1 Siegel, R. L., Miller, K. D., Fuchs, H. E. & Jemal, A. Cancer Statistics, 2021. CA Cancer J Clin 71, 7-33, doi:10.3322/caac.21654 (2021).
2 Xie, Y. H., Chen, Y. X. & Fang, J. Y. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct Target Ther 5, 22, doi:10.1038/s41392-020-0116-z (2020).
3 Cremolini, C. et al. FOLFOXIRI/bevacizumab (bev) versus doublets/bev as initial therapy of unresectable metastatic colorectal cancer (mCRC): A meta-analysis of individual patient data (IPD) from five randomized trials. Journal of Clinical Oncology 38, 4015-4015, doi:10.1200/JCO.2020.38.15_suppl.4015 (2020).
4 Ikoma, N., Raghav, K. & Chang, G. An Update on Randomized Clinical Trials in Metastatic Colorectal Carcinoma. Surg Oncol Clin N Am 26, 667-687, doi:10.1016/j.soc.2017.05.007 (2017).
5 Cremolini, C. et al. Individual Patient Data Meta-Analysis of FOLFOXIRI Plus Bevacizumab Versus Doublets Plus Bevacizumab as Initial Therapy of Unresectable Metastatic Colorectal Cancer. J Clin Oncol, JCO2001225, doi:10.1200/JCO.20.01225 (2020).
6 Siebenhuner, A. R., Guller, U. & Warschkow, R. Population-based SEER analysis of survival in colorectal cancer patients with or without resection of lung and liver metastases. BMC Cancer 20, 246, doi:10.1186/s12885-020-6710-1 (2020).
7 Terai, M., Mastrangleo, M. & Sato, T. Immunological aspect of the liver and metastatic uveal melanoma. J Cancer Metastasis Treat 3, 231-243, doi:10.20517/2394-4722.2017.39 (2017).
8 Tokumoto, M. W. et al. Identification of tumour-reactive lymphatic endothelial cells capable of inducing progression of gastric cancer. Br J Cancer 113, 1046-1054, doi:10.1038/bjc.2015.282 (2015).
9 Lathia, J. D., Mack, S. C., Mulkearns-Hubert, E. E., Valentim, C. L. & Rich, J. N. Cancer stem cells in glioblastoma. Genes Dev 29, 1203-1217, doi:10.1101/gad.261982.115 (2015).
10 Wang, Y. H. et al. Vascular endothelial cells facilitated HCC invasion and metastasis through the Akt and NF-kappaB pathways induced by paracrine cytokines. J Exp Clin Cancer Res 32, 51, doi:10.1186/1756-9966-32-51 (2013).
11 Park, H. J. et al. Proteomic profiling of endothelial cells in human lung cancer. J Proteome Res 7, 1138-1150, doi:10.1021/pr7007237 (2008).
12 Wang, R. et al. Endothelial Cells Promote Colorectal Cancer Cell Survival by Activating the HER3-AKT Pathway in a Paracrine Fashion. Mol Cancer Res 17, 20-29, doi:10.1158/1541-7786.MCR-18-0341 (2019).
13 Regad, T. Targeting RTK Signaling Pathways in Cancer. Cancers (Basel) 7, 1758-1784, doi:10.3390/cancers7030860 (2015).
14 Nussinov, R., Tsai, C. J. & Jang, H. Ras assemblies and signaling at the membrane. Current Opinion in Structural Biology 62, 140-148, doi:10.1016/j.sbi.2020.01.009 (2020).
15 Sanchez-Vega, F. et al. Oncogenic Signaling Pathways in The Cancer Genome Atlas. Cell 173, 321-337 e310, doi:10.1016/j.cell.2018.03.035 (2018).
16 van Geel, R. et al. Phase 1 study of the pan-HER inhibitor dacomitinib plus the MEK1/2 inhibitor PD-0325901 in patients with KRAS-mutation-positive colorectal, non-small-cell lung and pancreatic cancer. Br J Cancer 122, 1166-1174, doi:10.1038/s41416-020-0776-z (2020).
17 Huijberts, S. et al. Phase I study of afatinib plus selumetinib in patients with KRAS mutation-positive colorectal, non-small cell lung and pancreatic cancer. Journal of Clinical Oncology 38, 3613-3613, doi:10.1200/JCO.2020.38.15_suppl.3613 (2020).
18 Gong, J., Cho, M. & Fakih, M. RAS and BRAF in metastatic colorectal cancer management. J Gastrointest Oncol 7, 687-704, doi:10.21037/jgo.2016.06.12 (2016).
19 Peeters, M. et al. Prevalence of RAS mutations and individual variation patterns among patients with metastatic colorectal cancer: A pooled analysis of randomised controlled trials. Eur J Cancer 51, 1704-1713, doi:10.1016/j.ejca.2015.05.017 (2015).
20 Hecht, J. R. et al. Extended RAS analysis for anti-epidermal growth factor therapy in patients with metastatic colorectal cancer. Cancer Treat Rev 41, 653-659, doi:10.1016/j.ctrv.2015.05.008 (2015).
21 Kafatos, G. et al. RAS mutation prevalence among patients with metastatic colorectal cancer: a meta-analysis of real-world data. Biomark Med 11, 751-760, doi:10.2217/bmm-2016-0358 (2017).
22 Odintsov, I. et al. The Anti-HER3 mAb Seribantumab Effectively Inhibits Growth of Patient-Derived and Isogenic Cell Line and Xenograft Models with Oncogenic NRG1 Fusions. Clin Cancer Res 27, 3154-3166, doi:10.1158/1078-0432.CCR-20-3605 (2021).
23 Schoeberl, B. et al. An ErbB3 antibody, MM-121, is active in cancers with ligand-dependent activation. Cancer Res 70, 2485-2494, doi:10.1158/0008-5472.CAN-09-3145 (2010).
24 Denlinger, C. S., Keedy, V. L., Moyo, V., MacBeath, G. & Shapiro, G. I. Phase 1 dose escalation study of seribantumab (MM-121), an anti-HER3 monoclonal antibody, in patients with advanced solid tumors. Invest New Drugs, doi:10.1007/s10637-021-01145-y (2021).
25 Bendell, J. C. et al. Abstract PO-003: CRESTONE – Clinical study of response to seribantumab in tumors with neuregulin-1 (NRG1) Fusions – A phase 2 study of the anti-HER3 mAb for advanced or metastatic solid tumors (NCT04383210). Cancer Research 80, PO-003-PO-003, doi:10.1158/1538-7445.Panca20-po-003 (2020).
26 Yun, J. et al. Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science 325, 1555-1559, doi:10.1126/science.1174229 (2009).
27 Gamelin, E. et al. Individual fluorouracil dose adjustment based on pharmacokinetic follow-up compared with conventional dosage: results of a multicenter randomized trial of patients with metastatic colorectal cancer. J Clin Oncol 26, 2099-2105, doi:10.1200/JCO.2007.13.3934 (2008).
28 Wang, R. et al. Endothelial cells activate the cancer stem cell-associated NANOGP8 pathway in colorectal cancer cells in a paracrine fashion. Mol Oncol 11, 1023-1034, doi:10.1002/1878-0261.12071 (2017).
29 Wang, R. et al. A Disintegrin and Metalloproteinase Domain 17 Regulates Colorectal Cancer Stem Cells and Chemosensitivity Via Notch1 Signaling. Stem Cells Transl Med 5, 331-338, doi:10.5966/sctm.2015-0168 (2016).
30 Cleary, J. M. et al. A phase 1 study combining the HER3 antibody seribantumab (MM-121) and cetuximab with and without irinotecan. Invest New Drugs 35, 68-78, doi:10.1007/s10637-016-0399-7 (2017).
31 Li, J., Ma, X., Chakravarti, D., Shalapour, S. & DePinho, R. A. Genetic and biological hallmarks of colorectal cancer. Genes Dev 35, 787-820, doi:10.1101/gad.348226.120 (2021).
32 Kakarla, M., ChallaSivaKanaka, S., Hayward, S. W. & Franco, O. E. Race as a Contributor to Stromal Modulation of Tumor Progression. Cancers (Basel) 13, doi:10.3390/cancers13112656 (2021).
33 Gallo, G., Vescio, G., De Paola, G. & Sammarco, G. Therapeutic Targets and Tumor Microenvironment in Colorectal Cancer. J Clin Med 10, doi:10.3390/jcm10112295 (2021).
34 Hirata, E. & Sahai, E. Tumor Microenvironment and Differential Responses to Therapy. Cold Spring Harb Perspect Med 7, doi:10.1101/cshperspect.a026781 (2017).
35 Alsina-Sanchis, E., Mulfarth, R. & Fischer, A. Control of Tumor Progression by Angiocrine Factors. Cancers (Basel) 13, doi:10.3390/cancers13112610 (2021).
36 Lu, J. et al. Endothelial cells promote the colorectal cancer stem cell phenotype through a soluble form of Jagged-1. Cancer Cell 23, 171-185, doi:10.1016/j.ccr.2012.12.021 (2013).
37 Haikala, H. M. & Janne, P. A. Thirty Years of HER3: From Basic Biology to Therapeutic Interventions. Clin Cancer Res 27, 3528-3539, doi:10.1158/1078-0432.CCR-20-4465 (2021).
38 Mishra, R., Patel, H., Alanazi, S., Yuan, L. & Garrett, J. T. HER3 signaling and targeted therapy in cancer. Oncol Rev 12, 355, doi:10.4081/oncol.2018.355 (2018).
39 Styczen, H. et al. HER-2 and HER-3 expression in liver metastases of patients with colorectal cancer. Oncotarget 6, 15065-15076, doi:10.18632/oncotarget.3527 (2015).
40 Ledel, F., Stenstedt, K., Hallstrom, M., Ragnhammar, P. & Edler, D. HER3 expression in primary colorectal cancer including corresponding metastases in lymph node and liver. Acta Oncol 54, 480-486, doi:10.3109/0284186X.2014.983654 (2015).
41 Yan, Q. et al. Association between the overexpression of Her3 and clinical pathology and prognosis of colorectal cancer: A meta-analysis. Medicine (Baltimore) 97, e12317, doi:10.1097/MD.0000000000012317 (2018).
42 Loree, J. M. et al. Molecular Landscape of ERBB2/ERBB3 Mutated Colorectal Cancer. J Natl Cancer Inst 110, 1409-1417, doi:10.1093/jnci/djy067 (2018).
43 Cho, H. S. & Leahy, D. J. Structure of the extracellular region of HER3 reveals an interdomain tether. Science 297, 1330-1333, doi:10.1126/science.1074611 (2002).
44 Roskoski, R., Jr. The ErbB/HER family of protein-tyrosine kinases and cancer. Pharmacol Res 79, 34-74, doi:10.1016/j.phrs.2013.11.002 (2014).
45 Breuleux, M. Role of heregulin in human cancer. Cell Mol Life Sci 64, 2358-2377, doi:10.1007/s00018-007-7120-0 (2007).
46 Gala, K. & Chandarlapaty, S. Molecular pathways: HER3 targeted therapy. Clin Cancer Res 20, 1410-1416, doi:10.1158/1078-0432.CCR-13-1549 (2014).
47 Ziranu, P. et al. The Role of p53 Expression in Patients with RAS/BRAF Wild-Type Metastatic Colorectal Cancer Receiving Irinotecan and Cetuximab as Later Line Treatment. Target Oncol, doi:10.1007/s11523-021-00816-3 (2021).
48 Michel, M., Kaps, L., Maderer, A., Galle, P. R. & Moehler, M. The Role of p53 Dysfunction in Colorectal Cancer and Its Implication for Therapy. Cancers (Basel) 13, doi:10.3390/cancers13102296 (2021).
49 Xu, J. M. et al. PIK3CA Mutations Contribute to Acquired Cetuximab Resistance in Patients with Metastatic Colorectal Cancer. Clin Cancer Res 23, 4602-4616, doi:10.1158/1078-0432.CCR-16-2738 (2017).
50 Tabibzadeh, A. et al. Signal transduction pathway mutations in gastrointestinal (GI) cancers: a systematic review and meta-analysis. Sci Rep 10, 18713, doi:10.1038/s41598-020-73770-1 (2020).
51 Hamada, T., Nowak, J. A. & Ogino, S. PIK3CA mutation and colorectal cancer precision medicine. Oncotarget 8, 22305-22306, doi:10.18632/oncotarget.15724 (2017).
52 Liu, J. F. et al. Randomized Phase II Trial of Seribantumab in Combination With Paclitaxel in Patients With Advanced Platinum-Resistant or -Refractory Ovarian Cancer. J Clin Oncol 34, 4345-4353, doi:10.1200/JCO.2016.67.1891 (2016).
53 Holmes, F. A. et al. A randomized, phase 2 trial of preoperative MM-121 with paclitaxel in triple negative (TN) and hormone receptor (HR) positive, HER2-negative breast cancer. Cancer Research 75 (2015).
54 Watanabe, S. et al. Targeting of the HER2/HER3 signaling axis overcomes ligand-mediated resistance to trastuzumab in HER2-positive breast cancer. Cancer Med 8, 1258-1268, doi:10.1002/cam4.1995 (2019).
55 Sequist, L. V. et al. Randomized Phase II Trial of Seribantumab in Combination with Erlotinib in Patients with EGFR Wild-Type Non-Small Cell Lung Cancer. Oncologist 24, 1095-1102, doi:10.1634/theoncologist.2018-0695 (2019).
56 Drilon, A. et al. Response to ERBB3-Directed Targeted Therapy in NRG1-Rearranged Cancers. Cancer Discov 8, 686-695, doi:10.1158/2159-8290.CD-17-1004 (2018).
57 Hafeez, U., Parslow, A. C., Gan, H. K. & Scott, A. M. New insights into ErbB3 function and therapeutic targeting in cancer. Expert Review of Anticancer Therapy 20, 1057-1074, doi:10.1080/14737140.2020.1829485 (2020).
58 Jonna, S. et al. Detection of NRG1 Gene Fusions in Solid Tumors. Clin Cancer Res 25, 4966-4972, doi:10.1158/1078-0432.CCR-19-0160 (2019).
59 Odintsov, I. et al. The Anti-HER3 mAb Seribantumab Effectively Inhibits Growth of Patient-Derived and Isogenic Cell Line and Xenograft Models with Oncogenic NRG1 Fusions. Clin Cancer Res, doi:10.1158/1078-0432.CCR-20-3605 (2021).
60 Cleary, J. M. et al. A phase 1 study combining the HER3 antibody seribantumab (MM-121) and cetuximab with and without irinotecan. Invest New Drug 35, 68-78, doi:10.1007/s10637-016-0399-7 (2017).
61 Denlinger, C. S., Keedy, V. L., Moyo, V., MacBeath, G. & Shapiro, G. I. Phase 1 dose escalation study of seribantumab (MM-121), an anti-HER3 monoclonal antibody, in patients with advanced solid tumors. Investigational New Drugs, doi:10.1007/s10637-021-01145-y (2021).
62 Adams, R. et al. Inhibition of EGFR, HER2, and HER3 signalling in patients with colorectal cancer wild-type for BRAF, PIK3CA, KRAS, and NRAS (FOCUS4-D): a phase 2-3 randomised trial. Lancet Gastroenterol Hepatol 3, 162-171, doi:10.1016/S2468-1253(17)30394-1 (2018).
63 Ahmed, D. et al. Epigenetic and genetic features of 24 colon cancer cell lines. Oncogenesis 2, e71, doi:10.1038/oncsis.2013.35 (2013).
64 Ebi, H. et al. Receptor tyrosine kinases exert dominant control over PI3K signaling in human KRAS mutant colorectal cancers. J Clin Invest 121, 4311-4321, doi:10.1172/JCI57909 (2011).
65 Yeh, J. J. et al. KRAS/BRAF mutation status and ERK1/2 activation as biomarkers for MEK1/2 inhibitor therapy in colorectal cancer. Mol Cancer Ther 8, 834-843, doi:10.1158/1535-7163.MCT-08-0972 (2009).
66 Jhawer, M. et al. PIK3CA mutation/PTEN expression status predicts response of colon cancer cells to the epidermal growth factor receptor inhibitor cetuximab. Cancer Res 68, 1953-1961, doi:10.1158/0008-5472.CAN-07-5659 (2008).
67 Wang, R. et al. Type 2 cGMP-dependent protein kinase regulates homeostasis by blocking c-Jun N-terminal kinase in the colon epithelium. Cell Death Differ 21, 427-437, doi:10.1038/cdd.2013.163 (2014).
68 Zhao, Y. et al. 5-Fluorouracil Enhances the Antitumor Activity of the Glutaminase Inhibitor CB-839 against PIK3CA-Mutant Colorectal Cancers. Cancer Res 80, 4815-4827, doi:10.1158/0008-5472.CAN-20-0600 (2020).