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Abstract
Background: The proliferation and estradiol synthesis in granulosa cells (GCs) directly promotes follicular
development. Previous studies had found that FGF21 regulated the hypothalamic-pituitary-gonad axis in
response to the control of fertility. However, the functions and mechanisms of FGF21 in GCs are unclear.

Results: Here, we found that the mRNA and protein levels of FGF21 in the ovarian tissue of high-yielding
sows (Sus scrofa) was higher than that in low-yielding sows. Moreover, FGF21 was predominantly
expressed in porcine GCs. Additionally, ELISA assay showed estradiol was signi�cantly increased when
overexpression of FGF21 in porcine GCs. Meanwhile, overexpressed FGF21 up-regulated both the mRNA
and protein levels of key estradiol synthesis-related genes in porcine GCs, including StAR, CYP11A1 and
CYP19A1. Corresponsingly, knockdown FGF21 inhibited estradiol levels and its synthesis-related genes
expression. Besides, overexpression of FGF21 promoted the proliferation of porcine GCs, displayed as
increasing the percentage of S-phase cells in cell cycle and EdU positive cells, including cell viability, and
upregulated cell cycle genes, including cell cycle protein B (Cyclin B) and protein E (Cyclin E).
Corresponsingly, knockdown FGF21 in porcine GCs suppressed the cell cycle and cell viability, as well as
EdU positive cell number.

Conclusions: These �ndings highlight that FGF21 is associated with the development of GCs and may be
a novel underlying regulator of porcine follicular development.

Background
Fibroblast growth factor 21(FGF21) is a stress-inducible hormone that has important roles in regulating
energy balance and glucose and lipid homeostasis[1], which is mainly expressed in liver and muscle. The
family plays important roles in the endocrine-based regulation of metabolism [1–3]. Metabolism
enhances supports cell proliferation and growth[4]. Overexpressing FGF21 promotes non-small cell lung
cancer growth and migration signi�cantly[5]. It is not a unique instance, but has its counterpart. FGF21
inhibitor suppresses the proliferation and migration of human umbilical vein endothelial cells through the
eNOS/PI3K/AKT pathway[6]. Besides, FGF21 acts on adipocytes to promote the expression and secretion
of CCL11 via activation of ERK1/2, which drives recruitment of eosinophils into scWAT, leading to
increases in accumulation of M2 macrophages, and proliferation and commitment of adipocyte
precursors into beige adipocytes[7]. These results suggest the important role of FGF21 in cell growth and
proliferation.

In mammals, it is widely known that GCs proliferation plays a vital regulatory role in deciding the fate of
follicles and follicular maturation[8–10]. One of mainly functions of GCs proliferation is to secrete
estrogens. Estradiol is the most active form of natural estrogens and is known to play important roles in
female reproduction [11]. Estradiol derived from cholesterol. After binding to lipoprotein receptors,
cholesterol is taken up by steroidogenic cells, stored, and moved to the sites of steroid synthesis[12]. The
rate-limiting step in steroid production is StAR transport cholesterol from the cytosol to the inner
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membrane of the mitochondrion, where the cytochrome P450 enzymes that catalyze the cleavage of the
side chain of cholesterol are located. where it is converted to pregnenolone by CYP11A1 [13]. Aromatase
CYP19A1 transforms testosterone into estradiol in GCs[13, 14]. Furthermore, estrogens produced in GCs
are suggested to support the survival and proliferation of GCs and facilitate the maturation of
follicles[15]. Studies shown that the proliferation of GCs is also regulated by cell cycle genes, including
Cyclin B, Cyclin E, Cyclin D, CDKs and p21[16, 17].

The development of mammalian follicles is a key process in the ovary, and the proliferation and growth
of GCs directly promotes follicular development [18]. As they proliferate and differentiate during follicular
development, GCs can synthesize a variety of hormones and growth factors, and they express their
receptors[19, 20]. These substances regulate the growth, differentiation and maturation of follicular inner
membrane cells and oocytes through gap junctions, and then, they regulate follicular development[21].
Therefore, the normal functions of GCs to proliferate and secrete hormones are essential for the
continuous development of follicles.

Recent studies have shown that FGF21 regulated female reproduction through neuroendocrine pathways
[22]. However, other data indicated that FGF21 has no direct effect on female fertility in mice [23].
Interestingly, FGF21 cooperates with adiponectin to play a bene�cial role in preserving mouse primordial
follicles in females fed a low-protein diet [24]. Besides, studies also have revealed that FGF21 is
associated with the cell growth and proliferation [4, 6, 25, 26]. However, no studies have focused on the
FGF21’s expression level and biologically functions in porcine GCs. Therefore, whether and how FGF21
affects follicular development still requires further investigation. Here, porcine ovaries were used to study
the regulatory mechanism of FGF21 in ovarian granulosa cell proliferation and hormone secretion. The
results increase our understanding of FGF21’s effects on follicular development.

Materials And Methods

Ovary collection from high- and low-yielding sows (Sus
scrofa)
Litter size records (a total of 8,567 parities) at Hanshiwei Food Co., Ltd. (Dahua pig farm, Guangxi, China)
from 2016 to 2018 were collected, sorted and analyzed. The low-yielding group was de�ned as less than
9.3 heads per litter, and the high-yielding group was de�ned as more than 14.7 heads per litter [16]. The
ovarian tissues of three high- and low-yielding ‘Yorkshire’ × ‘Landrace’ sows having the same
physiological status and similar body weights were collected.

Ovarian tissues and immunohistochemistry
Fresh ovarian tissues were removed, washed with normal saline, and �xed with paraformaldehyde, at
greater than 7 to 10 times the volume of the ovaries, for 24 h at room temperature. They were then
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embedded in para�n and sliced into sections for HE staining. The largest cross sections were selected
for FGF21 (sc-81946,1/1000) immunohistochemical staining.

Granulosa cells isolation and culture
Fresh porcine ovaries(n=30) from cyclic sows were collected and immediately placed in a saline solution
containing 100 IU/mL of double-antibody (cyano-streptomycin) at 37 °C. These ovaries were shipped
back to the laboratory within 2 h and cleaned in a thermostatic saline solution. The antral follicles�3-6
mm diameters�located on the ovarian surface were punctured to collect follicular �uid. The cumulus-
oocyte complex was removed using a 70-mm cell strainer to obtain GCs. GCs were resuspended in
DMEM/F12 (Servicebio, Wuhan, China) containing 3% BSA, and then, they were inoculated into a cell
culture well and cultured in a cell incubator with 5% CO2 at 37 °C [27].

Transfection of FGF21 siRNA and FGF21 recombinant
protein treatment
To study the effects of FGF21 on proliferation and hormone synthesis in GCs, transfection experiments
were performed at a cell density of 40% to 50%. All the transfection procedures were performed with X-
treme-GENE siRNA Transfection Reagent (Roche) in accordance with the manufacturer’s instructions. In
addition, GCs were treated with different FGF21 recombinant protein concentrations (0.1, 1 and 10
ng/mL). After transfection and recombinant protein exposure for 24 h, the culture supernatants and cells
were collected for subsequent experiments.

Total RNA extraction, RNA reverse transcription and RT-
qPCR
Total RNAs from different cells were extracted using Trizol (TaKaRa, Otsu, Japan), and the concentrations
were measured using a NanoDrop 2000 (Thermo, Waltham, MA, USA). Total RNA (500 ng) was reverse
transcribed to cDNA using a reverse transcription kit (TaKaRa). Quantitative real-time (RT) -qPCR was
performed on a StepOne Real-Time PCR Machine (ABI, Carlsbad, CA, USA). The relative level of mRNA
was standardized to β-actin and calculated using the 2-∆∆Ct method. Primer sequences used for RT-
qPCR are listed in Table 1.

Table 1

RT-qPCR primer sequences used in the study (Sus scrofa).
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Gene Name Forward (5’-3’) Reverse (5’-3’)

FGF21 CCTGAAGCCAGGGGTCATTC CGATCCGTACAGTCTCCCGT

StAR CGTTTAAGCTGTGTGCTGGG TCCATGACCCTGAGGTTGGA

3β-HSD TCTTGTCTGCTTCTCGCCAC CAACTGAGACTTGGGTGCCA

CYP11A1 GGGCAACCCATTTCCTACCA CGAGCACTGGTGGTACAGAC

CYP19A1 TCCGCAATGACTTGGGCTAC GCCTTTTCGTCCAGTGGGAT

Cyclin B AATCCCTTCTTGTGGTTA CTTAGATGTGGCATACTTG

Cyclin D TACACCGACAACTCCATCCG GAGGGCGGGTTGGAAATGAA

Cyclin E AGAAGGAAAGGGATGCGAAGG CCAAGGCTGATTGCCACACT

p21 ACGTCTCAGGAGGACCATGT AGAAGATCAGCCGGCGTTTG

β-actin GGACTTCGAGCAGGAGATGG AGGAAGGAGGGCTGGAAGAG

SR-BI GCTGTTCATCCCCATCGTCT GGCCTGAATGGCCTCCTTAT

SREBP2 CTCACCTTCCTGTGCCTCTC CCAGAAGGTGACTGAGGAGC

Western blotting
The GCs were washed three times with PBS (pH=7.4), and then, 120 μL RIPA (Beyotime, Shanghai, China)
supplemented with protease inhibitors (Pierce, Rockford, IL, USA) was added to each well of the 6-well
plate. Afterward, samples were lysed on ice for 20 min, collected and centrifuged at 12,000 ×g for 10 min
at 4°C. A BCA protein assay kit (Cwbio, Beijing, China) was used to determine protein concentrations. A
1/4 volume of 5× loading buffer (Cwbio, Beijing, China) was added to an aliquot of the supernatant, and
a 20-μg protein sample was separated on a 10% SDS-polyacrylamide gel. After electrophoresis, the
samples were transferred to the polyvinylidene �uoride (PVDF) membranes (CST, Boston, MA, USA),
which were blocked with 5% skimmed milk powder for 2 h. The membranes were then incubated at 4°C
overnight with primary antibodies (1:1000) against StAR, CYP11A1, CYP19A1, 3β-HSD, β-actin, SR-BI,
SREBP2 and p21 (Abcam, Cambridge, UK), as well as against Cyclin B, Cyclin D, Cyclin E and
FGF21(Santa Cruz, CA, USA). The membranes were placed in secondary antibody (Boster, Wuhan, China)
solutions and incubated at 4°C for 2 h. Finally, the signals were detected using a gel imaging system (Bio-
Rad, CA, USA), and the intensity levels of the bands were measured using Image J software. All the
experiments were repeated at least three times and mean values were derived.

Measurement of estradiol and progesterone in the culture
medium



Page 6/21

The collected supernatant was centrifuged at 4°C for 10 min, and then, porcine estradiol and
progesterone enzyme-linked immunoassays (ELISAs) were performed in accordance with the kit’s
instructions (Nanjing Jiancheng Bioengineering Institute, Nanjing, China).

EdU imaging assay
GCs were seeded in 96-well plates at a concentration of per 2×103 concentration per well. After treating
the cells with FGF21 siRNA (si-FGF21) and recombinant protein (rFGF21) for 24 h, they were incubated
with 50 μM EdU (RiboBio, Guangzhou, China) for 2 h. The cells were washed twice with PBS, �xed in 4%
paraformaldehyde for 30 min, neutralized with 2 mg/mL glycine for 5 min and permeabilized with 0.5%
TritonX-100 for 10 min. Afterward, 100 μL of 1X Apollo® staining reaction solution was added to each
well, and the plates were protected from light at room temperature while on a shaker for 30 min. The
reaction solutions were discarded after staining. Then, 100 µL of penetrant (0.5% TritonX-100 in PBS)
was added to each well, and the samples were washed twice on a shaker for 10 min each time.Then, the
penetrant was discarded. Finally, 100 µL 1X Hoechst 33342 was added to each well to stain the nuclei.
The stained cells were observed using a Nikon TE2000 microscope (Nikon, Tokyo, Japan) and the data
were analyzed using Image J software.

Cell counting kit 8(CCK8) analysis
GCs were seeded in 96-well plates at a 2×103 concentration per well. After treating the cells with FGF21
siRNA and rFGF21 for 24 h, 10 µL CCK8 reagent was added to each well and incubated for 3 h at 37°C.
Absorbance was measured at 450 nm using Vector 5 (Waltham, MA, USA).

Flow cytometry
GCs were seeded in 6-well plates at a 4×105 concentration per well. The cells were treated with si-FGF21
and rFGF21 for 24 h, and then, cells were digested with 0.25% trypsin and collected in 10 mL centrifuge
tubes. The tubes were centrifuged at 1,200×g for 10 min, and the supernatants were discarded. The cells
were resuspended in 70% cold ethanol and placed overnight at 4°C. The cells were washed twice and
stained with 50 mg/mL propidium iodide (PI) for 30 min. Finally, the cell cycles of the porcine GCs were
analyzed using �ow cytometry (Becton Dickinson, Franklin Lakes, NJ, USA).

Statistical analysis
Each experiment was conducted at least three times and data for continuous variables are presented as
mean values with standard errors of the mean (SEM). Statistical comparisons of mean values between
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groups were performed using t-test and multiple comparisons were performed using a one-way analysis
of variance (ANOVA). Differences were considered to be statistically signi�cant at a P-value was < 0.05.

Results

FGF21 highly expression in high-yielding porcine ovaries
The FGF21 expression levels in ovaries of high-yielding and low-yielding sows was examined. The FGF21
mRNA and protein levels in the ovaries of high-yielding sows were signi�cantly higher than in low-yielding
sows (Fig. 1A, B). Immunohistochemical staining revealed that FGF21 was mainly expressed in GCs (Fig.
1D). To further con�rm whether FGF21 was associated with follicular development, GCs in porcine
ovarian follicles of different diameters were isolated and cultured, and the FGF21 mRNA levels were
detected. The expression of FGF21 in GCs of large follicles (diameters > 6 mm) was signi�cantly higher
than in small follicles (diameters < 3 mm) (Fig. 1C). The results suggest that FGF21 is expressed in
porcine ovarian GCs.

Knockdown FGF21 inhibites granulosa cells estradiol
synthesis
During follicular development, the main function of GCs is to secrete estradiol. To investigate the role of
FGF21 in the estradiol synthesis of GCs, FGF21 knockdown experiments were carried out in GCs. A
successful FGF21 knockdown was produced (Fig. 2A). An ELISA of the FGF21 knockdown’s medium
supernatant revealed that the estradiol content signi�cantly decreased compared with the control (Fig.
2B). This �nding indicates that FGF21 plays a role in the estradiol synthesis. To con�rm this hypothesis,
we detected the mRNA and protein levels of key enzymes in the estradiol synthesis process and found
that StAR, CYP11A1 and CYP19A1 mRNA and protein levels were also suppressed in the FGF21
knockdown group (Fig. 2. C-E). These data indicated that knockdown FGF21 could inhibit the synthesis of
estradiol in GCs.

Knockdown FGF21 inhibites estradiol synthesis through
granulosa cells cholesterol metabolism
Cholesterol is a precursor required for steroid hormone synthesis. Therefore, to explore the FGF21-
associated mechanism regulating estradiol synthesis, we determined the cholesterol levels of GCs after
the FGF21 knockdown. The FGF21 expression decreased. The estradiol content of GCs decreased
signi�cantly (Fig. 3A), and the progesterone content also showed a downward trend (Fig. 3B). At the
same time, the triglycerides and cholesterol levels were also determined. There was no change in the
triglyceride levels (Fig. 3C), but there was signi�cantly decreased in total cholesterol levels (Fig. 3D).
Additionally, bodipy staining was used to observe the neutral lipid droplets contents in GCs. After FGF21



Page 8/21

decreased, neutral lipid droplets contents in the cells increased (Fig. 3E). In addition, the knockdown of
FGF21 caused a signi�cant decrease in the level of the cholesterol transport-related protein SREBP2 (Fig.
3F, G). Thus, FGF21 appears to be a potential regulator of estradiol synthesis, functioning partly through
cholesterol metabolism.

Overexpression FGF21 promotes the estradiol synthesis in
granulosa cells
To further con�rm the effects of FGF21 on estradiol synthesis in GCs, we used different FGF21
recombinant protein concentrations (0, 0.1, 1 and 10 ng/mL) to treat GCs. The FGF21 overexpression was
successful (Fig. 4A). Moreover, the estradiol and progesterone contents in the supernatant of the culture
medium were detected. FGF21 overexpression signi�cantly increased the estradiol and progesterone
levels (Fig. 4B, C). This �nding con�rmed that FGF21 positively regulated the estradiol content of GCs.
Next, we determined the expression levels of the key estradiol synthesis-associated genes StAR, CYP11A1
and CYP19A1. FGF21 recombinant protein overexpression up-regulated these key genes at both the
mRNA and protein levels (Fig. 4D-H). Consequently, we hypothesized that FGF21 promotes estradiol
synthesis in GCs.

FGF21 promotes granulosa cells proliferation
During follicular development, GCs secrete estradiol to enhance mitosis[20]. Therefore, we speculated
that FGF21’s promotive effects on estradiol synthesis are related to GCs proliferation. To verify this
hypothesis, FGF21 knockdown and overexpression exprements were carried out in GCs to detect
indicators related to cell proliferation. The FGF21 knockdown decreased the number of 5-ethynyl-20-
depoxyuridine (EdU)-positive cells (Fig. 5A, B). The CCK8 assays showed that the cell viability was
consistent with the EdU results (Fig. 5C). A �ow cytometry analysis also indicated that the FGF21
knockdown reduced the proportion of cells in S phase (Fig. 5D, E). Additionally, the FGF21 knockdown
decreased the mRNA and protein levels of the proliferation-related genes Cyclin B and increased the levels
of the proliferation suppressor gene p21(Fig. 5F-H). Furthermore, FGF21 overexpression increased the
number of EdU-positive cells (Fig. 6A), the number of cells in S phage (Fig. 6C, D), and mRNA and protein
levels of proliferation-related genes (Fig. 6B, E and F). Thus, FGF21 appears to promote GCs proliferation.

Discussion
In the ovary, the basic functional unit is the ovarian follicle, which consists of an oocyte surrounded by
granulosa and theca cells that are essential for normal oocyte development and steroid hormone
production[28]. GC proliferation in�uences steroid hormone synthesis[29, 30]. Here, we found the
existence of FGF21 in porcine GCs, which suggested that this molecule is abundantly present in ovarian
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follicles. FGF21, as an endocrine signal, may play an important role in follicular development, including
GCs proliferation and steroidogenesis.

In this study, we used high-yield (> 14.7 heads/litter) and low-yield (< 9.3 heads/litter) ovarian groups of
‘Yorkshire’ × ‘Landrace’ sows to verify that FGF21 was expressed higher in high-yield sows (Fig. 1A-C),
which indicated that FGF21 was important for female reproduction. The ovarian immunohistochemistry
of FGF21 showed that FGF21 was abundantly expressed in follicular GCs (Fig. 1D). In addition, we
isolated and cultured porcine GCs of different diameters and detected FGF21 expression. The FGF21
expression level was higher in larger, compared with smaller follicular GCs (Fig. 1E). In addition, time-
restricted feeding improves the reproductive functions of female mice through liver
FGF21[31].Furthermore, FGF21 has bene�cial effects, which implies that it is a vital positive regulatory
factor of follicular development.

We speculated that FGF21 mainly regulates the physiological functions of GCs and plays important roles
in follicular development. Steroid hormone production is a major biological function of ovarian GCs.
Recently, several studies also have indicated that GCs proliferation in�uence the synthesis of steroid
hormones[16, 29, 30].In this study, we demonstrated that FGF21 affects estradiol synthesis in porcine
GCs. The overexpression of FGF21 increased StAR, CYP11A1 and CYP19A1 expression levels, as well as
estradiol productions (Fig. 4B-H), which indicated that FGF21 promotes porcine GCs steroidogenesis.

To further explore the mechanisms of FGF21 in regulating estradiol synthesis in GCs, we tested the
content of cholesterol, a precursor substance of estradiol synthesis. There was signi�cantly decreased in
the total cholesterol levels (Fig. 3D). However, in addition to mitochondria, steroid hormones are also
synthesized in lipid droplets [32]. Bodipy was used to stain the neutral lipid droplets in GCs, but it was
found that after knockdown FGF21, the neutral lipid droplets in the cells increased. It may be because
after knockdown FGF21 and cell metabolism slows down, resulting in an increase in lipid droplets[33].
However, a large number of lipid droplets will inhibit the synthesis of steroid hormones[34]. In addition,
the FGF21 knockdown caused a signi�cant decrease in the protein level of the cholesterol transport-
related gene SREBP2(Fig. 3F, G). Therefore, part of the regulatory effect of FGF21 on granulosa cell’s
estradiol synthesis may be explained by its effect on cholesterol metabolism. The detailed molecular
mechanism of FGF21’s regulation of estradiol synthesis still needs further investigation.

A single-layered primordial follicle with �at GCs does not have the ability to synthesize estradiol in vitro;
however, the well-developed multilayered and antral follicle, in which the ultrastructural characteristics of
the thecal and granulosa cell layers are similar to an adult ovarian follicle, synthesized estradiol in
vitro[35]. Estradiol synthesis increases along with the number of GCs. The endocrine role of FGF21 was
discovered in 2005, and it acts as a novel metabolic regulator that promotes cell proliferation and
growth[7, 36], However, whether FGF21 affected GCs proliferation was unclear. Therefore, we investigated
whether FGF21 affects GCs proliferation while promoting estradiol synthesis. Our experimental results
indicated that FGF21 promoted proliferation by up-regulating the mRNA and protein levels of Cyclin B and
decreasing the mRNA and protein levels of p21(Fig. 5F-H, Fig. 6E, F ).Cyclin B is a immunohistochemical
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marker of proliferation[37] and p21 is an important member of the cyclin-dependent kinase inhibitor
family[38]. These results were consistent with those of previous studies. For example, FGF21 drives
oligodendrocyte precursor cell proliferation [39].

Conclusions
In summary, as shown in Fig. 7, our results showed that FGF21 was highly expressed in porcine ovarian
GCs and promoted the proliferation and estradiol synthesis in GCs. They revealed that FGF21 has the
potential to directly regulate follicular development, and they provide a theoretical basis for further
research on the FGF21-associated regulatory mechanisms of follicular development.
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Figures

Figure 1

The expression of FGF21 in porcine ovary. A, mRNA levels of FGF21 in high- and low-yileding porcine
ovarian (n=3). B, protein levels of FGF21 in high- and low-yileding porcine ovarian (n=3). C, FGF21 mRNA
levels in GCs of large follicles (diameters > 6 mm) and GCs of small follicles (diameters < 3 mm) (n=3). D,
immunohistochemical staining of FGF21 and DAPI (nuclei) on porcine ovary (n=3). Data represent the
mean ± SEM.* p <0,05; ** p <0.01.
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Figure 2

Knockdown of FGF21 inhibits the synthesis of estradiol on granulosa cells. A, knockdown e�ciency of
FGF21 after transfection with FGF21 siRNA compared to NC (n=3). B, estradiol concentration detected by
ELISA (n=3). Culture supernatants collected 24h after FGF21 siRNA and NC treatment. C, mRNA levels of
StAR, CYP19A1, CYP11A1 and 3β-HSD 24 h after knockdown of FGF21 (n=3). D, Western blot detection of
StAR, CYP19A1, CYP11A1 and 3β-HSD (n=3). E, quantitation of the protein levels in D (n=3). Data
represent the mean ± SEM.* p <0,05; ** p <0.01; ***p <0.001; ****p <0.0001.



Page 16/21

Figure 3

Knockdown of FGF21 inhibits the cholesterol transport. A, estradiol concentration detected by ELISA
(n=3). Culture supernatants collected 24 h after FGF21 siRNA and NC treatment. B, progesterone
concentration detected by ELISA (n=3). Culture supernatants collected 24 h after FGF21 siRNA and NC
treatment. C, triglyceride levels detected after knockdown of FGF21 24 h (n=3). D, total cholesterol content
detected after knockdown of FGF21 24 h (n=3). E, bodipy staining in GCs 24 h after knockdown of FGF21
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(n=3). DAPI: nucleus, Scale bar: 200 μm. F, Western blot detection of SR-BI and SREBP2 (n=3). E,
quantitation of the protein levels in F (n=3). Data represent the mean ± SEM.* p <0,05; ** p <0.01; ***p
<0.001;

Figure 4

Overexpression of FGF21 promotes the synthesis of estradiol on granulosa cells. A, mRNA levels of
FGF21 24 h after FGF21 recombinant protein (0,0.1,1,10 ng/mL) to treat GCs (n=3). B, estradiol
concentration detected by ELISA (n=3). Culture supernatants collected 24 h after FGF21 recombinant
protein (0,0.1,1,10 ng/mL) treatment. C, progesterone concentration detected by ELISA (n=3). Culture
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supernatants collected 24 h after FGF21 recombinant protein (0,0.1,1,10 ng/mL) treatment. D, E, F, mRNA
levels of StAR, CYP19A1 and CYP11A1 24 h after overexpression of FGF21 (n=3). G, Western blot
detection of StAR, CYP19A1 and CYP11A1 (n=3). H, quantitation of the protein levels in G (n=3). Data
represent the mean ± SEM.* p <0,05; ** p <0.01; ***p <0.001; ****p <0.0001.

Figure 5
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Knockdown of FGF21 inhibits granulosa cells proliferation. A, EdU and Hochest (nucleus) staining
analysis 24 h after knockdown of FGF21 (n=3). B, percentage of EdU-positive cells/total cells (n=3). C,
CCK8 assay detects cell viability 24 h after knockdown of FGF21 as absorbance value at 450 nm after
incubation with 10% CCK8 solution for 3 h. D, �ow cytometry analysis 24 h after knockdown of FGF21
(n=3). E, statistical results of �ow cytometry (n=3). F, mRNA levels of Cyclin B, Cyclin D, Cyclin E and p21
24 h after knockdown of FGF21 (n=3). G, Western blot detection of Cyclin B, Cyclin D, Cyclin E and p21 24
h after knockdown of FGF21 (n=3). H, quantitation of the protein levels in G (n=3). Data represent the
mean ± SEM.* p <0,05; ** p <0.01;
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Figure 6

Overexpression of FGF21 promotes granulosa cells proliferation. A, EdU and Hochest (nucleus) staining
analysis 24 h after FGF21 recombinant protein (0,0.1,1,10 ng/mL) treatment (n=3). B, mRNA levels of
Cyclin B, Cyclin D, Cyclin E and p21 24 h after FGF21 recombinant protein (0,0.1,1,10 ng/mL) treatment
(n=3). C, �ow cytometry analysis 24 h after FGF21 recombinant protein (0,0.1,1,10 ng/mL) treatment
(n=3). D, �ow cytometry analysis 24 h after FGF21 recombinant protein (0,0.1,1,10 ng/mL) treatment
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(n=3). E, Western blot detection of Cyclin B and Cyclin E 24 h after FGF21 recombinant protein (0,0.1,1,10
ng/mL) treatment (n=3). F, quantitation of the protein levels in E (n=3). Data represent the mean ± SEM.*
p <0,05; ** p <0.01.

Figure 7

Schematic diagram of FGF21 regulation on porcine GCs proliferation and estradiol synthesis.


