software, USA). The results were analyzed by two-
way analysis of variance (ANOVA) followed by a Bonferroni posttest for multiple comparisons. The two
factors were HHP time and H2 treatment. A p-value of less than 0.05 was considered to be statistically
significant. The relative changes in enzymatic activity levels are presented as percentages of the control
samples, which were assumed to be 100%.

3. Results

3.1 H2 reversed HHP-induced impairment of mitochondrial
ETC activity
There was no significant change in the activity of complex I in HHP-exposed cells (Fig. 1A). H2 exhibited
no significant effect on complex I activity (Fig. 1A). Exposure to 50 mmHg HHP resulted in significant
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reductions in the levels of complex II activity (Fig. 1B). H2-rich medium treatment significantly increased
complex II activity after 4 h and 6 h of HHP and H2 treatment (Fig. 1B). Stimulation of 50 mmHg HHP
resulted in significantly diminished activity of complex III (Fig. 1C). H2-rich medium treatment
significantly increased complex III activity after 6 h of HHP and H2 treatment (Fig. 1C). Exposure to 50
mmHg HHP resulted in significant reductions in the levels of complex IV activity (Fig. 1D). Complex IV did
not show significant differences between cells with and without H2-rich medium treatment (Fig. 1D).

3.2 H2 reversed HHP-induced reductions of MMP
Exposure to 50 mmHg HHP resulted in significant reductions in the levels of MMP (Fig. 2). H2-rich
medium treatment significantly increased complex II activity after 6 h of HHP and H2 treatment (Fig. 2).

3.3 H2 reduced HHP-induced excessive ROS production
HHP is known to increase ROS production by the mitochondrial ETC system and lead to oxidative stress;
however, the generation of specific species of free radicals, particularly ·OH, has not been directly
investigated. H2 has been shown to neutralize ·OH in living cells (Ohsawa et al. 2007). Herein, we
assessed intracellular generation of··OH by using the fluorescent probe HPF. A significant increase in the
spontaneous production of ·OH was observed in cells after 6 h of 50 mmHg HHP exposure (Fig. 3A).
However, we did not observe decreased intracellular levels of ·OH after treatment with H2-rich medium
(Fig. 3A). We further evaluated the levels of total intracellular ROS production. Significant increases were
observed in HHP-exposed cells, while H2 significantly reduced total intracellular ROS levels (Fig. 3B).

3.4 H2 inhibited HHP-induced elevated apoptotic rates
Flow cytometry analysis with Annexin V/PI staining showed that the apoptotic rate (the sum of early and
late apoptotic cells) was greatly increased in SH-SY5Y cells exposed to 2 h, 4 h and 6 h of 50 mmHg HHP
(Fig. 4). In contrast, treatment using H2-rich medium markedly suppressed apoptotic rates in cells
exposed to 6 h of HHP (Fig. 4).

4. Discussion
Despite the recognized central role of mitochondrial ETC in regulating redox homeostasis and
mitochondrial functions, to our knowledge, alterations in mitochondrial ETC activity under HHP have not
yet been reported. Moreover, although studies have revealed protective effects of a few antioxidants and
mitochondrial nutrients in counteracting HHP-induced neuronal cell injury, the effects of H2 are still not
investigated (Liu et al. 2012; Liu et al. 2017). In this study, we explored the effects of HHP on
mitochondrial ETC activity in cultured SH-SY5Y human neuroblastoma cells and the effects of H2. Our
results revealed that mitochondrial ETC impairment is involved in the HHP-induced cell damage and that
H2 has a cytoprotective effect against HHP-induced cell injury in vitro.
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An essential function of mitochondria is energy production through ETC, which is carried out by
complexes I-IV, the electron transporters ubiquinone and cytochrome c (Zhao et al. 2019). Complex I is the
main site of electron leakage to oxygen and the source of superoxides, which are cytotoxic mediators of
cellular oxidative damage (Zhao et al. 2019). The imbalanced decrease of ETC activity, i.e., significant
decrease in all ETC complexes except for complex I, may partially account for the increase in intracellular
ROS production because of the decreased efficiency of electron transfer and the resulting electron leak
from complex I. Complex II plays an important role in connecting the ETC with the tricarboxylic acid cycle
(Zhao et al. 2019). The decrease in complex II activity provides evidence that HHP impairs the transfer of
electrons from complex II to complex III. The unchanged complex I activity and decreased complex II
activity also indicate that the HHP-stimulated SH-SY5Y cells rely more on complex I/III/IV electron
transport pathway. The decrease in complex IV activity also indicated compromised mitochondrial ETC
functionality. Mitochondrial ATP production depends on the proton electrochemical gradient across the
inner mitochondrial membrane established by electrons passing through the ETC (Zhao et al. 2019). The
decrease in MMP suggests that poor mitochondrial ETC functionality results in lower energy production,
which is required for cells to defend against HHP-induced stress. The cells might thus be more
susceptible to cell injury in this context.

Previous studies have demonstrated that H2 can neutralize several cytotoxic free radicals such as ·OH,
·ONOO and O- 2 (Ohsawa et al. 2007; Yu et al. 2011). In this study, significant increase in total
intracellular ROS production and significant elimination of ROS by H2 were observed in HHP-stimulated
SH-SY5Y cells. The free radical ·OH, among other ROS, is essential in causing oxidative damage, as ·OH
is one of the strongest oxidants in nature and quickly causes cellular injury (Yu et al. 2011). However, the
·OH increased slightly after 6 h of HHP exposure in SH-SY5Y cells, but was not significantly affected by
H2. Considering that ·OH is generated through the dismutation of O- 2 to H2O2 followed by its partially
reduction (Gaur et al. 2021), it can be inferred that H2 might effectively eliminated O- 2 at the early stage
of generation and inhibited its further conversion into ·OH and other free radical species.

Mitochondria also serve as regulators of apoptosis (Bock and Tait 2020). It has been reported that HHP
can induce apoptosis in diverse cell types (Agar et al. 2000; Ju et al. 2009; Klett et al. 2004; Tök et al.
2014). Our study showed that HHP-induced apoptosis can be attenuated by H2, demonstrating that H2

has an antiapoptotic effect on pressure-induced cell death. Recent studies have revealed several
mitochondria-mediated pathways that inhibit apoptosis in different cell and animal models (Chen et al.
2017; Guan et al. 2019; Li and Ai 2017; Wu et al. 2018). Further investigations are needed to better
understand the mechanisms of HHP-induced apoptosis and the antiapoptotic effects of H2 in detail.

The cell model used in this study did not originate from the retinal ganglion. Unfortunately, there is
currently no proper in vitro or in vivo glaucoma model (Liu et al. 2017). Although the RGC-5 cell line has
been used in most of the previous studies to examine HHP-induced cell damage (Ju et al. 2007; Ju et al.
2009; Liu et al. 2012; Liu et al. 2007; Shang et al. 2014), there have been significant concerns about the
origin of RGC-5 cells (Krishnamoorthy et al. 2013; Van Bergen et al. 2009). Further work in primary retinal
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ganglion cells in vitro and in vivo is necessary to better clarify the detailed mechanisms of HHP-induced
cell damage and H2-mediated protection.

5. Conclusions
In conclusion, the findings reported herein suggest that short-term HHP exposure compromises
mitochondrial ETC function and elevates ROS production and apoptosis in the SH-SY5Y cell model. We
further found that H2 attenuates short-term HHP-induced cell damage by restoring mitochondrial ETC
function, scavenging intracellular ROS and preventing apoptosis. Thus, H2 may have therapeutic
potential as a protective agent to mitigate HHP-induced neuronal damage.
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Figure 1

Enzymatic activity of mitochondrial ETC complexes I-IV in mitochondria isolated from SH-SY5Y cells
subjected to HHP and H2 treatment. Significance was determined by two-way ANOVA followed by a
Bonferroni posttest at 95% confidence. The asterisks indicate significance at p < 0.05 (*), p < 0.01 (**) and
p < 0.001 (***) compared to the control groups. The histograms shown are the averaged data of three
independent experiments. All activities are presented as percentages of the raw control values (no HHP or
H2 treatment, mean ± SEM).
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Figure 2

Flow cytometric analysis of MMP in SH-SY5Y cells subjected to HHP and H2 treatment and stained with
JC-1. A. The typical histograms are the averaged ratio of PI : FITC fluorescent intensity of three
independent experiments and are presented as the mean ± SEM. Differences in MMP were statistically
analyzed by two-way ANOVA followed by a Bonferroni posttest at 95% confidence. The asterisks indicate
significance at p < 0.05 (*) and p < 0.001 (***) compared to the control groups. B-H. Typical flow
cytometry plots of JC1-stained cells in normal control group (B), 2 h of 50 mmHg HHP treatment group
(C), 2 h of 50 mmHg HHP and H2 treatment group (D), 4 h of 50 mmHg HHP treatment group (E), 4 h of
50 mmHg HHP and H2 treatment group (F), 6 h of 50 mmHg HHP treatment group (G), 6 h of 50 mmHg
HHP and H2 treatment group (H). The numbers show the percentage of cells in each quadrant.

Figure 3
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Flow cytometric analysis of intracellular ·OH and total ROS production in SH-SY5Y cells subjected to HHP
and H2 treatment and stained with HPF and ROS Brite 670, respectively. The typical histograms are the
averaged fluorescent intensity of three independent experiments and are presented as the mean ± SEM.
Differences in intracellular ·OH were statistically analyzed by two-way ANOVA at 95% confidence. The
asterisks indicate significance at p < 0.05 (*), p < 0.01 (**) and p < 0.001 (***) compared to the control
groups.

Figure 4

Flow cytometric analysis of apoptotic rates in SH-SY5Y cells subjected to HHP and H2 treatment and
stained with Annexin V and PI. A. The typical histograms are the averaged apoptotic rates of three
independent experiments and are presented as the mean ± SEM. Differences in apoptotic rates were
statistically analyzed by two-way ANOVA followed by a Bonferroni posttest at 95% confidence. The
asterisks indicate significance at p < 0.05 (*) and p < 0.01 (**) compared to the control groups. B-H.
Typical flow cytometry plots of Annexin V and PI-stained cells in normal control group (B), 2 h of 50
mmHg HHP treatment group (C), 2 h of 50 mmHg HHP and H2 treatment group (D), 4 h of 50 mmHg HHP
treatment group (E), 4 h of 50 mmHg HHP and H2 treatment group (F), 6 h of 50 mmHg HHP treatment
group (G), 6 h of 50 mmHg HHP and H2 treatment group (H). The numbers show the percentage of cells
in each quadrant.


