1.Chen J, Xu J, Li Y, Zhang J, Chen H, Lu J, Wang Z, Zhao X, Xu K, Li X et al: Competing endogenous RNA network analysis identifies critical genes among the different breast cancer subtypes. Oncotarget 2017, 8(6):10171–10184.
2.Chen Z, Wu H, Wang G, Feng Y: Identification of potential candidate genes for hypertensive nephropathy based on gene expression profile. BMC nephrology 2016, 17(1):149.
3.Tan YG, Chan DWK, Yap FKP, Yap TL: Hypertensive urgency in nephrogenic diabetes insipidus with concomitant Hinman syndrome. BMJ case reports 2019, 12(7).
4.Wang XC, Liu CH, Chen YJ, Wu Y, Yang LS, Liu HM, Liao HL: Clinical and pathological analysis of the kidney in patients with hypertensive nephropathy. Experimental and therapeutic medicine 2013, 6(5):1243–1246.
5.Cao J, Hou R, Lu J, Zhang K, Zhao C, Jiang H, Feng Y, Wang Y: The predictive value of beta2-MG and TGF-beta for elderly hypertensive nephropathy. Experimental and therapeutic medicine 2019, 17(4):3065–3070.
6.Guerrot D, Dussaule JC, Mael-Ainin M, Xu-Dubois YC, Rondeau E, Chatziantoniou C, Placier S: Identification of periostin as a critical marker of progression/reversal of hypertensive nephropathy. PloS one 2012, 7(3):e31974.
7.Kurashige T, Takahashi T, Yamazaki Y, Nagano Y, Kondo K, Nakamura T, Yamawaki T, Tsuburaya R, Hayashi YK, Nonaka I et al: Elevated urinary beta2 microglobulin in the first identified Japanese family afflicted by X-linked myopathy with excessive autophagy. Neuromuscular disorders: NMD 2013, 23(11):911–916.
8.Rouse RL, Stewart SR, Thompson KL, Zhang J: Kidney injury biomarkers in hypertensive, diabetic, and nephropathy rat models treated with contrast media. Toxicologic pathology 2013, 41(4):662–680.
9.Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza I, Leyva A, Weigel D, Garcia JA, Paz-Ares J: Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet 2007, 39(8):1033–1037.
10.Liu XH, Sun M, Nie FQ, Ge YB, Zhang EB, Yin DD, Kong R, Xia R, Lu KH, Li JH et al: Lnc RNA HOTAIR functions as a competing endogenous RNA to regulate HER2 expression by sponging miR–331–3p in gastric cancer. Molecular cancer 2014, 13:92.
11.Wang J, Liu X, Wu H, Ni P, Gu Z, Qiao Y, Chen N, Sun F, Fan Q: CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA–372 in liver cancer. Nucleic Acids Res 2010, 38(16):5366–5383.
12.Zhou X, Gao Q, Wang J, Zhang X, Liu K, Duan Z: Linc-RNA-RoR acts as a “sponge” against mediation of the differentiation of endometrial cancer stem cells by microRNA–145. Gynecologic oncology 2014, 133(2):333–339.
13.Liu H, Zhang Z, Wu N, Guo H, Zhang H, Fan D, Nie Y, Liu Y: Integrative Analysis of Dysregulated lncRNA-Associated ceRNA Network Reveals Functional lncRNAs in Gastric Cancer. Genes 2018, 9(6).
14.Zhou Q, Huang XR, Yu J, Yu X, Lan HY: Long Noncoding RNA Arid2-IR Is a Novel Therapeutic Target for Renal Inflammation. Molecular therapy: the journal of the American Society of Gene Therapy 2015, 23(6):1034–1043.
15.Marques FZ, Campain AE, Tomaszewski M, Zukowska-Szczechowska E, Yang YH, Charchar FJ, Morris BJ: Gene expression profiling reveals renin mRNA overexpression in human hypertensive kidneys and a role for microRNAs. Hypertension 2011, 58(6):1093–1098.
16.Parrish RS, Spencer HJ, 3rd: Effect of normalization on significance testing for oligonucleotide microarrays. Journal of biopharmaceutical statistics 2004, 14(3):575–589.
17.Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK: limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 2015, 43(7):e47.
18.Braschi B, Denny P, Gray K, Jones T, Seal R, Tweedie S, Yates B, Bruford E: Genenames.org: the HGNC and VGNC resources in 2019. Nucleic Acids Res 2019, 47(D1):D786-D792.
19.Wang L, Cao C, Ma Q, Zeng Q, Wang H, Cheng Z, Zhu G, Qi J, Ma H, Nian H et al: RNA-seq analyses of multiple meristems of soybean: novel and alternative transcripts, evolutionary and functional implications. BMC plant biology 2014, 14:169.
20.Bien J, Tibshirani R: Hierarchical Clustering With Prototypes via Minimax Linkage. Journal of the American Statistical Association 2011, 106(495):1075–1084.
21.Szekely GJ, Rizzo ML: Hierarchical clustering via joint between-within distances: Extending Ward’s minimum variance method. Journal of Classification 2005, 22(2):151–183.
22.Huang DW, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols 2009, 4(1):44–57.
23.Huang DW, Sherman BT, Lempicki RA: Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Research 2009, 37(1):1–13.
24.Paraskevopoulou MD, Vlachos IS, Karagkouni D, Georgakilas G, Kanellos I, Vergoulis T, Zagganas K, Tsanakas P, Floros E, Dalamagas T et al: DIANA-LncBase v2: indexing microRNA targets on non-coding transcripts. Nucleic Acids Res 2016, 44(D1):D231–238.
25.Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003, 13(11):2498–2504.
26.Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES et al: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences of the United States of America 2005, 102(43):15545–15550.
27.Davis AP, Grondin CJ, Johnson RJ, Sciaky D, McMorran R, Wiegers J, Wiegers TC, Mattingly CJ: The Comparative Toxicogenomics Database: update 2019. Nucleic Acids Res 2019, 47(D1):D948-D954.
28.Monaco ME: Fatty acid metabolism in breast cancer subtypes. Oncotarget 2017, 8(17):29487–29500.
29.Schafer ZT, Grassian AR, Song L, Jiang Z, Gerhart-Hines Z, Irie HY, Gao S, Puigserver P, Brugge JS: Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature 2009, 461(7260):109–113.
30.Plate L, Wiseman RL: Regulating Secretory Proteostasis through the Unfolded Protein Response: From Function to Therapy. Trends in cell biology 2017, 27(10):722–737.
31.Carlstrom M, Wilcox CS, Arendshorst WJ: Renal autoregulation in health and disease. Physiological reviews 2015, 95(2):405–511.
32.Amelio I, Cutruzzola F, Antonov A, Agostini M, Melino G: Serine and glycine metabolism in cancer. Trends in biochemical sciences 2014, 39(4):191–198.
33.Mehrmohamadi M, Liu X, Shestov AA, Locasale JW: Characterization of the usage of the serine metabolic network in human cancer. Cell reports 2014, 9(4):1507–1519.
34.Faryna M, Konermann C, Aulmann S, Bermejo JL, Brugger M, Diederichs S, Rom J, Weichenhan D, Claus R, Rehli M et al: Genome-wide methylation screen in low-grade breast cancer identifies novel epigenetically altered genes as potential biomarkers for tumor diagnosis. FASEB journal: official publication of the Federation of American Societies for Experimental Biology 2012, 26(12):4937–4950.
35.Yoganathan P, Karunakaran S, Ho MM, Clee SM: Nutritional regulation of genome-wide association obesity genes in a tissue-dependent manner. Nutrition & metabolism 2012, 9(1):65.
36.Liu C, Zhang Y, She X, Fan L, Li P, Feng J, Fu H, Liu Q, Zhao C, Sun Y et al: A cytoplasmic long noncoding RNA LINC00470 as a new AKT activator to mediate glioblastoma cell autophagy. Journal of hematology & oncology 2018, 11(1):77.
37.Liu G, Ye Z, Zhao X, Ji Z: SP1-induced up-regulation of lncRNA SNHG14 as a ceRNA promotes migration and invasion of clear cell renal cell carcinoma by regulating N-WASP. American journal of cancer research 2017, 7(12):2515–2525.
38.Katsoulieris EN, Drossopoulou GI, Kotsopoulou ES, Vlahakos DV, Lianos EA, Tsilibary EC: High Glucose Impairs Insulin Signaling in the Glomerulus: An In Vitro and Ex Vivo Approach. PloS one 2016, 11(7):e0158873.
39.Ren W, Zhang X, Li W, Feng Q, Feng H, Tong Y, Rong H, Wang W, Zhang D, Zhang Z et al: Exosomal miRNA–107 induces myeloid-derived suppressor cell expansion in gastric cancer. Cancer management and research 2019, 11:4023–4040.
40.Dai F, Chen G, Wang Y, Zhang L, Long Y, Yuan M, Yang D, Liu S, Cheng Y: Identification of candidate biomarkers correlated with the diagnosis and prognosis of cervical cancer via integrated bioinformatics analysis. Onco Targets Ther 2019, 12:4517–4532.
41.Voora D, Cyr D, Lucas J, Chi JT, Dungan J, McCaffrey TA, Katz R, Newby LK, Kraus WE, Becker RC et al: Aspirin exposure reveals novel genes associated with platelet function and cardiovascular events. Journal of the American College of Cardiology 2013, 62(14):1267–1276.
42.Lin HP, Lin CY, Huo C, Jan YJ, Tseng JC, Jiang SS, Kuo YY, Chen SC, Wang CT, Chan TM et al: AKT3 promotes prostate cancer proliferation cells through regulation of Akt, B-Raf, and TSC1/TSC2. Oncotarget 2015, 6(29):27097–27112.
43.Li G, Liu K, Du X: Long Non-Coding RNA TUG1 Promotes Proliferation and Inhibits Apoptosis of Osteosarcoma Cells by Sponging miR–132–3p and Upregulating SOX4 Expression. Yonsei medical journal 2018, 59(2):226–235.