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Abstract
Neuronal tuning and topography are mechanisms widely used in the brain to represent sensory
information and also abstract features like time. In humans, temporal topography has been shown in a
wide circuit of brain regions. However, it is unclear whether chronotopic maps are speci�c to vision,
whether they map time in an absolute or relative fashion, to what extent they re�ect objective or
subjective time and whether they are in�uenced by temporal context. Here we asked human participants
to reproduce the durations of sounds in two, partially overlapping, temporal contexts while we record
high-spatial resolution fMRI. Both model-based and data driven analyses show the presence of auditory
chronomaps in the auditory parabelt, intraparietal sulcus, and in supplementary motor area. Most
importantly, when the same physical duration is presented in different temporal contexts, and thus
perceived differently, different neuronal units respond to it. Those units are also spatially shifted
according to the relative position of the perceived duration within each context. Finally, the pattern of
activity is more similar within rather than across contexts suggesting their pivotal role in shaping the
maps. These results highlight two important properties of chronomaps: their �exibility of representation
and their dependency on the context.

Introduction
The speed at which we move while dancing depends not only on our capacity of keeping the musical
beat but also on the speed at which our dancing partner moves. Keeping the musical tempo while moving
in sync with the dancing partner requires the rapid processing of multiple durations whose perception is
prone to biases depending on the temporal features of the environment (i.e., how the current tempo
relates to earlier perceived tempos). How the brain encodes and reads out the rapid succession of
different durations and how the resulting perception is in�uenced by the temporal features of the
environment is far from clear (Merchant, Harrington, et al., 2013; Paton & Buonomano, 2018). 

 

Recently, electrophysiological work in animals and neuroimaging studies in humans have shown the
existence in cortical and subcortical brain areas of a form of duration tuning, that is, neuronal units
selectively responsive to different durations (Gouvêa et al., 2015; Merchant, Pérez, et al., 2013; Mita et al.,
2009). In humans these units are also topographically organized on the cortical surface to form
chronomaps (Protopapa et al., 2019; Harvey et al., 2020). Chronotopic maps associated with visual
temporal discrimination tasks have been observed in the Supplementary Motor Area (SMA Protopapa et
al., 2019, 2020 ), whereas chronotopic maps linked to stimulus variation of both duration and temporal
frequency have been reported in a wide network of cortical areas, that is, from occipital to parietal to
prefrontal regions (Harvey et al., 2020).

Although these studies did show the existence of a topographical representation of time in the human
brain, a number of questions are still open. First, it is unclear whether chronomaps are speci�c to vision
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(see for instance van Ackooij et al., 2022) and to discrimination tasks or whether they are amodal and
exist independently from the sensory modality and the task at hand. Second, is time mapped in relative or
absolute terms in chronomaps?  Is the physical duration or the relative position of the duration within a
distribution that is re�ected in the chronomaps?  Third, is the activity in chronomaps modulated by how a
duration is perceived according to changes in the temporal features of the environment (i.e., temporal
context)? In parallel to these questions, we will consider in what way the  duration representations equate
or differ  from other topographic representations in the brain. 

 

To address these questions, we used a temporal reproduction task of sounds of different durations (�ve
durations ranging from 0.32 to 1.1 s) and asked participants to reproduce them in two partially
overlapping temporal contexts. In the short context, the durations ranged from 0.32 to 0.65 s and in the
long context they ranged from 0.65 to 1.1s, with the 0.65 s duration appearing in both contexts. 

By manipulating the temporal context, the perception of the 0.65 s duration (i.e., the duration shared
between contexts) will be biased towards the mean value of the duration distribution of each context. It
will be perceived as shorter when presented in the short context, and as longer in the long context
(Jazayeri & Shadlen, 2010; Maaß et al., 2019).  This effect, which is called “central tendency” or
“regression to the mean'' has been interpreted within a Bayesian framework as an optimization
mechanism that takes into account the knowledge of the duration distribution at hand to provide an
accurate duration estimation of the sample stimulus (Glasauer & Shi, 2021; Jazayeri & Shadlen, 2010).
Although this effect of regression to the mean has been extensively documented at a behavioral level,
and recent EEG studies have focussed on traces of the Bayesian integration (Damsma et al., 2021),
whether and where there is a neural signature of the subjectively modi�ed duration is unclear. Speci�cally,
it is unclear if and how the representation of the same physical duration changes when its perception
changes as a function of the temporal context, and how the brain responds to durations that are grouped
according to it.  

 

In summary, our experimental design enabled us to answer: (a) whether chronomaps extend to durations
perceived in the auditory domain, (b) whether they map time in absolute or relative terms as the distinct
temporal contexts will allow for testing  whether the representation of a physical duration changes when
it is perceived differently, and (c) whether the representation of different durations in a map is in�uenced
by the presence of distinct temporal contexts.  

 

Based on the above rationale, we identi�ed four possible predictions about the topographic
representation of time and its interaction with perception and temporal context (see Fig. 1A):
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1. If chronomaps represent time in a veridical, absolute fashion, the context should not affect duration
representation. We should thus observe a single map with different voxels active for each of the
physical duration in the two contexts, with the 0.65 s duration eliciting activation in the same cluster
of voxels. 

2. If chronomaps are quantitative representations of the subjective experience of time, we expect
different voxels to be active for the different perceived durations. Due to the central tendency effect
elicited by the two contexts, we would expect different voxels to be active for 0.65 s duration,
resulting in a single six-duration map.

3. If time is represented in a categorial, relative fashion (e.g., voxels representing “shortest”,
“intermediate”, “longest” durations) that is irrespective of the context, we expect a single map for
both contexts, where the same voxels are active for durations that have the same relative position
within the context (i.e., shortest, intermediate, longest).         

4. If time is represented in a relative fashion but its representation interacts with the context, we expect
two maps, one for each context, with a varying  degree of overlap. The presentation of 0.65 s should
then  elicit the activation of different voxels whose location corresponds to        the position of this
duration within the appropriate context. 

Results
To test the existence of auditory chonomaps and the relationship of this topographic representation with
temporal context and perception, we asked 14 healthy volunteers to perform a temporal reproduction task
of pure tones of different durations (see Fig. 1B and Material and Methods section for more details) while
we recorded high spatial resolution fMRI images with a 7 Tesla MRI scanner. 

In different fMRI runs, volunteers were presented with sounds of different durations (i.e., three runs for
each temporal context). In the short context the sounds ranged from 0.32 to 0.65 s and in the long
context they ranged from 0.65 to 1.1s. The presentation of the sound was followed by a reproduction
phase in which volunteers, after being cued with a burst of white noise (0.1 s), had to press and hold a
response key down for a period of time matching the duration of the previously heard sound.   

Behaviorally, the results (see Fig.1C) are in line with   the expected regression to the mean within each
context (3 durations by 2 contexts repeated measures ANOVA; main effect of context F(1,2) = 63.3 p <
0.001 0 η2 = 1.01). Overall the mean reproduction in the shortest context was shorter (0.76 s ± 0.24 s;
mean ± standard deviation) compared to the longest context (1.4 s ± 0.4 s; mean ± standard deviation).
In both temporal contexts the shortest duration was overestimated and the longest duration
underestimated (main effect of duration F(1,2) = 11.45, p < 0.001, η2 = 5.59), whereas the  reproduction
of 0.65 s was signi�cantly different in the two contexts (paired t-test t(13) = -2.16, p = 0.04);  0.89 s ±  
0.23 s in the short context and 1.11 s ± 0.31 s in the long context, con�rming  that the same physical
duration (0.65s) was perceived differently in the different contexts.  
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At the neural level we performed a General Linear Model (GLM) analysis for  each subject individually
with the offset of the three sounds in the two contexts and the onset of their reproduction as events of
interest. All regressors were convolved with the canonical hemodynamic response function (for the
modelling of the other events, see Material and Methods). We �rst looked for brain areas exclusively
active at the offset of the encoded sound (and not during reproduction) independently from the different
durations and the two contexts (i.e., the contrast of interest for each context was: 3 durations - 3
reproductions, the contrast was pFWE < 0.05 corrected for multiple comparisons across the whole brain).

As in previous work6,8, we modeled the event offset because it was the moment at which the duration of
the sound became available to participants. The result of this contrast revealed differences in the
activation of the auditory parabelt areas, the intraparietal sulcus (IPS), and the Supplementary Motor Area
(SMA, see S-Fig.1). 

We then focused on each of these regions to identify the presence of auditory chronomaps in each
temporal context, that is, voxels exclusively and maximally active at the offset of the sound but not
during the reproduction, (i.e., the contrast of interest for each sound and context was sound offset -
response onset, the contrast was pFWE < 0.05 corrected for multiple comparisons across the whole
brain). 

Fig. 2A shows the bilateral SMA for the short (leftwards panel) and the long (rightwards panel) context,
and highlights a number of individual maps (for all individual maps, see  S-Fig.2 and S-Fig.3). Fig. 2A
shows color-coded the cluster of vertices (voxels projected onto the cortical surface) classi�ed as
maximally responsive to each of the three sound durations, based on a t-statistic winner-takes-all
procedure. The color scale ranges from red, corresponding to vertices responsive to the shortest duration
(0.32 and 0.65 of the short and the long context respectively), to blue, the vertices maximally responsive
to the longest duration (0.65 s and 1.1 of the short and the long context respectively). The maps were
characterized by the presence of a spatial transition in duration preferences, that is, from shortest to
intermediate to longest duration in a given context. The borders of the maps were drawn for each
individual subject on the basis of this transition for each hemisphere and context (all analyses that are
relative to the maps’ identi�cation and the computation of distances were done at surface level). Fig.2B
shows the distance of duration selective clusters for each context (i.e., the average distance of all vertices
in a cluster, see Material and Methods for more details) from the shortest border in each individual map
(i.e., the border closest to the shortest duration preference, the dashed border of Fig.2A) and also as an
average (continuous line). In both contexts and hemispheres, there was a clear spatial progression from
the shortest to the longest edge border (all t-tests p < 0.01). This progression was in the anterior to
posterior direction with vertices preferring the longest duration in the context and closer to the precentral
gyrus compared to those preferring the shortest duration in the majority of the SMA maps (67%) (see
Fig.2A). Although the anterior to posterior orientation was most prominent, other map’s orientations were
observed in a minority of maps (see Supplementary Fig.15A). It is worth emphasizing here that compared
to (Protopapa et al., 2019), we have allowed more �exibility in the identi�cation of map’s borders
following the methodology described in (Harvey et al., 2020).   
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Once we assessed the existence of auditory chronomaps in each temporal context, we moved to explore
the representation of 0.65 s duration in the two maps (Fig. 3A, B). Where is the same physical duration
represented in the two contexts? Fig.3A shows the vertices responding to 0.65 s, color-coded according to
the context for a few individual subjects (top row) and for the group (bottom of panel A). In blue are the
vertices that are maximally responsive to 0.65 s in the short context (i.e., longest duration of the
distribution) and in red those responsive to 0.65 s in the long context (i.e., shortest duration of the
distribution). In green are the vertices that keep the same preference across the contexts. The �gure
shows that the presentation of 0.65 s elicits the activation of different vertices, according to the relative
position of this duration within each context, with more anterior clusters of vertices preferring 0.65 s in
the long context and more posterior vertices responding to 0.65 s in the short context. This spatial shift
was measured in each individual map and hemisphere as the distance of vertices preferring 0.65 s in
each context from the shortest border of the appropriate map (Fig.3B, see S-Fig.4 to see all individual
maps). The vertices preferring 0.65 s in the short context map were located more posteriorly compared to
the vertices preferring 0.65 s in the long context map. We then checked whether the spatial shift of the
clusters responding to 0.65 s in the two contexts correlated with perceptual differences (i.e., with the
reproduction of 0.65 s in the two contexts). As shown in Fig. 3C, at least in the left hemisphere, this
correlation was highly signi�cant (r = -0.9; p = 0.004; Pearson correlation). The greater the difference in
reproduction (i.e., the more negative values) the greater the spatial difference between the clusters. 

At this point, to rule out the possibility that the spatial shift of 0.65 s representation in the two contexts
was random, we decided to check the consistency of the maps’ spatial progression within and across
contexts. In each subject we checked the correlation of the maps spatial progression (i.e., the slopes
resulting from the computation of the distances of each duration selective cluster from the shortest edge
of the map) between the different runs of the same and of different contexts (see S-Fig. 5). As expected,
the spatial progression of the maps was highly correlated between the runs of the same context (for short
context rrun1,run2= 0.5, p= 0.11; rrun2,run3= 0.59, p = 0.04; rrun1,run3= 0.71, p = 0.007; long context rrun1,run2=
0.46, p = 0.04; rrun2,run3= 0.6, p= 0.005; rrun1,run3= 0.49, p= 0.05) where no change was expected. Across
the contexts this correlation was much lower and less consistent (r ranging from 0.5 p=0.07 to -0.20
p=0.45 see S-Fig. 5 for more details). Finally, to exclude the possibility that the shift was driven by our
winner-takes-all procedure and to the projection of the results on the cortical surface, we opted for a data-
driven analysis on the volume space. We used cross-decoding (see Material and Methods) to compute
the fraction of voxels able to learn the pattern of activity linked to the presentation of 0.65 s duration in
the short context and to generalize it to the long context. Results showed (see S-Fig.19) that in SMA (as
well as in IPS and parabelt) only a small fraction of voxels, 10.7% on average, displayed signi�cantly
above chance decoding accuracy.     

 

The fact that different vertices are active for the same physical duration when perceived differently and
that those vertices are spatially shifted according to the relative position of this duration within each
context, suggests that time is represented in a relative fashion within the maps. However, it remains
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unclear the extent of this relative representation of time i.e., how much overlap does exist between the
maps in the two contexts? And what is the role played by the context in shaping the maps? If the context
does not play any role, the maps in the two contexts should be totally overlapping, otherwise they should
show a certain degree of separation.  

Fig.4AB shows the overlap between the maps of the two contexts (see Supplementary Fig. 6 to see the
overlap between contexts in individual subjects). In orange color are the clusters active in the short
context (SC) and in pale blue those active in the long context (LC), in yellow are the overlapping vertices.
The two maps are neither spatially segregated nor totally overlapping.  When we looked at the differences
between short and long contexts borders (Fig.4B), we see that in the majority of the subjects in which the
map orientation was in the anterior to posterior direction in the two contexts (N=8), the posterior borders
overlapped across contexts (in 6 out of 8 subjects, the difference was close to 0 in the y axis) but for the
anterior borders the situation was more mixed, since in half of the subjects the anterior borders was more
anterior in short compared to long context (positive values in x axis) and in the other half it was the
reverse. 

To better assess the overlap of the maps between contexts we looked at the hemodynamic response of
duration selective voxels for preferred and non-preferred duration within, but most importantly, across
contexts. For each individual subject to avoid circularity, the selection of the duration selective clusters
was based on a single run and the hemodynamic response extraction was computed on the remaining
runs in all possible combinations. Fig.4C shows for the average of the subjects, consistent duration
preferences across the runs (i.e., different runs are the different symbols in the plot), with a gaussian-like
type of response pro�le within but not across the contexts. As expected, the hemodynamic response was
greater for the preferred duration and slowly decayed with distance from it. If the �exibility of duration
representation in the maps was absolute, we should have seen changes in duration preferences across
the contexts. Speci�cally, we expected the same cluster of voxels to peak for durations that, in the two
contexts, were in the same relative position of the distribution.   However, this was not the case; voxels did
not change their duration preferences across contexts (i.e., the hemodynamic response only peaked for
the appropriate duration within the context). This result was also corroborated by the observation that
only 18.6% of the signi�cantly active voxels were shared between the two contexts and only 17% of them
were active for the same relative position within the context.  

Overall the SMA results showed the presence of auditory chronomaps in the two contexts. The spatial
progression was, as expected according to previous work (Protopapa et al., 2019), in the anterior to
posterior direction from shorter to longer durations. Within each context, duration selective voxels show a
gaussian-like type of tuning, where response was enhanced for preferred duration and slowly decayed
with distance from it. This result shows that chronomaps in SMA are sensory modality and task-
independent. Different vertices respond to the same physical duration when it is perceived differently in
the two temporal contexts.  Those clusters of vertices are also spatially shifted according to the relative
position with each context (i.e., anterior for the shortest duration and posterior for longest duration of the
context). The spatial shift of the clusters in the left hemisphere correlates with the perceived difference of
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the same duration in the two contexts. This result seems to suggest that time is represented in a relative
fashion within the maps. However, the observation that there is no change in tuning across contexts and
that only few signi�cantly active voxels are shared between them, suggests a pivotal role of the temporal
context in shaping the activity within each map. Time representation is thus �exible but this �exibility is
not absolute.  

We then move to explore the existence of auditory chronomaps in auditory parabelt areas and IPS (for the
details of the ROIs selection see Materials and Methods). As for SMA, also in these areas, maps were
identi�ed by the presence of spatial transitions in duration preferences (i.e., from shortest to longest
duration) and maps’ borders were drawn in each individual subject, each hemisphere and context. Fig. 5
shows the presence of chronomaps in IPS (Fig.5A) and parabelt (Fig.5B) in a few individuals (for all
individual maps see S-Fig.,7,8,11 and 12). Although we observed a clear spatial transition of duration
preferences in most of the participants (Fig. 5C, D), the orientations of this transition were much more
variable compared to SMA (see S-Fig.15B-C). Although  this variability can re�ect differences in the
functional properties of these maps, it might be linked to the more complex morphology of these areas
compared to SMA.   

When we looked at the representation of 0.65 s in the two contexts (Fig.6, see also S-Fig. 9  and 13 for
individual maps), we observed very few vertices responding to 0.65 independently from the context (see
also S-Fig. 19), and a spatial shift of vertices responding to 0.65 according to the relative position of this
duration within a temporal context. Differently from SMA, the spatial shift in these areas did not correlate
with a shift in perception (r = 0.05 for IPS; r = 0.07 for auditory parabelt). Similar to what we observed in
SMA, in IPS and parabelt areas, the cross-validation of the tuning preferences showed consistency of
duration preferences across the fMRI runs (i.e., voxels keep their duration preferences across runs) and a
gaussian-like tuning pro�le within each context, where the hemodynamic response peaks at the preferred
duration and slowly decays with distance from it. Finally, in these brain regions we observed a clear
segregation of duration preferences across the two contexts (see Fig.7CD) i.e. voxels did not change their
tuning across contexts. This last result suggests a key role of the temporal context in driving duration
preferences and in shaping the maps. Also here, the maps in the two contexts are neither perfectly
segregated nor overlapping (see Fig.7A and S-Fig. 10 and 14). 

At this point, to prove the robustness of the current �ndings we decided to analyze the fMRI data with a
data driven approach.  For this purpose, we ran a Multivariate Pattern Recognition Analysis (MVPA). The
�rst goal was to check whether the six different durations in the two contexts could be predicted by the
pattern of activity of the three ROIs of interest (i.e., SMA, IPS and parabelt area) but also by the activity of
two task-unrelated control sites (i.e., Occipital pole -OP and Orbitofrontal cortex -OC). We decided to use
control ROIs to make sure that the pattern of activity observed in the ROIs of interest was speci�c to time
processing in these areas. For MVPA, in each single subject we used the data of two fMRI runs (i.e., one
for each context) to train a linear classi�er on the 6 different durations and the remaining four fMRI runs
(i.e., two for each context) to test the classi�cation. This procedure was performed for all the possible
combinations of training and testing runs (see Materials and Methods for details). For training and
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testing we used the beta values resulting from the GLM modelling of the offset of the different auditory
durations (see Materials and Methods for more details).  Fig.8A shows the results of the classi�cation
averaged across subjects, where for each ROIs is shown the confusion matrix with the classi�cation
accuracy of the three durations in the two contexts. The classi�cation accuracy for each duration in the
two contexts (i.e., the values in the diagonal of the matrix) was signi�cantly above chance (0.17 is the
chance level) in SMA and IPS compared to parabelt and the control ROIs (6 ROIs by 6 durations repeated
measures ANOVA, ROI effect: F(4,5) = 6.25 p < 0.001 η2 = .09; SMA vs OP, t(5) = 7.28   p < 0.001; IPS vs
OP, t(5) = 5.34  p < 0.01; parabelt vs OP, t(5) = 1.2  p = 0.14), con�rming, except for the parabelt areas, the
previous model driven analysis. Moreover, the classi�cation accuracy was signi�cantly higher in SMA
compared to IPS and parabelt areas (SMA vs IPS, t(5) = 3.37 p < 0.01; SMA vs parabelt  t(5) = 2.41 p <
0.05; parabelt vs IPS t(5) = 0.68 p < 0.26). This last result suggests that despite the similarity of patterns
linked to duration preferences, duration selectivity seems more prominent in SMA compared to IPS and
parabelt areas. This result was also replicated by performing the classi�cation of the two contexts only
both at whole brain level and ROI level (without considering the different durations, see S-Fig. 16, S-Fig.
18 and Materials and Methods for more details). Next, to understand the contribution of the context in
modulating duration preferences we ran a dissimilarity analysis, in which we correlated the betas
associated with the offset of each duration (as resulting from the GLM analysis) within and across
contexts. In SMA, IPS and parabelt the pattern of activity associated with  the different durations was
more similar within rather than across contexts (Fig.8B). This result highlights the importance of the
context in shaping the activity within these areas and in creating a relationship between durations
belonging to the same context. We then wondered whether the similarities in the pattern of activity we
found, could be used as proxy for understanding participants’ behavior. To this aim we computed, for
each participant, the dissimilarity matrix of their behavioral performance and then we correlated them
with the dissimilarity matrix of the pattern of activity in SMA, IPS and parabelt at stimulus offset and
reproduction onset (for comparisons, see Material and Methods). The result (see S-Fig. 20) showed that
the pattern of brain activity at stimulus offset were associated with subject performance in all areas
(median Pearson’s r parabelt = 0.647, IPS = 0.657, SMA = 0.661) and the level of association was
signi�cantly higher (F(1,45) = 17.01 p < 0.001) as compare to response offset (median Pearson’s r
parabelt = 0.503, IPS = 0.429, SMA = 0.422).

Finally, we ran an additional classi�cation analysis in which we tried to predict the 6 different durations
from the pattern of activity of the different duration selective clusters as previously identi�ed with the
GLM winner-take-all procedure. The MVPA was performed as before, using two fMRI runs for training (i.e.,
one for each context) and the remaining runs for testing. All possible combinations of training and
testing runs were used.  The result of this classi�cation (see S-Fig.17) shows that for each duration
selective cluster, the majority of the voxels accurately predicts the duration originally preferred to that
cluster. For example, in the 0.32 cluster, as de�ned by winner-take-all, there is a great number of voxels
that are classi�ed as preferring 0.32 s duration. This result thus con�rms with a data driven approach the
consistency of the duration preferences and proves the robustness of our original �ndings.  
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Discussion
In this work we show the presence of a topographic representation of time in SMA, IPS and parabelt
areas. Chronotopic maps were observed at the sound offset of different durations. Within these maps,
duration selective voxels show a gaussian-like type of tuning, where response is enhanced for preferred
duration and slowly decays with distance from it. Maps were observed in different temporal contexts and
although the cortical area covered by the different context maps was largely overlapping, distinct voxels
responded to the different durations of the two contexts. Most importantly, different voxels responded to
the same physical duration when this was perceived differently in the two contexts.  Those clusters of
voxels were also spatially shifted according to the relative position with each context and only in SMA
this spatial shift correlated with the perceived difference of the same duration in the two contexts. MVPA
analysis con�rmed the presence in SMA and IPS of distinct patterns of activity for the different durations
in the two contexts. However, these patterns were more easily detectable in SMA compared to IPS and
parabelt. Finally, a dissimilarity analysis shows in all areas of interest a clear segregation of the activity
associated with the different temporal contexts i.e., activity is more similar within rather than across
contexts. 

 

In humans, chronotopic maps and duration preferences have been described before in a wide network of
brain regions including visual, parietal, premotor and prefrontal regions (Harvey et al., 2020; Protopapa et
al., 2019, 2020). These maps have been described when participants were both passively viewing
duration stimuli and when they were directly engaged in a duration discrimination task. However, only in
SMA, these maps were linked to duration perception (Protopapa et al., 2019). Here, differently from these
previous studies, we show the presence of chronomaps for auditory stimuli and when the goal of
duration sound encoding was a reproduction i.e., a motor task. Chronotopic maps were observed not only
in high-level parietal and premotor brain regions as before, but also in sensory speci�c regions like the
parabelt area. These data therefore suggest the presence of topographic representation of time across
different stages of duration processing i.e., from auditory associative cortices to intraparietal sulcus to
SMA. The redundancy of this temporal representation resembles the existing redundancy of spatial
representations, where different brain areas host different spatial representations serving different
functional purposes (Derdikman & Moser, 2010). Our experimental design and the intrinsic spatial and
temporal limitations of the fMRI technique do not allow us to specify the functional properties of these
different maps. However, there are a few aspects of our results that might give a hint on the functional
differences between these regions in duration encoding. The �rst is the signi�cant difference between
SMA, IPS and parabelt activity in predicting the different durations. Indeed, the MVPA analysis showed a
progressive worsening of accuracy in predicting the different durations from the premotor to the sensory
areas. Maps in IPS and in parabelt compared to SMA, also showed a high degree of inter-subject
variability in orientation and, differently from SMA, the spatial shift observed for the duration shared
between the contexts did not correlate with differences in perception. These three observations seem to
suggest a special role of SMA in duration encoding. SMA, compared to IPS and parabelt areas, is
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decisively the area where durations must be read-out and recognized for forthcoming decisions. This
interpretation is in line with previous results showing a correlation between SMA activity and duration
perception (Coull et al., 2015; Protopapa et al., 2019) and with the results of a recent effective
connectivity study. In this study the authors explored the connectivity architecture of �ve functionally
distinct brain areas (i.e.,cerebellum, primary visual cortex, IPS, SMA and Inferior frontal gyrus),
signi�cantly associated with the duration encoding of brief visual stimuli (ranging from 0.2 to 1 s). The
results showed that the optimal effective connectivity model is the one in which the cerebellum has
feedback and/or feedforward connections from and to all other network nodes. SMA is the only area that,
while being modulated by the activity of cerebellum, IPS and V1, does not in�uence the activity of any
other brain region (Protopapa et al., 2020). According to this work SMA seems to be the ultimate stage of
duration recognition, whereas IPS is the area whose activity is greatly affected by the incoming duration
information (is the area sensitive to the duration input). In light with our current and previous works we
can therefore hypothesize that duration information is �rst extracted in auditory regions and then passed
to IPS where a �rst reading of temporal signals occurs (i.e., “duration input” area) and from IPS duration
information reaches SMA, the �nal stage of duration recognition, where duration will be ready for
decision. In humans, the role of both SMA and inferior parietal lobule in temporal perception has been
extensively documented (Hayashi et al., 2015, 2018; Wiener et al., 2010). Both areas have been implicated
in a variety of timing tasks (Bueti et al., 2008; Bueti & Macaluso, 2010; Wiener et al., 2010) with a range of
durations spanning from a few hundreds of milliseconds to a few seconds (Lewis & Miall, 2003; Morillon
et al., 2009) and with stimuli of different sensory modalities (Coull et al., 2008; Pastor et al., 2004). It is
therefore likely that both areas constitute the core of the timing network. 

 

Compared to previous studies here we were able to specify a few important properties of the maps. 

The observation that the same physical duration engaged the activation of different voxels when
perceived differently in the two contexts, and that these voxels are spatially shifted according to the
relative position of this duration within each context, seems to suggest that time is mapped in a relative
fashion. However, the maps in the two contexts are not perfectly relative, since �rst, distinct voxels are
active for the different durations in the two contexts. Second, there is no remapping of the tuning across
contexts i.e., within a given duration selective cluster of voxels, the BOLD signal does not peak for
durations sharing the same position within a distribution. Third, maps are strongly modulated by the
context, as shown by the dissimilarity analysis within each ROIs. The activity pattern is more similar
within the durations of a context rather than across them.  Even though the clusters of voxels active in the
two contexts are not spatially segregated, they largely overlap on the cortical surface.

The observation that voxels change their duration preferences according to the context and the position
of the durations within it, seems to suggest a certain degree of �exibility of duration representation in
these maps. Even though any comparison with tuning mechanisms explored at electrophysiological level
in single-cells has to be taken with caution, we believe that our data are compatible with some of the
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basic properties of other existing topographic maps.  The �exibility observed in chrononompas for
example, has also been reported in “sensory” maps, where the tuning to a speci�c stimulus feature (e.g.,
orientation, spatial and temporal frequency, motion direction in the visual domain) change after
perceptual adaptation (Kohn & Movshon, 2004). A change of response preferences measured with fMRI,
has also been observed in numerosity maps after perceptual adaptation (Tsouli et al., 2021).  And
similarly to “sensory” maps, where this �exibility is limited, adaptation effects for example, occur only
when there is an optimal distance between adaptor stimulus and test, here there is no total reshape of the
two contexts maps but different voxels respond to the different durations in the contexts. There is an
important caveat to make when comparing chronompas to other more “sensory” maps. Time maps
together with numerosity maps have never been described in primary sensory cortices (Harvey et al.,
2020; Protopapa et al., 2019), probably because time, like numerosity, lacks a proper “sensory receptive
space”. It is therefore plausible that these maps re�ect a high-level stage of temporal processing. Low
level sensory areas, like primary visual cortex, for example, are indeed sensitive to changes of stimulus
duration (Zhou et al., 2018), but this sensitivity is re�ected in the change of the hemodynamic response
amplitude i.e., a sublinear increase of BOLD with increasing stimulus duration, and not in a tuning-like
response (Hendrikx et al., 2022). This difference seems to suggest that duration preferences arise later in
the temporal information processing stream, perhaps as a result of the integration of the sensory drive
that comes from primary sensory areas.

 

The modulation of stimulus contexts in shaping the maps is also an interesting and novel aspect of our
�ndings. Although the effect of temporal context has been well documented at behavioral level (Lejeune
& Wearden, 2009; Roach et al., 2017), only very few studies (Damsma et al., 2021; Murai & Yotsumoto,
2016)  have explored the neural signature of this effect. 

A recent EEG study, for example, using a very similar auditory temporal reproduction task, has shown that
temporal context affects the neural dynamics during the encoding of the stimulus duration. Speci�cally,
longer previous durations decrease CNV and P2 amplitude and increase beta power (Damsma et al.,
2021), suggesting, similarly to our results, a modulation of temporal context on perceptual rather than
memory processing.  

 

In summary in this work we show the existence of chronomaps across auditory, parietal, and premotor
regions. In SMA and IPS chronomaps are sensory modality and task independent. All maps show a high
degree of �exibility with different voxels responding to the same physical duration (i.e., 0.65s) in the two
temporal contexts; these voxels are spatially shifted according to the relative position of this duration
within the context. This �exibility though is not absolute, voxels do not change their duration preferences
across contexts, but more often different voxels are active for the different durations in the two contexts.
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 The temporal context seems indeed very powerful in making the pattern of activity associated with the
different durations more similar within a context rather than across contexts. 

Overall these results suggest that time is represented in the maps in a partially relative fashion and that
the temporal contexts play a pivotal role in determining duration preferences.

Materials And Methods
Participants 

Fourteen healthy, right‐handed volunteers (mean age 23 ± 3 years, mean ± standard deviation, seven
females) participated in the study. All volunteers gave written informed consent to participate in this
study, the procedures of which were approved by the International School for Advanced Studies (SISSA)
ethics committee (protocol number 1899/II-16) in accordance with the Declaration of Helsinki. 

Stimuli and Procedure 

We used an auditory temporal reproduction task, in which subjects were asked to reproduce, by pressing,
holding down and releasing a response key, the duration of a sound (a pure tone 1000 Hz in pitch)
delivered via headphones. The beginning of a trial was indicated by a visual cue, an ‘X’ (2o of visual
angle), presented on the screen placed at the posterior end of the MRI bore and lasting for 0.2s (Fig.1A).
After a brief post-cue period (1.3–2.3 s), a single pure tone was played via headphones for a variable
duration (ranging from 0.32 to 1.1 s). After an interval ranging from 2 to 4 s, a burst of white noise
presented for 0.1s instructed the subjects to reproduce the previously heard sound by pressing and
holding down a response key. The subjects did not receive any feedback on their performance after their
response. After the response, the next trial started following an inter-trial interval ranging from 0.3 to 0.5s.
Occasionally, the subjects were randomly presented with catch trials in which only the pure tone was
presented. In the catch trials the subjects did not reproduce the duration.

Subjects were tested separately in  two temporal contexts. In the short context, the sound’s duration was
either 0.32s, 0.46s or 0.65 s, in the long context it was 0.65s, 0.85s or 1.1s. 0.65s was presented in both
contexts and it was the shortest duration in the long context and the longest duration in the short one.
Every fMRI run consisted of 54 experimental trials and 9 catch trials, with 18 experimental trials and 3
catch trials for each duration; all trial types and durations were presented randomly. We collected 3 fMRI
runs for each temporal context. The 3 runs of each context were always presented in sequence, whereas
the presentation order of short and long context was counterbalanced across subjects. A total of 378
trials were collected for every subject, with 189 trials for each context and 63 trials for each of the 6
durations. The experimental paradigm was designed and presented using the Psychophysics toolbox
(Kleiner et al., 2007) in Matlab (The Mathworks, Inc.). 
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Behavioral Data Analysis 

For each participant and each duration of the two temporal contexts, we took as a measure of accuracy
the reproduced duration, which was the time between response key press and response key release. To
check for signi�cant differences in the reproduced duration between the two contexts, the individual
reproduced durations were entered in a repeated measures ANOVA with two contexts (short and long) and
three durations (short, intermediate and long duration) as factors. As post-hoc tests we used paired t-tests
in which the alpha level was set to 0.05.

 

MRI Acquisition

Blood oxygenation level-dependent (BOLD) functional imaging was performed using an actively shielded,
head-only 7T MRI scanner (Siemens, Germany), equipped with a head gradient-insert (AC84, 80 mT/m
max gradient strength; 350 mT/m/s slew rate) and 32-channel receive coil with a tight transmit sleeve
(Nova Medical, Massachusetts, USA). The ultra-high magnetic �eld system allowed us to have voxels
with smaller size compared to lower �eld MRI thus increasing the spatial resolution of the functional
data. Moreover, in 7T systems the signal strength of venous blood is reduced due to a shortened
relaxation time, restricting activation signals to cortical grey matter which results in a better signal-to-
noise ratio33. Time-course series of volumes were acquired for each run using the multiband sequence.
The spatial resolution was 1.5 mm isotropic, the volume acquisition time (TR) was 1368 ms, the �ip
angle was 60 degrees, the echo time (TE) 23 ms and the bandwidth 1903 Hz/Px. The matrix size was 146
x 146 x 75, resulting in a �eld of view of 219 (AP) x 219 (RL) x 112.5 (FH) mm. An undersampling factor 0
and CAIPIRINHA shift 3 were used. Slices were oriented transversally with the phase-encoding direction
anterior-posterior. 146x42x75 reference lines were acquired for the GRAPPA reconstruction. 

 

High-resolution whole-brain MR images were also obtained using the MP2RAGE pulse sequence
optimized for 7T (voxel size = 0.60 x 0.60 x 0.59 mm, matrix size 320 x 320 x 256, TI1/TI2 =750/2350ms,
α1/α2 = 4/5 degrees, TRMP2RAGE/TR/TE = 5500/6000/4.94 ms).

 

fMRI Preprocessing

Functional imaging data were preprocessed using the Statistical Parametric Mapping (SPM12 v. 7219,
Wellcome Department of Imaging Neuroscience, University College London) toolbox in MATLAB. In each
individual subject the EPI volumes acquired in the different runs were �rst realigned. The runs were �rst
realigned to each other, by aligning the �rst scan from each session to the �rst scan of the �rst session.
Then the images within each session were aligned to the �rst image of the session. The realigned images
were then co-registered to the T1-weighted image acquired in the same session. The subject’s images in
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native space realigned and co-registered to the T1-weighted image were next smoothed with a 2 mm full-
width at half-maximum Gaussian kernel. 

 

GLM analysis

The fMRI time series were analyzed at individual subject level using a univariate GLM approach. The
events of interest in the GLM analysis included the offsets of the three durations in the two contexts and
the onset of the response (i.e., onset of the keypress).  We also modelled the visual cue onset signaling
the beginning of each trial and the six motion correction parameters as effects of no interest. The
duration of all events was set to zero. The individual GLM included the six fMRI runs, three for each
context, and each run had 13 regressors (7 of interest and 6 of no interest).  All events were convolved
with the canonical hemodynamic response function (HRF). The fMRI time series data were high-pass
�ltered (cutoff frequency = 0.0083 Hz). Correction for non-sphericity (Friston et al., 2002) was used to
account for possible differences in error variance across conditions and any non-independent error terms
for the repeated measures. To identify the brain areas exclusively active at the offset of the encoded
sound (and not during reproduction) independently from the different durations and the two contexts we
contrasted duration and response (duration offset - response onset, resulting in one t-contrast for each
subject) and we averaged across durations and contexts. To identify the presence of auditory
chronomaps in each temporal context i.e., voxels exclusively active at the offset of the sound, but not
during the reproduction, and maximally activated by each speci�c duration we used as contrast of
interest sound offset - response onset for each sound and context (resulting in 6 t-contrasts for subject).
In all t-contrasts, pFWE < 0.05 corrected for multiple comparisons across the whole brain. 

Winner-take-all. To appreciate the existence of chronomaps in each temporal context, the three t-maps,
obtained at single subject level and for each context were then used to classify the voxels according to
their preference to one of the 6 different durations (three durations in the two contexts). Voxels were
classi�ed according to a “winner take all” rule (WTA), for example voxels with the greatest t value
(threshold was set to t > 3.13), for the shortest duration range in the short context (0.32 s) were classi�ed
as responsive to that duration range and labeled with number 1. We created 6 different labels
corresponding to each duration in the two contexts i.e., 0.32s, 0.46s, 0.65s (SC), 0.65s (LC), 0.85s and
1.1s. For WTA we used only the clusters of voxels that were signi�cant at p<0.05 cluster-level corrected
for multiple comparisons across the whole brain.

 

Anatomical image processing

The high-resolution MP2RAGE images were analysed using Freesurfer software (Fischl et al., 2002)
(http://surfer.nmr.mgh.harvard.edu/). Freesurfer’s automatic pipeline performs the volumetric
segmentation of the MRI data, the surface reconstruction of in�ated surfaces, the �attening of cortical

http://surfer.nmr.mgh.harvard.edu/
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regions of interests, the cortical parcellation, and the neuroanatomical labelling with the
Freesurfer/Destrieux atlas (Destrieux et al., 2010). 

Morphing using Freesurfer. Visualisations and computations requiring moving surface data from
different subjects into a common surface were performed using the Freesurfer operation mri_surf2surf.
The source surface was the surface in the area of interest and in a speci�c subject that was   closest to
the mean of that surface area across subjects.  For example, when morphing data of the SMA Freesurfer
label from different subjects into one destination subject space, the SMA label area was �rst estimated
for all subjects. The destination subject space was the subject with the SMA label area closest to the
mean of all the SMA label areas across subjects. This method of morphing ensures the best
transformation of data from multiple sources to a single destination space.

 

Surface-based quanti�cation of chronomaps spatial progressions

Chronomaps were visualized and their metrics estimated on in�ated and �attened cortical surfaces. 

The areas where we explored the existence of chronomaps, which were signi�cantly active at the offset
of all sounds and contexts in all subjects (see S-Fig1) were called Region of Interest  (ROI). These were
SMA, IPS and parabelt areas. 

Chronomaps were identi�ed in the left and the right hemisphere of each individual subject using the SPM
t-maps resulting from the WTA method. These volumetric maps were projected onto the cortical surface
of each individual brain following the Freesurfer pipeline (with a projection fraction set to 0.5). Individual
chronomaps for short and long context separately were identi�ed in SMA, IPS and parabelt areas of both
hemispheres. Maps in all subjects, ROIs and hemispheres were visually identi�ed when there was a clear
spatial progression of duration preferences from short to long durations.  Maps’ borders were manually
drawn at the edge of the clusters of vertices (vertices are voxels projected into the cortical surface) which
preferred the longest and the shortest duration of the range. 

The spatial progression was quanti�ed on �attened surfaces as the normalized distance (nD) of each
duration selective vertex from the shortest edge for the map. The normalized distance was de�ned as: 

The distance was computed for each vertex in the cluster and then averaged across vertices of the same
cluster. The average vertex distance was then estimated for each duration selective cluster of vertices   in
the two contexts in all subjects and tested for statistical signi�cance using a t-test. In each individual
subject, a slope of the spatial progression of duration selective vertices was also computed.
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To quantify the spatial shift of the duration selective clusters active for the duration shared between the
contexts, for each individual subject and for each context separately we computed the distance of the
0.65s cluster (averaging the distances of all vertices within the cluster) from the shortest edge of the map
and we then compare it across subjects using a t-test. To check for the presence of a correlation between
spatial shifts in the cortical representation of 0.65s and reproduction of this duration across contexts, we
plotted the difference in the reproduced duration of 0.65s in the two contexts (SC - LC) against the
absolute difference in distance of the 0.65s duration selective clusters in the two contexts. 

SMA chronomap. In SMA, whose location was double checked with the Freesurfer BA6 label of both the
hemispheres, we de�ned chronomap’s orientation as the spatial progression of clusters of vertices
showing duration preferences.  A �at surface of the BA6 label was created for each hemisphere and
subject. 

IPS chronomap. Chronomaps in the IPS were identi�ed using the Freesurfer’s IPS label
(S_intrapariet_and_P_trans.label) for each subject. For each subject and hemisphere a �at surface
representation of the IPS label was then created to compute the map’s attributes. To have a more data-
driven approach in determining the chronomap progressions and orientations we developed an octagonal
search method to determine the best map orientation in the IPS. An octagonal search grid was assumed
over the IPS area. The eight sides of the octagon then served as the borders or edges for possible test
orientations, resulting in four pairs of shortest-to-longest borders. The primary orientation was assumed
to be orthogonal to the postcentral gyrus (poCG). The orientations were de�ned as relative to this primary
orientation axis, with the remaining three axes of the octagon at 45o, 90o and 135o. For each context, the
average vertex normalized distances (nD) were computed across the durations and octagonal test
orientations. For every test orientation, a slope was computed from the nDs of the different  durations in
the two contexts. The slope re�ected how well the duration clusters were topographically organized in
that orientation. The winning map orientation for a given subject and hemisphere was the orientation
resulting in the steepest slope. This method of using a common anatomical reference makes the
resulting map orientations comparable across the subjects.

Parabelt chronomap. The auditory parabelt was de�ned as the ROI including the following Freesurfer
labels: G_temp_sup-Lateral, S_temporal_transverse, Lat_Fis-post, and G_temp_sup-Plan_tempo. A similar
octagonal search grid method used with the IPS chronomaps was applied to the auditory parabelt maps
for each hemisphere and subject. The primary orientation here was assumed to be orthogonal to Heschl's
gyrus (HG). For every test orientation, a slope was computed from the average nDs of the different
durations in the two contexts. The winning orientation for a given subject and hemisphere was the
orientation resulting in the steepest slope.

Overlap between the two context maps. To visualise the extent of segregation and overlap between the
short and long contexts, the two context maps in each ROI (i.e., SMA, IPS and parabelt) were visualised
together on individual cortical surfaces. When the two context maps were visualized at group level, for
each subject, only the hemispheres with the winning orientation were overlaid on the common surface
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space. The dominant orientation in SMA was the anterior-to-posterior (N left hemispheres = 19, N right
hemispheres = 12), in IPS it was the orientation orthogonal to the poCG (N left hemispheres = 8, N right
hemispheres = 6) and in the parabelt areas it was the orientation parallel to the HG (N left hemispheres =
4, N right hemispheres = 3). 

Moreover,  to quantify the amount of overlap between the maps in the two contexts, we computed the
difference of the shortest and longest edges of the maps in two contexts i.e., SC-LC. This difference was
computed for each ROI in each individual �at surface using only the maps where both short and long
contexts had the same dominant orientation. We �rst estimated the distance of each map border (i.e.,
shortest and longest edge) from an anatomical landmark, which was pCG, poCG, HG for SMA, IPS and
parabelt, respectively. We then subtracted this distance value of the long context from the same distance
value of the short context (SC-LC).   

 

Duration tuning analysis

We checked the response properties of duration selective clusters of voxels by also looking at the BOLD
response in those clusters to preferred and non-preferred durations within and across contexts. In each
subject, ROI and context to avoid circularity, the duration selective clusters of voxels were identi�ed in one
run and the hemodynamic response of those clusters was extracted from the remaining two runs (in all
possible combinations). The duration selective clusters from a single run were identi�ed using the GLM
analysis and WTA approach, as described earlier (see GLM and winner-take-all analysis). For each cluster
of duration-selective voxels the normalized hemodynamic response was estimated as: 

Where, x(t) is the signal in each voxel and MB is the baseline that was obtained averaging the signal of t
for each run. Normalization was performed by subtracting the signal in each voxel from a baseline value
and dividing it by the baseline. The BOLD response was aligned to the second volume (i.e., a TR) after the
duration offset (see also 6). Within a single subject, we �rst averaged the BOLD signal across the voxels
of a cluster and then across the fMRI runs.

 

Multivariate Pattern Recognition Analysis (MVPA)

The multivariate pattern analysis (MVPA) was performed using the CosmoMVPA toolbox (Oosterhof et
al., 2016) in MATLAB (Matlab Inc.). For the MVPA analysis the fMRI time series were reanalyzed as before
(see GLM analysis) but in the fMRI preprocessing the realigned and co-registered images were
unsmoothed. The GLM analysis, as speci�ed above, included the six runs from the two contexts. Each
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run included 7 events of interest and 6 events of no interest. The modelled events included the visual cue
onset, the three sounds offset, the three response onsets and the six motion correction parameters. The
beta values associated with the offset of the six durations (three for each context) were then used for the
MVPA analysis.

Predicting the different durations in the two contexts.  In the �rst place we used MVPA to check whether
from the activity of SMA, IPS and parabelt areas we could predict the three different durations in the two
contexts. To this purpose we used a leave-one-run-out cross-validation approach. For each subject and in
each ROI, a support vector machine (SVM) classi�er (LIBSVM implementation: Chang & Lin, 2011) was
trained to classify the pattern of activity associated with the six durations from two runs (one for each
context). The classi�er was then tested using the activity pattern from the left-out run. This classi�cation
routine was iteratively performed until every run was left out once (3 iterations). The overall classi�cation
accuracy was then computed by averaging the classi�cation accuracy from all iterations. The
classi�cation accuracies resulting from this analysis were visualised as confusion matrices (chance level
is =0.17). To test if the cross-validation results were speci�c to the ROIs associated with the timing task,
we performed the same analysis on two additional task-unrelated ROIs. The two control ROIs were the
occipital pole (OP) and the orbitofrontal cortex (OC). OC was de�ned using the G_orbital and S_orbital-
H_Shaped Freesurfer labels. While the OP was de�ned using the Freesurfer Pole_occipital label. To
compare the prediction accuracy of the different ROIs we used 6 durations by 6 ROIs, repeated measures
ANOVA and we used paired t-tests as post-hoc tests. Alpha level was set to p=0.05.   

Predicting the contexts. With MVPA we also tested if the pattern of activity in SMA, IPS and parabelt and
the two control ROIs could predict the two contexts independently from the different durations. As before,
we used a cross-validation approach. Here the SVM classi�er was trained to classify the pattern of
activity associated with the two contexts from two runs and then tested using the activity pattern from
the left out run. A classi�cation accuracy at chance level was equal to ½=0.5. Using the same procedure
we ran a whole-brain searchlight analysis at group-level. Firstly, the searchlight classi�cation analysis
(with spherical searchlights of 6 voxels of radius) was performed at the individual level, using beta values
estimated from unsmoothed and MNI-aligned fMRI time-series (we excluded from this analysis 4 subjects
that showed the highest degree of misalignment with the MNI template). Lastly, we computed the group-
level statistics using cosmo_montecarlo_cluster_stats (using 10000 iterations and ‘max’ statistics).

Cross-decoding analysis. In order to check whether the spatial separations of activity clusters linked with
the presentation of 0.65 s in the short and long context were not a byproduct of the analysis employed
(see Surface-based quanti�cation of chronomaps spatial progressions) we used a cross-decoding
approach. This analysis was restricted to SMA, IPS and the auditory parabelt and to the dataset
employed for the whole-brain searchlight analysis. This time since the analysis was carried on the
volume we use JuBrain anatomy toolbox (Eickhoff et al., 2005) for ROI de�nition directly in the MNI
space. The areas selected for the ROI de�nition were 6mc and 6mr for SMA, hIP1-8 for IPS and TE 1.2, TE
3 for the auditory parabelt. Cross-decoding was performed using searchlight analysis within each ROI
(the radius of each spherical searchlight was set to 3 voxels). We trained a SVM classi�er to discriminate
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between the pattern of activity of 0.65 s in the short context and the activity of either 0.32 s or 1.1 s (this
was done to avoid that the cross-decoding accuracy could be in�uenced by differences in beta values
related to the different sessions). The classi�er was then tested with the betas associated with 0.65 s in
the long context. We used a cross-validation schema which included 18 independent combination of
training and test set. For each voxel in each ROI we determined whether its accuracy was signi�cantly
above chance using a t-test against chance level (i.e. ½=0.5). 

Double-checking the duration preferences.  We performed a complementary MVPA analysis to establish if
the duration selective clusters identi�ed with the winner-take-all approach were indeed selective to the
assigned duration38. This analysis was performed using a cross-validation approach as described before.
Here, instead of using the whole ROIs, the cross-validation was carried out separately for each duration
selective cluster of SMA, IPS and parabelt areas. To check the decoding accuracy of the different duration
selective clusters of voxels, this searchlight analysis was conducted with a search area of 1 voxel that
moved across the whole duration selective cluster. For each of the voxels, the cross-validation analysis
was carried out using a leave-one-out approach. An SVM was trained to classify the pattern of activity
associated with the six durations from two runs and then tested using the response pattern from the left
out run. For all subjects and all ROIs, we estimated the classi�cation accuracy of each voxel in all
duration selective clusters. 

 

Representational similarity analysis 

To measure how the brain activity differed between the six different durations in the two contexts, we
analyzed the fMRI time series using a multivariate representational similarity analysis (RSA, Kriegeskorte,
2008; Kriegeskorte et al., 2006). With RSA for each ROI i.e., SMA, IPS, parabelt, we correlated the beta
values associated with the offset of each duration with the beta values associated with every other offset
duration within and across contexts. To perform this correlation, in each individual subject we averaged
the betas corresponding to each duration offset across the three runs of the same context. The
correlation was measured with the Pearson correlation coe�cient. The resulting correlation coe�cients
were entered into a representation dissimilarity matrix (RDM) where each entry was created by
subtracting the correlation coe�cient by 1 and averaging this correlation coe�cient across subjects. This
value re�ects how dissimilar on average each duration representation is from the others. 

Additionally, we checked whether the RDM computed from the pattern of brain activity were correlated
with subject behavior. To avoid that the different number of voxels per ROI in the different subjects could
have an in�uence on this analysis we used the dataset employed for the group-level searchlight analysis
and we use an absolute measure of similarity: the Euclidean distance. We �rst estimated the behavioral
RDM computing the Euclidean distance between each pair of average reproduced durations in each
participant using MATLAB’s pdist. We then computed the RDM in all ROIs and participant, as described
above, for both the betas associated with stimulus offset (stimulus RDMs) and response onset(response
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RDMs). Finally, in each participant and ROI, we correlated behavioral RDMs with stimulus and response
RDMs using Pearson’s correlation coe�cient, which were then Fisher transformed and analyzed using a
linear mixed effect model with ROI and RDM type (either stimulus or response) as �xed effects and
subject as random intercept. Group-level RDMs were summarized in S-Fig.20 using DISTATIS (Abdi et al.,
2005). 
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Figure 1

Predictions and experimental paradigm with behavioral results. (A) Sketch of four possible duration
representations in chronomaps associated with changes in perception and temporal contexts. Lines are
hypothetical maps’ borders. The dashed line is the shortest edge of the map. The different panels depict
the four predictions described in the text. (B) Schematic representation of the stimuli in a trial. Each trial
began with a visual cue (a �xation cross changing brie�y its shape), after 1.3–2.3 s a pure tone (10KHz in
pitch) of a given duration was played through headphones.  In the short context the sound could be
played for 0.32, 0.46, or 0.65 s, in the long context it could be played for 0.65, 0.85 or 1.1 s. After a
variable interval ranging from 2 to 4 seconds, a burst of white noise lasting 0.1s, instructed the subject to
reproduce the previous stimulus duration with a key press. (C)Group average (N = 14) of the reproduced
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stimulus durations plotted separately for each of the contexts. The colored circles are the different
subjects; the black dots are the mean of the distribution. *p = 0.04.

Figure 2

Auditory chronomaps in SMA. (A) Medial view of left (L) and right (R) hemispheres of four individual
subjects. Overlaid on the individual in�ated cortical surface are clusters of vertices classi�ed with a
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winner-take-all procedure as maximally responsive to the three durations in the short (SC, 0.32, 0.46, and
0.65 s) and long (LC, 0.65, 0.85, and 1.1 s) context. In red, green and blue are the clusters preferring
respectively the shortest, the intermediate and the longest duration of the context. The white dashed line
is the border at the shortest edge of the map (closest to the shortest duration), the solid line the border at
the longest edge of the map (closest to the longest duration of the range). pCG is precentral gyrus. (B)
The plots show for each hemisphere and context the distance of the different duration selective clusters
(i.e., the average of the vertices in a cluster), color-coded as in (A), from the shortest border of the map
(dashed line). The distances were computed in each individual map and were normalized to the
individual map size (distance between short and long edges of the maps, see Material and Methods for
details). The colored circles are the individual data, the lines represent the group average (continuous line
is SC, dashed line is LC). The normalized distances were computed for each context and each individual
subject on chronomaps overlaid on �attened surfaces in the participant's native space. *p < 0.05 , **p <
0.01, ***p < 0.001.
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Figure 3

Representation of the duration shared between contexts in SMA. (A) Medial view of left (L) and right (R)
hemispheres of four individual subjects and of the group. Overlaid on the subject’s in�ated cortical
surface are clusters of vertices classi�ed with a winner-take-all procedure as maximally responsive to
0.65s when presented in short context (SC, in blue) and long context (LC, in red). In green are the clusters
responsive to 0.65 in both the contexts. Individual maps are overlaid on individual brains in native space.
For the group image (at the bottom of the panel) the clusters of the 14 subjects were morphed onto a
common in�ated surface to form a group map.
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(B) Shows the normalized distance of the 0.65 s duration selective clusters in SC and LC. In red the
clusters of the LC, in blue those in the SC, for simplicity, the data of the right and left hemispheres are
considered together (N(SC) = 15 and N(LC) = 21 ). The circles are individual subjects/hemispheres, the
black points their means. Each circle is the average distance of all vertices in a 0.65 cluster. The
normalized distances were computed in each subject, hemisphere and context separately as the
difference (normalized to the map’s size) from the shortest edge of the map. ***p < 0.001 (C) Shows the
correlation between the difference in reproduction time (time from key-press to key release) of 0.65s (y
axis) and the normalized distance of the 0.65s clusters in short and long contexts. Data points are
individual subjects and the dashed line is the best �t line. In the leftward panel is the left hemisphere, in
the rightward is the right hemisphere. For the correlation, we considered for each hemisphere only the
subjects that had signi�cant activation of the 0.65 s cluster in the two contexts (N=7).
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Figure 4

Overlap between the maps in the two contexts and duration tuning in SMA. (A) Shows the overlap
between the maps of the two contexts. Medial view of left (L) and right (R) hemispheres of the group,
with the clusters corresponding to the short context in orange, those corresponding to the long context in
pale blue and their overlap in yellow. Here we show morphed onto a common in�ated cortical surface
only the individual chronomaps where the progression was in the anterior to posterior orientation in the
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two contexts in each hemisphere (N(left) = 5, N(right) = 3) see Material and Methods for more details).
pCG is precentral gyrus. (B) differences between short (SC) and long (LC) context of anterior (x axis) and
posterior (y axis) borders from pCG measured in each individual subject (each dot is a subject). Only
maps in the anterior-to-posterior orientation were included (N=8). Before subtracting the LC from the SC
context border, for each individual border the distance from the precentral gyrus was also computed (see
Materials and Methods for more details). (C) Shows the duration tuning of the different duration selective
clusters of voxels within and across contexts computed using a cross-validation approach across fMRI
sessions (leave one-run-out approach). Group average of the normalized BOLD responses (y-axis) of the
different duration-selective voxels (in different panels) for preferred and non-preferred durations within
and across contexts in the different fMRI sessions (diamonds, squares and circles). On the x-axis are the
six different durations in the two contexts. The lines are the average across fMRI sessions (continuous
line for SC, dashed line for LC). The BOLD signal in the duration-selective voxels is aligned to the
presentation timings of the different durations (i.e., second volume after duration offset, see Materials
and Methods for more details). The duration selective clusters were identi�ed from a single run of the
appropriate context (one for each context) and the normalized BOLD signal was extracted from the same
clusters in the remaining runs. Normalization was performed in each individual subject to the mean
signal intensity of the appropriate fMRI run (see Materials and Methods for more details). m is the value
of the estimated slope.
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Figure 5

Auditory chronomaps in IPS and parabelt areas. (A, B) Medial view of left (L) and right (R) hemispheres of
four individual subjects. Overlaid on the individual in�ated cortical surface are clusters of vertices
classi�ed with a winner-take-all procedure as maximally responsive to the three durations in the short (SC,
0.32, 0.46, and 0.65 s) and long (LC, 0.65, 0.85, and 1.1 s) context in (A) maps in IPS and in (B) maps in
parabelt areas. In red, green and blue are the clusters preferring respectively the shortest, the intermediate



Page 33/39

and the longest duration of the context. The white dashed line is the border at the shortest edge of the
map (closest to the shortest duration of the range), the solid line the border at the longest edge of the
map (closest to the longest duration). poCG is postcentral gyrus; HG is Heschl’s Gyrus. (C, D) the plots
show for each hemisphere and context the distance of the different duration selective clusters color
coded as in (A, B) from the shortest border of the map (dashed line). The distances were computed in
each individual map and were normalized to the individual map size (distance between short and long
edges of the maps, see Material and Methods for details). The colored circles are the individual data, the
lines and the black dots represent the group average (continuous line is SC, dashed line is LC). Each disk
in the plot is the average distance of the vertices in a given cluster. The normalized distances were
computed for each context and each individual subject on chronomaps overlaid on �attened surfaces in
the participant's native space. *p < 0.05 , **p < 0.01
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Figure 6

Representation of the duration shared between contexts in IPS and parabelt areas (A, B) Medial view of
left (L) and right (R) hemispheres of four individual subjects and of the group. Overlaid on the subject's
in�ated cortical surface are clusters of vertices classi�ed with a winner-take-all procedure as maximally
responsive to 0.65s when presented in SC (blue) and LC (red). In green are the clusters responsive to 0.65
in both the contexts. In (A) the IPS, in (B) parabelt areas. Individual maps are overlaid on individual brains
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in native space. For the group image (at the bottom of the panel) the clusters of the 14 subjects were
morphed onto a common in�ated surface to form a group map. (C, D) Show the normalised distance of
the 0.65s duration selective vertices in SC and LC. For simplicity, the data of the right and the left
hemisphere are considered together (IPS, N = 10 (SC), 20 (LC); parabel, N = 9 (SC), 16 (LC) ). The circles
are individual subjects/hemispheres, the black dots their means. The normalized distances were
computed in each subject, hemisphere and context separately as the difference from the shortest edge
normalized to the map size. Each disk in the plot is the average distance of the vertices in a 0.65 s cluster,
in (C) the IPS, in (D) parabelt areas. **p < 0.01
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Figure 7

Overlap between the maps in the two contexts and duration tuning in IPS and parabelt areas. In (A) and
(B) maps of the two contexts in IPS and parabelt areas. (A, B) Medial view of left (L) and right (R)
hemispheres of the group, with the clusters corresponding to the short context in orange, those
corresponding to the long context in pale blue and their overlap in yellow. Here we show morphed onto a
common cortical in�ated brain only the individual chronomaps where the progression was in the same
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orientation in the two contexts and in each hemisphere (90o orientation in IPS N= 7 subjects and
180oorientation in parabelt areas N=3 subjects), see Material and Methods for more details). SC, short
context; LC, long context; pCG, precentral gyrus. (C, D)Show the duration tuning of the different duration
selective clusters within and across contexts computed using a cross-validation approach across fMRI
sessions (leave one-run-out approach). In (C) IPS in (D) parabelt areas group average of the normalized
BOLD responses (y-axis) of the different duration-selective voxels (in different panels) for preferred and
non-preferred durations within and across contexts in the different fMRI sessions (diamonds, squares
and circles). On the x-axis are the six different durations in the two contexts. The lines are the average
across fMRI sessions (continuous line for SC, dashed line for LC). The BOLD signal in the duration-
selective voxels is aligned to the presentation timings of the different durations (i.e., second volume after
duration offset, see Materials and Methods for more details). The duration selective clusters were
identi�ed from two runs of the appropriate context (one for each context) and the normalised BOLD
signal was extracted from the same clusters in the remaining runs. Normalization was performed in each
individual subject to the mean signal intensity of the appropriate fMRI run (see Materials and Methods for
more details). m is the value of the estimated slope.
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Figure 8

Decoding time with MVPA and representation similarity analysis. (A) Results of the MVPA analysis using
a leave-one-run-out approach. (A) shows the mean decoding accuracy of the different durations in the
two contexts from SMA, IPS, auditory parabelt, orbitofrontal cortex (OC) and occipital pole (OP) activity.
For each subject and in each ROI, a support vector machine (SVM) classi�er was trained to classify the
pattern of activity associated with the six durations in two runs (x-axis). The classi�er was then tested
using response patterns from the left-out run (y-axis). The overall classi�cation accuracy was then
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computed by averaging the classi�cation accuracy from all iterations. A classi�cation accuracy at
chance level was equal to 0.17 (1/6). (B) The results from a multivariate representational dissimilarity
analysis, showing the mean dissimilarity between the neural activity associated with each duration in the
two contexts. For each subject and for each ROI, a fMRI Representational Dissimilarity Matrix (RDM) was
computed through a pare-wise (dis)similarity (1- Pearson’s r) between each combination of the 6 β
weights associated with the offset of the 6 durations The warmer the color, the greater the dissimilarity.
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