1 Goldman, E. Exaggerated risk of transmission of COVID-19 by fomites. Lancet Infect Dis 20, 892-893, doi:10.1016/s1473-3099(20)30561-2 (2020).
2 Pitol, A. K. & Julian, T. R. Community Transmission of SARS-CoV-2 by Fomites: Risks and Risk Reduction Strategies. medRxiv, 2020.2011.2020.20220749, doi:10.1101/2020.11.20.20220749 (2020).
3 CDC. How COVID-19 Spreads. (2021).
4 Zhang, R., Li, Y., Zhang, A. L., Wang, Y. & Molina, M. J. Identifying airborne transmission as the dominant route for the spread of COVID-19. Proceedings of the National Academy of Sciences 117, 14857-14863, doi:10.1073/pnas.2009637117 (2020).
5 Boone, S. A. & Gerba, C. P. Significance of Fomites in the Spread of Respiratory and Enteric Viral Disease. Applied and Environmental Microbiology 73, 1687-1696, doi:10.1128/aem.02051-06 (2007).
6 Organization, W. H. Transmission of SARS-CoV-2: implications for infection prevention precautions. (2020).
7 Herfst, S. et al. Airborne transmission of influenza A/H5N1 virus between ferrets. Science (New York, N.Y.) 336, 1534-1541, doi:10.1126/science.1213362 (2012).
8 Richard, M. et al. Influenza A viruses are transmitted via the air from the nasal respiratory epithelium of ferrets. Nature Communications 11, 766, doi:10.1038/s41467-020-14626-0 (2020).
9 Yen, H.-L. et al. Hemagglutinin–neuraminidase balance confers respiratory-droplet transmissibility of the pandemic H1N1 influenza virus in ferrets. Proceedings of the National Academy of Sciences 108, 14264-14269, doi:10.1073/pnas.1111000108 (2011).
10 Zhou, J. et al. Defining the sizes of airborne particles that mediate influenza transmission in ferrets. Proc Natl Acad Sci U S A 115, E2386-e2392, doi:10.1073/pnas.1716771115 (2018).
11 Public Health England, V. T. G. SARS-CoV-2 variants of concern and variants under investigation in England, . Public Health England Technical briefing 7 (2021).
12 WHO. COVID-19 Weekly Epidemiological Update, 25 February 2021. (2021).
13 Leung, N. H. L. et al. Respiratory virus shedding in exhaled breath and efficacy of face masks. Nature Medicine 26, 676-680, doi:10.1038/s41591-020-0843-2 (2020).
14 Port, J. R. et al. SARS-CoV-2 disease severity and transmission efficiency is increased for airborne but not fomite exposure in Syrian hamsters. bioRxiv, 2020.2012.2028.424565, doi:10.1101/2020.12.28.424565 (2020).
15 Sia, S. F. et al. Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature, doi:10.1038/s41586-020-2342-5 (2020).
16 Sia, S. F. et al. Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature 583, 834-838, doi:10.1038/s41586-020-2342-5 (2020).
17 Davies, N. G. et al. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science 372, eabg3055, doi:10.1126/science.abg3055 (2021).
18 Ramanathan, M., Ferguson, I. D., Miao, W. & Khavari, P. A. SARS-CoV-2 B.1.1.7 and B.1.351 spike variants bind human ACE2 with increased affinity. The Lancet Infectious Diseases, doi:10.1016/S1473-3099(21)00262-0.
19 Laffeber, C., de Koning, K., Kanaar, R. & Lebbink, J. H. Experimental evidence for enhanced receptor binding by rapidly spreading SARS-CoV-2 variants. bioRxiv, 2021.2002.2022.432357, doi:10.1101/2021.02.22.432357 (2021).
20 Chan, J. F.-W. et al. Simulation of the Clinical and Pathological Manifestations of Coronavirus Disease 2019 (COVID-19) in a Golden Syrian Hamster Model: Implications for Disease Pathogenesis and Transmissibility. Clinical Infectious Diseases, doi:10.1093/cid/ciaa325 (2020).
21 Rosenke, K. et al. Defining the Syrian hamster as a highly susceptible preclinical model for SARS-CoV-2 infection. Emerg Microbes Infect, 1-36, doi:10.1080/22221751.2020.1858177 (2020).
22 Yamagishi, T. Environmental sampling for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during a coronavirus disease (COVID-19) outbreak aboard a commercial cruise ship. medRxiv, 2020.2005.2002.20088567, doi:10.1101/2020.05.02.20088567 (2020).
23 Lu, J. et al. COVID-19 Outbreak Associated with Air Conditioning in Restaurant, Guangzhou, China, 2020. Emerg Infect Dis 26, 1628-1631, doi:10.3201/eid2607.200764 (2020).
24 Fennelly, K. P. Particle sizes of infectious aerosols: implications for infection control. Lancet Respir Med 8, 914-924, doi:10.1016/s2213-2600(20)30323-4 (2020).
25 Brankston, G., Gitterman, L., Hirji, Z., Lemieux, C. & Gardam, M. Transmission of influenza A in human beings. Lancet Infect Dis 7, 257-265, doi:10.1016/s1473-3099(07)70029-4 (2007).
26 Bryche, B. et al. Massive transient damage of the olfactory epithelium associated with infection of sustentacular cells by SARS-CoV-2 in golden Syrian hamsters. Brain Behav Immun, doi:10.1016/j.bbi.2020.06.032 (2020).
27 Kutter, J. S. et al. SARS-CoV and SARS-CoV-2 are transmitted through the air between ferrets over more than one meter distance. Nature Communications 12, 1653, doi:10.1038/s41467-021-21918-6 (2021).
28 Richard, M. et al. SARS-CoV-2 is transmitted via contact and via the air between ferrets. Nat Commun 11, 3496, doi:10.1038/s41467-020-17367-2 (2020).
29 Milton, D. K. A Rosetta Stone for Understanding Infectious Drops and Aerosols. J Pediatric Infect Dis Soc 9, 413-415, doi:10.1093/jpids/piaa079 (2020).
30 Hou, Y. J. et al. SARS-CoV-2 Reverse Genetics Reveals a Variable Infection Gradient in the Respiratory Tract. Cell 182, 429-446.e414, doi:10.1016/j.cell.2020.05.042 (2020).
31 Gralton, J., Tovey, E., McLaws, M.-L. & Rawlinson, W. D. The role of particle size in aerosolised pathogen transmission: A review. Journal of Infection 62, 1-13, doi:https://doi.org/10.1016/j.jinf.2010.11.010 (2011).
32 Yinda, C. K. et al. Prior aerosol infection with lineage A SARS-CoV-2 variant protects hamsters from disease, but not reinfection with B.1.351 SARS-CoV-2 variant. bioRxiv, 2021.2005.2005.442780, doi:10.1101/2021.05.05.442780 (2021).
33 Volz, E. et al. Assessing transmissibility of SARS-CoV-2 lineage B.1.1.7 in England. Nature, doi:10.1038/s41586-021-03470-x (2021).
34 Lindstrøm, J. C. et al. Increased transmissibility of the B.1.1.7 SARS-CoV-2 variant: Evidence from contact tracing data in Oslo, January to February 2021. medRxiv, 2021.2003.2029.21254122, doi:10.1101/2021.03.29.21254122 (2021).
35 Mohandas, S. et al. Comparison of SARS-CoV-2 VOC 202012/01 (UK variant) and D614G variant transmission by different routes in Syrian hamsters. bioRxiv, 2021.2003.2026.437153, doi:10.1101/2021.03.26.437153 (2021).
36 Hou, Y. J. et al. SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo. Science, doi:10.1126/science.abe8499 (2020).
37 Zhou, B. et al. SARS-CoV-2 spike D614G change enhances replication and transmission. Nature 592, 122-127, doi:10.1038/s41586-021-03361-1 (2021).
38 Ulrich, L. et al. Enhanced fitness of SARS-CoV-2 variant of concern B.1.1.7, but not B.1.351, in animal models. bioRxiv, 2021.2006.2028.450190, doi:10.1101/2021.06.28.450190 (2021).
39 Plante, J. A. et al. Spike mutation D614G alters SARS-CoV-2 fitness. Nature 592, 116-121, doi:10.1038/s41586-020-2895-3 (2021).
40 Hou, Y. J. et al. SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo. Science 370, 1464-1468, doi:10.1126/science.abe8499 (2020).
41 Walls, A. C. et al. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 181, 281-292.e286, doi:10.1016/j.cell.2020.02.058 (2020).
42 Lauring, A. S. & Hodcroft, E. B. Genetic Variants of SARS-CoV-2—What Do They Mean? JAMA 325, 529-531, doi:10.1001/jama.2020.27124 (2021).
43 Morawska, L. et al. How can airborne transmission of COVID-19 indoors be minimised? Environ Int 142, 105832, doi:10.1016/j.envint.2020.105832 (2020).
44 Nardell, E. A. & Nathavitharana, R. R. Airborne Spread of SARS-CoV-2 and a Potential Role for Air Disinfection. Jama 324, 141-142, doi:10.1001/jama.2020.7603 (2020).
45 Chu, D. K. et al. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis. Lancet 395, 1973-1987, doi:10.1016/s0140-6736(20)31142-9 (2020).
46 Fukushi, S. et al. Vesicular stomatitis virus pseudotyped with severe acute respiratory syndrome coronavirus spike protein. Journal of General Virology 86, 2269-2274, doi:https://doi.org/10.1099/vir.0.80955-0 (2005).
47 Kawase, M., Shirato, K., Matsuyama, S. & Taguchi, F. Protease-Mediated Entry via the Endosome of Human Coronavirus 229E. Journal of Virology 83, 712-721, doi:10.1128/jvi.01933-08 (2009).
48 Letko, M., Marzi, A. & Munster, V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nature Microbiology 5, 562-569, doi:10.1038/s41564-020-0688-y (2020).
49 Takada, A. et al. A system for functional analysis of Ebola virus glycoprotein. Proceedings of the National Academy of Sciences 94, 14764-14769, doi:10.1073/pnas.94.26.14764 (1997).
50 Lan, J. et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 581, 215-220, doi:10.1038/s41586-020-2180-5 (2020).
51 Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66, 486-501, doi:10.1107/s0907444910007493 (2010).
52 Corman, V. M. et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill 25, doi:10.2807/1560-7917.ES.2020.25.3.2000045 (2020).
53 Corman, V. M. et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin 25, 2000045, doi:10.2807/1560-7917.ES.2020.25.3.2000045 (2020).
54 van Doremalen, N. et al. Efficacy of antibody-based therapies against Middle East respiratory syndrome coronavirus (MERS-CoV) in common marmosets. Antiviral Res 143, 30-37, doi:10.1016/j.antiviral.2017.03.025 (2017).
55 Yinda, C. K. et al. K18-hACE2 mice develop respiratory disease resembling severe COVID-19. bioRxiv, doi:10.1101/2020.08.11.246314 (2020).